CXCL13

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 61983 Experts worldwide ranked by ideXlab platform

Gina Lisignoli - One of the best experts on this subject based on the ideXlab platform.

  • Expression of CXC chemokines and their receptors is modulated during chondrogenic differentiation of human mesenchymal stem cells grown in three-dimensional scaffold: evidence in native cartilage.
    Tissue engineering. Part A, 2008
    Co-Authors: Sandra Cristino, Anna Piacentini, Cristina Manferdini, Katia Codeluppi, Francesco Grassi, Andrea Facchini, Gina Lisignoli
    Abstract:

    Chemokines contribute to the maintenance of cartilage homeostasis. To evaluate the role of CXC chemokines CXCL8 (interleukin-8), CXCL10 (interferon-gamma-inducible protein-10), CXCL12 (stroma-derived factor-1) and CXCL13 (B-cell attracting chemokine-1) and their receptors, respectively CXCR1-2, CXCR3, CXCR4, and CXCR5, during chondrogenic differentiation of human mesenchymal stromal cells (h-MSCs), we used a well-defined in vitro model. Chondrogenic differentiation was analyzed on h-MSCs grown on hyaluronic acid–based biomaterial in the presence or absence of transforming growth factor-β, and the expression and modulation of CXC chemokines and receptors were evaluated at different time points. Real-time polymerase chain reaction was performed to analyze their expression at the messenger ribonucleic acid (mRNA) level, and immunohistochemistry and enzyme-linked immunosorbent assay were used to evaluate their expression at the protein level. Human articular cartilage biopsies were used to evaluate chemokine ...

  • cxcl12 sdf 1 and CXCL13 bca 1 chemokines significantly induce proliferation and collagen type i expression in osteoblasts from osteoarthritis patients
    Journal of Cellular Physiology, 2006
    Co-Authors: Gina Lisignoli, Sandra Cristino, Anna Piacentini, Francesco Grassi, Stefania Toneguzzi, Carola Cavallo, Andrea Facchini
    Abstract:

    To evaluate the role of CXC chemokines CXCL8 (IL8), CXCL10 (IP-10), CXCL12 (SDF-1), and CXCL13 (BCA-1) in bone remodeling, we analyzed their effects on osteoblasts (OBs) obtained from subchondral trabecular bone tissue of osteoarthritis (OA) and post-traumatic (PT) patients. The expression of CXC receptors/ligands (CXCR1/CXCL8, CXCR2/CXCL8, CXCR3/CXCL10, CXCR4/CXCL12, and CXCR5/CXCL13) was analyzed in cultured OBs by flow cytometry and immunocytochemistry. Functional assays on CXC chemokine-treated-OBs in the presence or absence of their specific inhibitors were performed to analyze cellular proliferation and the enzymatic response to chemokine activation. The expression of chemokine ligands/receptors was also confirmed in bone tissue samples by immunohistochemical analysis. Collagen type I and alkaline phosphatase mRNA expression were analyzed on CXCL12- and CXCL13-treated OBs by real-time PCR. OBs from both OA and PT patients expressed high levels of CXCR3 and CXCR5 and lower amounts of CXCR1 and CXCR4. CXCL12 and CXCL13, only in OBs from OA patients, induced a significant proliferation that was also confirmed by specific blocking experiments. Moreover, OBs from OA patients released a higher amount of CXCL13 than those of PT patients while no differences were found for CXCL12. In the remodeling area of bone tissue samples, immunohistochemical analysis confirmed that OBs expressed CXCL12/CXCR4 and CXCL13/CXCR5 both in OA and PT samples. CXCL12 and CXCL13 upregulated collagen type I mRNA expression in OBs from OA patients. These data suggest that CXCL12 and CXCL13 may directly modulate cellular proliferation and collagen type I in OA patients, so contributing to the remodeling process that occurs in the evolution of this disease. © 2005 Wiley-Liss, Inc.

  • Human osteoclasts express different CXC chemokines depending on cell culture substrate: molecular and immunocytochemical evidence of high levels of CXCL10 and CXCL12
    Histochemistry and Cell Biology, 2003
    Co-Authors: Francesco Grassi, Sandra Cristino, Anna Piacentini, Andrea Facchini, Stefania Toneguzzi, Carola Cavallo, Gina Lisignoli
    Abstract:

    Chemokines are important mediators of chemotaxis, cell adherence, and proliferation and exert specific functions in bone remodeling. Despite the potential intriguing role of chemokines in the regulation of osteoclast (OC) functions, little is known about the expression of chemokines and their receptors in human OCs at different stages of differentiation. Therefore, we analyzed the expression of CXC chemokine receptors (CXCR1, CXCR2, CXCR3, CXCR4 and CXCR5) and ligands (CXCL8, CXCL10, CXCL12 and CXCL13) both at molecular and protein levels, in human OCs grown on plastic or calcium phosphate-coated slides at different stages of differentiation. Real-time PCR showed that CXCR1, CXCR2, CXCR3, CXCR4, CXCR5 and CXCL8 were expressed in undifferentiated cells and significantly decreased during OC differentiation. By contrast, CXCL10 and CXCL12 were strongly upregulated from day 0 to day 8 in cells grown on calcium phosphate-coated slides. Immunocytochemistry showed that OCs grown on plastic expressed CXCR3, CXCR4, CXCR5, CXCL8 and CXCL12, while they were negative for CXCR1, CXCR2 and CXCL10. Interestingly, both at molecular and protein levels CXCL10 and CXCL12 significantly increased only when cells were differentiated on calcium phosphate-coated slides. These data suggest that the selection of a substrate that better mimics the tridimensional structure of bone tissue, thus favoring OC maturation and differentiation, may be necessary when studying osteoclastogenesis in vitro.

  • Age-associated changes in functional response to CXCR3 and CXCR5 chemokine receptors in human osteoblasts
    Biogerontology, 2003
    Co-Authors: Gina Lisignoli, Sandra Cristino, Anna Piacentini, Francesco Grassi, Andrea Facchini, Stefania Toneguzzi, Matilde Tschon, Erminia Mariani
    Abstract:

    The expression and functional activity of CXC chemokine receptors were evaluated in human osteoblasts (OB) obtained post-trauma from old donors compared to very young donors. It was found that CXCR1 and CXCR4 were only expressed by old but not young donors' cells. In contrast, CXCR3 and CXCR5 were expressed by both young and old donors. We functionally evaluated CXCR3/CXCL10 and CXCR5/CXCL13 receptor/ligand pairs by analysing cell proliferation and the release of N-acetyl-β-D-glucosaminidase (NAG), an enzyme that degrades glycosaminoglycans and hyaluronic acid. CXCL10 and CXCL13 induced a dose-dependent increase of cell proliferation in OB from young donors while cell proliferation of OB in old donors was not affected. By contrast, CXCL10 and CXCL13 induced a significantly higher NAG release in OB from old donors compared to young ones. These data demonstrate a significant age-dependent difference in the response of OB to CXCL10 and CXCL13 stimulation. These chemokines induce an inverse response of OB from old and young donors, which suggests a role of ageing in the modulation of cellular response of bone cells.

  • human osteoblasts express functional cxc chemokine receptors 3 and 5 activation by their ligands cxcl10 and CXCL13 significantly induces alkaline phosphatase and β n acetylhexosaminidase release
    Journal of Cellular Physiology, 2003
    Co-Authors: Gina Lisignoli, Sandra Cristino, Francesco Grassi, Stefania Toneguzzi, Matilde Tschon, A Piacentini, Luca Cattini, Anna Lenti, Andrea Facchini
    Abstract:

    Osteoblasts (OBs) contribute to the maintenance of bone homeostasis and their activity can be influenced by immune cells localized in bone lacunae. We investigated the expression of the chemokine receptors in isolated human OBs by reverse transcriptase-polymerase chain reaction (RT-PCR) and flow cytometry, and report a novel finding, namely, that OBs express high levels of CXC chemokine receptor 3 (CXCR3) and 5 (CXCR5). Functional assays to evaluate CXCR3 and CXCR5 demonstrated that their ligands—CXCL10 and CXCL13, respectively—significantly induce the release of β-N-acetylhexosaminidase, an enzyme involved in endochondral ossification and bone remodeling able to degrade important extracellular matrix components. Alkaline phosphatase activity, a useful index of matrix formation was also up-regulated by CXCL10 and CXCL13. However, OB activation by these ligands does not affect OB proliferation. Both Bordetella pertussis toxin and neutralizing anti-CXCR3/anti-CXCR5 monoclonal antibodies block CXCL10 and CXCL13 induction, respectively. We also demonstrated the expression of CXCL10 and CXCL13 in human bone tissue biopsies. These results indicate that both CXCR3/CXCL10 and CXCR5/CXCL13 receptor–ligand pairs may play an important role in OB activity through the specific up-regulation of two enzymes, which are involved in the bone remodeling process. Moreover, our data suggest that OBs may play a role in the modulation of bone formation through the combined action of these two enzymes. © 2002 Wiley-Liss, Inc.

Andrea Facchini - One of the best experts on this subject based on the ideXlab platform.

  • Expression of CXC chemokines and their receptors is modulated during chondrogenic differentiation of human mesenchymal stem cells grown in three-dimensional scaffold: evidence in native cartilage.
    Tissue engineering. Part A, 2008
    Co-Authors: Sandra Cristino, Anna Piacentini, Cristina Manferdini, Katia Codeluppi, Francesco Grassi, Andrea Facchini, Gina Lisignoli
    Abstract:

    Chemokines contribute to the maintenance of cartilage homeostasis. To evaluate the role of CXC chemokines CXCL8 (interleukin-8), CXCL10 (interferon-gamma-inducible protein-10), CXCL12 (stroma-derived factor-1) and CXCL13 (B-cell attracting chemokine-1) and their receptors, respectively CXCR1-2, CXCR3, CXCR4, and CXCR5, during chondrogenic differentiation of human mesenchymal stromal cells (h-MSCs), we used a well-defined in vitro model. Chondrogenic differentiation was analyzed on h-MSCs grown on hyaluronic acid–based biomaterial in the presence or absence of transforming growth factor-β, and the expression and modulation of CXC chemokines and receptors were evaluated at different time points. Real-time polymerase chain reaction was performed to analyze their expression at the messenger ribonucleic acid (mRNA) level, and immunohistochemistry and enzyme-linked immunosorbent assay were used to evaluate their expression at the protein level. Human articular cartilage biopsies were used to evaluate chemokine ...

  • cxcl12 sdf 1 and CXCL13 bca 1 chemokines significantly induce proliferation and collagen type i expression in osteoblasts from osteoarthritis patients
    Journal of Cellular Physiology, 2006
    Co-Authors: Gina Lisignoli, Sandra Cristino, Anna Piacentini, Francesco Grassi, Stefania Toneguzzi, Carola Cavallo, Andrea Facchini
    Abstract:

    To evaluate the role of CXC chemokines CXCL8 (IL8), CXCL10 (IP-10), CXCL12 (SDF-1), and CXCL13 (BCA-1) in bone remodeling, we analyzed their effects on osteoblasts (OBs) obtained from subchondral trabecular bone tissue of osteoarthritis (OA) and post-traumatic (PT) patients. The expression of CXC receptors/ligands (CXCR1/CXCL8, CXCR2/CXCL8, CXCR3/CXCL10, CXCR4/CXCL12, and CXCR5/CXCL13) was analyzed in cultured OBs by flow cytometry and immunocytochemistry. Functional assays on CXC chemokine-treated-OBs in the presence or absence of their specific inhibitors were performed to analyze cellular proliferation and the enzymatic response to chemokine activation. The expression of chemokine ligands/receptors was also confirmed in bone tissue samples by immunohistochemical analysis. Collagen type I and alkaline phosphatase mRNA expression were analyzed on CXCL12- and CXCL13-treated OBs by real-time PCR. OBs from both OA and PT patients expressed high levels of CXCR3 and CXCR5 and lower amounts of CXCR1 and CXCR4. CXCL12 and CXCL13, only in OBs from OA patients, induced a significant proliferation that was also confirmed by specific blocking experiments. Moreover, OBs from OA patients released a higher amount of CXCL13 than those of PT patients while no differences were found for CXCL12. In the remodeling area of bone tissue samples, immunohistochemical analysis confirmed that OBs expressed CXCL12/CXCR4 and CXCL13/CXCR5 both in OA and PT samples. CXCL12 and CXCL13 upregulated collagen type I mRNA expression in OBs from OA patients. These data suggest that CXCL12 and CXCL13 may directly modulate cellular proliferation and collagen type I in OA patients, so contributing to the remodeling process that occurs in the evolution of this disease. © 2005 Wiley-Liss, Inc.

  • Human osteoclasts express different CXC chemokines depending on cell culture substrate: molecular and immunocytochemical evidence of high levels of CXCL10 and CXCL12
    Histochemistry and Cell Biology, 2003
    Co-Authors: Francesco Grassi, Sandra Cristino, Anna Piacentini, Andrea Facchini, Stefania Toneguzzi, Carola Cavallo, Gina Lisignoli
    Abstract:

    Chemokines are important mediators of chemotaxis, cell adherence, and proliferation and exert specific functions in bone remodeling. Despite the potential intriguing role of chemokines in the regulation of osteoclast (OC) functions, little is known about the expression of chemokines and their receptors in human OCs at different stages of differentiation. Therefore, we analyzed the expression of CXC chemokine receptors (CXCR1, CXCR2, CXCR3, CXCR4 and CXCR5) and ligands (CXCL8, CXCL10, CXCL12 and CXCL13) both at molecular and protein levels, in human OCs grown on plastic or calcium phosphate-coated slides at different stages of differentiation. Real-time PCR showed that CXCR1, CXCR2, CXCR3, CXCR4, CXCR5 and CXCL8 were expressed in undifferentiated cells and significantly decreased during OC differentiation. By contrast, CXCL10 and CXCL12 were strongly upregulated from day 0 to day 8 in cells grown on calcium phosphate-coated slides. Immunocytochemistry showed that OCs grown on plastic expressed CXCR3, CXCR4, CXCR5, CXCL8 and CXCL12, while they were negative for CXCR1, CXCR2 and CXCL10. Interestingly, both at molecular and protein levels CXCL10 and CXCL12 significantly increased only when cells were differentiated on calcium phosphate-coated slides. These data suggest that the selection of a substrate that better mimics the tridimensional structure of bone tissue, thus favoring OC maturation and differentiation, may be necessary when studying osteoclastogenesis in vitro.

  • Age-associated changes in functional response to CXCR3 and CXCR5 chemokine receptors in human osteoblasts
    Biogerontology, 2003
    Co-Authors: Gina Lisignoli, Sandra Cristino, Anna Piacentini, Francesco Grassi, Andrea Facchini, Stefania Toneguzzi, Matilde Tschon, Erminia Mariani
    Abstract:

    The expression and functional activity of CXC chemokine receptors were evaluated in human osteoblasts (OB) obtained post-trauma from old donors compared to very young donors. It was found that CXCR1 and CXCR4 were only expressed by old but not young donors' cells. In contrast, CXCR3 and CXCR5 were expressed by both young and old donors. We functionally evaluated CXCR3/CXCL10 and CXCR5/CXCL13 receptor/ligand pairs by analysing cell proliferation and the release of N-acetyl-β-D-glucosaminidase (NAG), an enzyme that degrades glycosaminoglycans and hyaluronic acid. CXCL10 and CXCL13 induced a dose-dependent increase of cell proliferation in OB from young donors while cell proliferation of OB in old donors was not affected. By contrast, CXCL10 and CXCL13 induced a significantly higher NAG release in OB from old donors compared to young ones. These data demonstrate a significant age-dependent difference in the response of OB to CXCL10 and CXCL13 stimulation. These chemokines induce an inverse response of OB from old and young donors, which suggests a role of ageing in the modulation of cellular response of bone cells.

  • human osteoblasts express functional cxc chemokine receptors 3 and 5 activation by their ligands cxcl10 and CXCL13 significantly induces alkaline phosphatase and β n acetylhexosaminidase release
    Journal of Cellular Physiology, 2003
    Co-Authors: Gina Lisignoli, Sandra Cristino, Francesco Grassi, Stefania Toneguzzi, Matilde Tschon, A Piacentini, Luca Cattini, Anna Lenti, Andrea Facchini
    Abstract:

    Osteoblasts (OBs) contribute to the maintenance of bone homeostasis and their activity can be influenced by immune cells localized in bone lacunae. We investigated the expression of the chemokine receptors in isolated human OBs by reverse transcriptase-polymerase chain reaction (RT-PCR) and flow cytometry, and report a novel finding, namely, that OBs express high levels of CXC chemokine receptor 3 (CXCR3) and 5 (CXCR5). Functional assays to evaluate CXCR3 and CXCR5 demonstrated that their ligands—CXCL10 and CXCL13, respectively—significantly induce the release of β-N-acetylhexosaminidase, an enzyme involved in endochondral ossification and bone remodeling able to degrade important extracellular matrix components. Alkaline phosphatase activity, a useful index of matrix formation was also up-regulated by CXCL10 and CXCL13. However, OB activation by these ligands does not affect OB proliferation. Both Bordetella pertussis toxin and neutralizing anti-CXCR3/anti-CXCR5 monoclonal antibodies block CXCL10 and CXCL13 induction, respectively. We also demonstrated the expression of CXCL10 and CXCL13 in human bone tissue biopsies. These results indicate that both CXCR3/CXCL10 and CXCR5/CXCL13 receptor–ligand pairs may play an important role in OB activity through the specific up-regulation of two enzymes, which are involved in the bone remodeling process. Moreover, our data suggest that OBs may play a role in the modulation of bone formation through the combined action of these two enzymes. © 2002 Wiley-Liss, Inc.

Andrew D Luster - One of the best experts on this subject based on the ideXlab platform.

  • gamma interferon regulated chemokines in leishmania donovani infection in the liver
    Infection and Immunity, 2017
    Co-Authors: Henry W Murray, Andrew D Luster, Hua Zheng
    Abstract:

    ABSTRACT In the livers of C57BL/6 mice, gamma interferon (IFN-γ) controls intracellular Leishmania donovani infection and the efficacy of antimony (Sb) chemotherapy. Since both responses usually correlate with granulomatous inflammation, we tested six prominently expressed, IFN-γ-regulated chemokines—CXCL9, CXCL10, CXCL13, CXCL16, CCL2, and CCL5—for their roles in (i) mononuclear cell recruitment and granuloma assembly and maturation, (ii) initial control of infection and self-cure, and (iii) responsiveness to Sb treatment. Together, the results for the L. donovani-infected livers of chemokine-deficient mice (CXCR6−/− mice were used as CXCL16-deficient surrogates) indicated that individual IFN-γ-induced chemokines have diverse affects and (i) may be entirely dispensable (CXCL13, CXCL16), (ii) may promote (CXCL10, CCL2, CCL5) or downregulate (CXCL9) initial granuloma assembly, (iii) may enhance (CCL2, CCL5) or hinder (CXCL10) early parasite control, (iv) may promote granuloma maturation (CCL2, CCL5), (v) may exert a granuloma-independent action that enables self-cure (CCL5), and (vi) may have no role in responsiveness to chemotherapy. Despite the near absence of tissue inflammation in early-stage infection, parasite replication could be controlled (in CXCL10−/− mice) and Sb was fully active (in CXCL10−/−, CCL2−/−, and CCL5−/− mice). These results characterize chemokine action in the response to L. donovani and also reemphasize that (i) recruited mononuclear cells and granulomas are not required to control infection or respond to Sb chemotherapy, (ii) granuloma assembly, control of infection, and Sb9s efficacy are not invariably linked expressions of the same T cell-dependent, cytokine-mediated antileishmanial mechanism, and (iii) granulomas are not necessarily hallmarks of protective antileishmanial immunity.

  • chemokine signatures in the skin disorders of lyme borreliosis in europe predominance of cxcl9 and cxcl10 in erythema migrans and acrodermatitis and CXCL13 in lymphocytoma
    Infection and Immunity, 2007
    Co-Authors: Robert R. Müllegger, Andrew D Luster, Terry K Means, Junghee J Shin, Marshall Lee, Kathryn L Jones, Lisa J Glickstein, Allen C Steere
    Abstract:

    The three skin disorders of Lyme borreliosis in Europe include erythema migrans, an acute, self-limited lesion; borrelial lymphocytoma, a subacute lesion; and acrodermatitis chronica atrophicans, a chronic lesion. Using quantitative reverse transcription-PCR, we determined mRNA expression of selected chemokines, cytokines, and leukocyte markers in skin samples from 100 patients with erythema migrans, borrelial lymphocytoma, or acrodermatitis chronica atrophicans and from 25 control subjects. Chemokine patterns in lesional skin in each of the three skin disorders included low but significant mRNA levels of the neutrophil chemoattractant CXCL1 and the dendritic cell chemoattractant CCL20 and intermediate levels of the macrophage chemoattractant CCL2. Erythema migrans and particularly acrodermatitis lesions had high mRNA expression of the T-cell-active chemokines CXCL9 and CXCL10 and low levels of the B-cell-active chemokine CXCL13, whereas lymphocytoma lesions had high levels of CXCL13 and lower levels of CXCL9 and CXCL10. This pattern of chemokine expression was consistent with leukocyte marker mRNA in lesional skin. Moreover, using immunohistologic methods, CD3+ T cells and CXCL9 were visualized in erythema migrans and acrodermatitis lesions, and CD20+ B cells and CXCL13 were seen in lymphocytoma lesions. Thus, erythema migrans and acrodermatitis chronica atrophicans have high levels of the T-cell-active chemokines CXCL9 and CXCL10, whereas borrelial lymphocytoma has high levels of the B-cell-active chemokine CXCL13.

  • stat1 in peripheral tissue differentially regulates homing of antigen specific th1 and th2 cells
    Journal of Immunology, 2006
    Co-Authors: Zamaneh Mikhak, Benjamin D. Medoff, Carolyn M Fleming, Seddon Y Thomas, Andrew M Tager, Gabriele S V Campanella, Andrew D Luster
    Abstract:

    Th1 and Th2 effector CD4 + T cells orchestrate distinct counterregulatory biological responses. To deliver effective tissue Th1- and Th2-type responses, Th1 and Th2 cell recruitment into tissue must be differentially regulated. We show that tissue-derived STAT1 controls the trafficking of adoptively transferred, Ag-specific, wild-type Th1 cells into the lung. Trafficking of Th1 and Th2 cells is differentially regulated as STAT6, which regulates Th2 cell trafficking, had no effect on the trafficking of Th1 cells and STAT1 deficiency did not alter Th2 cell trafficking. We demonstrate that STAT1 control of Th1 cell trafficking is not mediated through T-bet. STAT1 controls the recruitment of Th1cells through the induction of CXCL9, CXCL10, CXCL11, and CXCL16, whose expression levels in the lung were markedly decreased in STAT1 −/− mice. CXCL10 replacement partially restored Th1 cell trafficking in STAT1-deficient mice in vivo, and deficiency in CXCR3, the receptor for CXCL9, CXCL10, and CXCL11, impaired the trafficking of adoptively transferred Th1 cells in wild-type mice. Our work identifies that STAT1 in peripheral tissue regulates the homing of Ag-specific Th1 cells through the induction of a distinct subset of chemokines and establishes that Th1 and Th2 cell trafficking is differentially controlled in vivo by STAT1 and STAT6, respectively.

  • intracellular domains of cxcr3 that mediate cxcl9 cxcl10 and cxcl11 function
    Journal of Biological Chemistry, 2004
    Co-Authors: Richard A Colvin, Gabriele S V Campanella, Jieti Sun, Andrew D Luster
    Abstract:

    The chemokine receptor CXCR3 is a G protein-coupled receptor found predominantly on T cells that is activated by three ligands as follows: CXCL9 (Mig), CXCL10 (IP-10), and CXCL11 (I-TAC). Previously, we have found that of the three ligands, CXCL11 is the most potent inducer of CXCR3 internalization and is the physiologic inducer of CXCR3 internalization after T cell contact with activated endothelial cells. We have therefore hypothesized that these three ligands transduce different signals to CXCR3. In light of this hypothesis, we sought to determine whether regions of CXCR3 are differentially required for CXCL9, CXCL10, and CXCL11 function. Here we identified two distinct domains that contributed to CXCR3 internalization. The carboxyl-terminal domain and β-arrestin1 were predominantly required by CXCL9 and CXCL10, and the third intracellular loop was predominantly required by CXCL11. Chemotaxis and calcium mobilization induced by all three CXCR3 ligands were dependent on the CXCR3 carboxyl terminus and the DRY sequence in the third trans-membrane domain. Our findings demonstrate that distinct domains of CXCR3 mediate its functions and suggest that the differential requirement of these domains contributes to the complexity of the chemokine system.

Sandra Cristino - One of the best experts on this subject based on the ideXlab platform.

  • Expression of CXC chemokines and their receptors is modulated during chondrogenic differentiation of human mesenchymal stem cells grown in three-dimensional scaffold: evidence in native cartilage.
    Tissue engineering. Part A, 2008
    Co-Authors: Sandra Cristino, Anna Piacentini, Cristina Manferdini, Katia Codeluppi, Francesco Grassi, Andrea Facchini, Gina Lisignoli
    Abstract:

    Chemokines contribute to the maintenance of cartilage homeostasis. To evaluate the role of CXC chemokines CXCL8 (interleukin-8), CXCL10 (interferon-gamma-inducible protein-10), CXCL12 (stroma-derived factor-1) and CXCL13 (B-cell attracting chemokine-1) and their receptors, respectively CXCR1-2, CXCR3, CXCR4, and CXCR5, during chondrogenic differentiation of human mesenchymal stromal cells (h-MSCs), we used a well-defined in vitro model. Chondrogenic differentiation was analyzed on h-MSCs grown on hyaluronic acid–based biomaterial in the presence or absence of transforming growth factor-β, and the expression and modulation of CXC chemokines and receptors were evaluated at different time points. Real-time polymerase chain reaction was performed to analyze their expression at the messenger ribonucleic acid (mRNA) level, and immunohistochemistry and enzyme-linked immunosorbent assay were used to evaluate their expression at the protein level. Human articular cartilage biopsies were used to evaluate chemokine ...

  • cxcl12 sdf 1 and CXCL13 bca 1 chemokines significantly induce proliferation and collagen type i expression in osteoblasts from osteoarthritis patients
    Journal of Cellular Physiology, 2006
    Co-Authors: Gina Lisignoli, Sandra Cristino, Anna Piacentini, Francesco Grassi, Stefania Toneguzzi, Carola Cavallo, Andrea Facchini
    Abstract:

    To evaluate the role of CXC chemokines CXCL8 (IL8), CXCL10 (IP-10), CXCL12 (SDF-1), and CXCL13 (BCA-1) in bone remodeling, we analyzed their effects on osteoblasts (OBs) obtained from subchondral trabecular bone tissue of osteoarthritis (OA) and post-traumatic (PT) patients. The expression of CXC receptors/ligands (CXCR1/CXCL8, CXCR2/CXCL8, CXCR3/CXCL10, CXCR4/CXCL12, and CXCR5/CXCL13) was analyzed in cultured OBs by flow cytometry and immunocytochemistry. Functional assays on CXC chemokine-treated-OBs in the presence or absence of their specific inhibitors were performed to analyze cellular proliferation and the enzymatic response to chemokine activation. The expression of chemokine ligands/receptors was also confirmed in bone tissue samples by immunohistochemical analysis. Collagen type I and alkaline phosphatase mRNA expression were analyzed on CXCL12- and CXCL13-treated OBs by real-time PCR. OBs from both OA and PT patients expressed high levels of CXCR3 and CXCR5 and lower amounts of CXCR1 and CXCR4. CXCL12 and CXCL13, only in OBs from OA patients, induced a significant proliferation that was also confirmed by specific blocking experiments. Moreover, OBs from OA patients released a higher amount of CXCL13 than those of PT patients while no differences were found for CXCL12. In the remodeling area of bone tissue samples, immunohistochemical analysis confirmed that OBs expressed CXCL12/CXCR4 and CXCL13/CXCR5 both in OA and PT samples. CXCL12 and CXCL13 upregulated collagen type I mRNA expression in OBs from OA patients. These data suggest that CXCL12 and CXCL13 may directly modulate cellular proliferation and collagen type I in OA patients, so contributing to the remodeling process that occurs in the evolution of this disease. © 2005 Wiley-Liss, Inc.

  • Human osteoclasts express different CXC chemokines depending on cell culture substrate: molecular and immunocytochemical evidence of high levels of CXCL10 and CXCL12
    Histochemistry and Cell Biology, 2003
    Co-Authors: Francesco Grassi, Sandra Cristino, Anna Piacentini, Andrea Facchini, Stefania Toneguzzi, Carola Cavallo, Gina Lisignoli
    Abstract:

    Chemokines are important mediators of chemotaxis, cell adherence, and proliferation and exert specific functions in bone remodeling. Despite the potential intriguing role of chemokines in the regulation of osteoclast (OC) functions, little is known about the expression of chemokines and their receptors in human OCs at different stages of differentiation. Therefore, we analyzed the expression of CXC chemokine receptors (CXCR1, CXCR2, CXCR3, CXCR4 and CXCR5) and ligands (CXCL8, CXCL10, CXCL12 and CXCL13) both at molecular and protein levels, in human OCs grown on plastic or calcium phosphate-coated slides at different stages of differentiation. Real-time PCR showed that CXCR1, CXCR2, CXCR3, CXCR4, CXCR5 and CXCL8 were expressed in undifferentiated cells and significantly decreased during OC differentiation. By contrast, CXCL10 and CXCL12 were strongly upregulated from day 0 to day 8 in cells grown on calcium phosphate-coated slides. Immunocytochemistry showed that OCs grown on plastic expressed CXCR3, CXCR4, CXCR5, CXCL8 and CXCL12, while they were negative for CXCR1, CXCR2 and CXCL10. Interestingly, both at molecular and protein levels CXCL10 and CXCL12 significantly increased only when cells were differentiated on calcium phosphate-coated slides. These data suggest that the selection of a substrate that better mimics the tridimensional structure of bone tissue, thus favoring OC maturation and differentiation, may be necessary when studying osteoclastogenesis in vitro.

  • Age-associated changes in functional response to CXCR3 and CXCR5 chemokine receptors in human osteoblasts
    Biogerontology, 2003
    Co-Authors: Gina Lisignoli, Sandra Cristino, Anna Piacentini, Francesco Grassi, Andrea Facchini, Stefania Toneguzzi, Matilde Tschon, Erminia Mariani
    Abstract:

    The expression and functional activity of CXC chemokine receptors were evaluated in human osteoblasts (OB) obtained post-trauma from old donors compared to very young donors. It was found that CXCR1 and CXCR4 were only expressed by old but not young donors' cells. In contrast, CXCR3 and CXCR5 were expressed by both young and old donors. We functionally evaluated CXCR3/CXCL10 and CXCR5/CXCL13 receptor/ligand pairs by analysing cell proliferation and the release of N-acetyl-β-D-glucosaminidase (NAG), an enzyme that degrades glycosaminoglycans and hyaluronic acid. CXCL10 and CXCL13 induced a dose-dependent increase of cell proliferation in OB from young donors while cell proliferation of OB in old donors was not affected. By contrast, CXCL10 and CXCL13 induced a significantly higher NAG release in OB from old donors compared to young ones. These data demonstrate a significant age-dependent difference in the response of OB to CXCL10 and CXCL13 stimulation. These chemokines induce an inverse response of OB from old and young donors, which suggests a role of ageing in the modulation of cellular response of bone cells.

  • human osteoblasts express functional cxc chemokine receptors 3 and 5 activation by their ligands cxcl10 and CXCL13 significantly induces alkaline phosphatase and β n acetylhexosaminidase release
    Journal of Cellular Physiology, 2003
    Co-Authors: Gina Lisignoli, Sandra Cristino, Francesco Grassi, Stefania Toneguzzi, Matilde Tschon, A Piacentini, Luca Cattini, Anna Lenti, Andrea Facchini
    Abstract:

    Osteoblasts (OBs) contribute to the maintenance of bone homeostasis and their activity can be influenced by immune cells localized in bone lacunae. We investigated the expression of the chemokine receptors in isolated human OBs by reverse transcriptase-polymerase chain reaction (RT-PCR) and flow cytometry, and report a novel finding, namely, that OBs express high levels of CXC chemokine receptor 3 (CXCR3) and 5 (CXCR5). Functional assays to evaluate CXCR3 and CXCR5 demonstrated that their ligands—CXCL10 and CXCL13, respectively—significantly induce the release of β-N-acetylhexosaminidase, an enzyme involved in endochondral ossification and bone remodeling able to degrade important extracellular matrix components. Alkaline phosphatase activity, a useful index of matrix formation was also up-regulated by CXCL10 and CXCL13. However, OB activation by these ligands does not affect OB proliferation. Both Bordetella pertussis toxin and neutralizing anti-CXCR3/anti-CXCR5 monoclonal antibodies block CXCL10 and CXCL13 induction, respectively. We also demonstrated the expression of CXCL10 and CXCL13 in human bone tissue biopsies. These results indicate that both CXCR3/CXCL10 and CXCR5/CXCL13 receptor–ligand pairs may play an important role in OB activity through the specific up-regulation of two enzymes, which are involved in the bone remodeling process. Moreover, our data suggest that OBs may play a role in the modulation of bone formation through the combined action of these two enzymes. © 2002 Wiley-Liss, Inc.

Francesco Grassi - One of the best experts on this subject based on the ideXlab platform.

  • Expression of CXC chemokines and their receptors is modulated during chondrogenic differentiation of human mesenchymal stem cells grown in three-dimensional scaffold: evidence in native cartilage.
    Tissue engineering. Part A, 2008
    Co-Authors: Sandra Cristino, Anna Piacentini, Cristina Manferdini, Katia Codeluppi, Francesco Grassi, Andrea Facchini, Gina Lisignoli
    Abstract:

    Chemokines contribute to the maintenance of cartilage homeostasis. To evaluate the role of CXC chemokines CXCL8 (interleukin-8), CXCL10 (interferon-gamma-inducible protein-10), CXCL12 (stroma-derived factor-1) and CXCL13 (B-cell attracting chemokine-1) and their receptors, respectively CXCR1-2, CXCR3, CXCR4, and CXCR5, during chondrogenic differentiation of human mesenchymal stromal cells (h-MSCs), we used a well-defined in vitro model. Chondrogenic differentiation was analyzed on h-MSCs grown on hyaluronic acid–based biomaterial in the presence or absence of transforming growth factor-β, and the expression and modulation of CXC chemokines and receptors were evaluated at different time points. Real-time polymerase chain reaction was performed to analyze their expression at the messenger ribonucleic acid (mRNA) level, and immunohistochemistry and enzyme-linked immunosorbent assay were used to evaluate their expression at the protein level. Human articular cartilage biopsies were used to evaluate chemokine ...

  • cxcl12 sdf 1 and CXCL13 bca 1 chemokines significantly induce proliferation and collagen type i expression in osteoblasts from osteoarthritis patients
    Journal of Cellular Physiology, 2006
    Co-Authors: Gina Lisignoli, Sandra Cristino, Anna Piacentini, Francesco Grassi, Stefania Toneguzzi, Carola Cavallo, Andrea Facchini
    Abstract:

    To evaluate the role of CXC chemokines CXCL8 (IL8), CXCL10 (IP-10), CXCL12 (SDF-1), and CXCL13 (BCA-1) in bone remodeling, we analyzed their effects on osteoblasts (OBs) obtained from subchondral trabecular bone tissue of osteoarthritis (OA) and post-traumatic (PT) patients. The expression of CXC receptors/ligands (CXCR1/CXCL8, CXCR2/CXCL8, CXCR3/CXCL10, CXCR4/CXCL12, and CXCR5/CXCL13) was analyzed in cultured OBs by flow cytometry and immunocytochemistry. Functional assays on CXC chemokine-treated-OBs in the presence or absence of their specific inhibitors were performed to analyze cellular proliferation and the enzymatic response to chemokine activation. The expression of chemokine ligands/receptors was also confirmed in bone tissue samples by immunohistochemical analysis. Collagen type I and alkaline phosphatase mRNA expression were analyzed on CXCL12- and CXCL13-treated OBs by real-time PCR. OBs from both OA and PT patients expressed high levels of CXCR3 and CXCR5 and lower amounts of CXCR1 and CXCR4. CXCL12 and CXCL13, only in OBs from OA patients, induced a significant proliferation that was also confirmed by specific blocking experiments. Moreover, OBs from OA patients released a higher amount of CXCL13 than those of PT patients while no differences were found for CXCL12. In the remodeling area of bone tissue samples, immunohistochemical analysis confirmed that OBs expressed CXCL12/CXCR4 and CXCL13/CXCR5 both in OA and PT samples. CXCL12 and CXCL13 upregulated collagen type I mRNA expression in OBs from OA patients. These data suggest that CXCL12 and CXCL13 may directly modulate cellular proliferation and collagen type I in OA patients, so contributing to the remodeling process that occurs in the evolution of this disease. © 2005 Wiley-Liss, Inc.

  • Human osteoclasts express different CXC chemokines depending on cell culture substrate: molecular and immunocytochemical evidence of high levels of CXCL10 and CXCL12
    Histochemistry and Cell Biology, 2003
    Co-Authors: Francesco Grassi, Sandra Cristino, Anna Piacentini, Andrea Facchini, Stefania Toneguzzi, Carola Cavallo, Gina Lisignoli
    Abstract:

    Chemokines are important mediators of chemotaxis, cell adherence, and proliferation and exert specific functions in bone remodeling. Despite the potential intriguing role of chemokines in the regulation of osteoclast (OC) functions, little is known about the expression of chemokines and their receptors in human OCs at different stages of differentiation. Therefore, we analyzed the expression of CXC chemokine receptors (CXCR1, CXCR2, CXCR3, CXCR4 and CXCR5) and ligands (CXCL8, CXCL10, CXCL12 and CXCL13) both at molecular and protein levels, in human OCs grown on plastic or calcium phosphate-coated slides at different stages of differentiation. Real-time PCR showed that CXCR1, CXCR2, CXCR3, CXCR4, CXCR5 and CXCL8 were expressed in undifferentiated cells and significantly decreased during OC differentiation. By contrast, CXCL10 and CXCL12 were strongly upregulated from day 0 to day 8 in cells grown on calcium phosphate-coated slides. Immunocytochemistry showed that OCs grown on plastic expressed CXCR3, CXCR4, CXCR5, CXCL8 and CXCL12, while they were negative for CXCR1, CXCR2 and CXCL10. Interestingly, both at molecular and protein levels CXCL10 and CXCL12 significantly increased only when cells were differentiated on calcium phosphate-coated slides. These data suggest that the selection of a substrate that better mimics the tridimensional structure of bone tissue, thus favoring OC maturation and differentiation, may be necessary when studying osteoclastogenesis in vitro.

  • Age-associated changes in functional response to CXCR3 and CXCR5 chemokine receptors in human osteoblasts
    Biogerontology, 2003
    Co-Authors: Gina Lisignoli, Sandra Cristino, Anna Piacentini, Francesco Grassi, Andrea Facchini, Stefania Toneguzzi, Matilde Tschon, Erminia Mariani
    Abstract:

    The expression and functional activity of CXC chemokine receptors were evaluated in human osteoblasts (OB) obtained post-trauma from old donors compared to very young donors. It was found that CXCR1 and CXCR4 were only expressed by old but not young donors' cells. In contrast, CXCR3 and CXCR5 were expressed by both young and old donors. We functionally evaluated CXCR3/CXCL10 and CXCR5/CXCL13 receptor/ligand pairs by analysing cell proliferation and the release of N-acetyl-β-D-glucosaminidase (NAG), an enzyme that degrades glycosaminoglycans and hyaluronic acid. CXCL10 and CXCL13 induced a dose-dependent increase of cell proliferation in OB from young donors while cell proliferation of OB in old donors was not affected. By contrast, CXCL10 and CXCL13 induced a significantly higher NAG release in OB from old donors compared to young ones. These data demonstrate a significant age-dependent difference in the response of OB to CXCL10 and CXCL13 stimulation. These chemokines induce an inverse response of OB from old and young donors, which suggests a role of ageing in the modulation of cellular response of bone cells.

  • human osteoblasts express functional cxc chemokine receptors 3 and 5 activation by their ligands cxcl10 and CXCL13 significantly induces alkaline phosphatase and β n acetylhexosaminidase release
    Journal of Cellular Physiology, 2003
    Co-Authors: Gina Lisignoli, Sandra Cristino, Francesco Grassi, Stefania Toneguzzi, Matilde Tschon, A Piacentini, Luca Cattini, Anna Lenti, Andrea Facchini
    Abstract:

    Osteoblasts (OBs) contribute to the maintenance of bone homeostasis and their activity can be influenced by immune cells localized in bone lacunae. We investigated the expression of the chemokine receptors in isolated human OBs by reverse transcriptase-polymerase chain reaction (RT-PCR) and flow cytometry, and report a novel finding, namely, that OBs express high levels of CXC chemokine receptor 3 (CXCR3) and 5 (CXCR5). Functional assays to evaluate CXCR3 and CXCR5 demonstrated that their ligands—CXCL10 and CXCL13, respectively—significantly induce the release of β-N-acetylhexosaminidase, an enzyme involved in endochondral ossification and bone remodeling able to degrade important extracellular matrix components. Alkaline phosphatase activity, a useful index of matrix formation was also up-regulated by CXCL10 and CXCL13. However, OB activation by these ligands does not affect OB proliferation. Both Bordetella pertussis toxin and neutralizing anti-CXCR3/anti-CXCR5 monoclonal antibodies block CXCL10 and CXCL13 induction, respectively. We also demonstrated the expression of CXCL10 and CXCL13 in human bone tissue biopsies. These results indicate that both CXCR3/CXCL10 and CXCR5/CXCL13 receptor–ligand pairs may play an important role in OB activity through the specific up-regulation of two enzymes, which are involved in the bone remodeling process. Moreover, our data suggest that OBs may play a role in the modulation of bone formation through the combined action of these two enzymes. © 2002 Wiley-Liss, Inc.