Cyanothece

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 360 Experts worldwide ranked by ideXlab platform

Louis A Sherman - One of the best experts on this subject based on the ideXlab platform.

  • analysis of protein complexes in the unicellular cyanobacterium Cyanothece atcc 51142
    Journal of Proteome Research, 2018
    Co-Authors: Uma K. Aryal, Ziyun Ding, Victoria Hedrick, Tiago J P Sobreira, Daisuke Kihara, Louis A Sherman
    Abstract:

    The unicellular cyanobacterium Cyanothece ATCC 51142 is capable of oxygenic photosynthesis and biological N2 fixation (BNF), a process highly sensitive to oxygen. Previous work has focused on determining protein expression levels under different growth conditions. A major gap of our knowledge is an understanding on how these expressed proteins are assembled into complexes and organized into metabolic pathways, an area that has not been thoroughly investigated. Here, we combined size-exclusion chromatography (SEC) with label-free quantitative mass spectrometry (MS) and bioinformatics to characterize many protein complexes from Cyanothece 51142 cells grown under a 12 h light–dark cycle. We identified 1386 proteins in duplicate biological replicates, and 64% of those proteins were identified as putative complexes. Pairwise computational prediction of protein–protein interaction (PPI) identified 74 822 putative interactions, of which 2337 interactions were highly correlated with published protein coexpression...

  • the effects of different light dark cycles on the metabolism of the diazotrophic unicellular cyanobacteria Cyanothece sp atcc 51142 and Cyanothecesp pcc 7822
    Journal of Phycology, 2014
    Co-Authors: Sarah Arshad, Sujata Mishra, Louis A Sherman
    Abstract:

    The diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142 demonstrates circadian patterns in nitrogenase activity, H2 production and glycogen storage when grown under nitrogen-fixing, 12:12 light:dark (L:D) conditions. In this study, we grew Cyanothece sp. ATCC 51142, and another strain in this genus, Cyanothece sp. PCC 7822, under long-day (16:8 L:D) and short-day (8:16 L:D) nitrogen-fixing conditions to determine if they continued to display circadian rhythms. Both strains demonstrated similar circadian patterns for all three metabolic parameters when grown under long-day conditions. However, the strains responded differently to short-day growth conditions. Cyanothece sp. ATCC 51142 retained reasonable circadian patterns under 8:16 L:D conditions, whereas Cyanothece sp. PCC 7822 had quite damped patterns without a clear circadian pattern. In particular, glycogen storage changed very little throughout the day and we ascribe this to the difference in the type of glycogen granules in Cyanothece sp. PCC 7822 which has small β-granules, compared to the large, starch-like granules in Cyanothece sp. ATCC 51142. The results suggested that both mechanistic and regulatory processes play a role in establishing the basis for these metabolic oscillations.

  • the uptake hydrogenase in the unicellular diazotrophic cyanobacterium Cyanothece sp strain pcc 7822 protects nitrogenase from oxygen toxicity
    Journal of Bacteriology, 2014
    Co-Authors: Xiaohui Zhang, Debra M Sherman, Louis A Sherman
    Abstract:

    Cyanothece sp. strain PCC 7822 is a unicellular, diazotrophic cyanobacterium that can produce large quantities of H2 when grown diazotrophically. This strain is also capable of genetic manipulations and can represent a good model for improving H2 production from cyanobacteria. To this end, a knockout mutation was made in the hupL gene (ΔhupL), and we determined how this would affect the amount of H2 produced. The ΔhupL mutant demonstrated virtually no nitrogenase activity or H2 production when grown under N2-fixing conditions. To ensure that this mutation only affected the hupL gene, a complementation strain was constructed readily with wild-type properties; this indicated that the original insertion was only in hupL. The mutant had no uptake hydrogenase activity but had increased bidirectional hydrogenase (Hox) activity. Western blotting and immunocytochemistry under the electron microscope indicated that the mutant had neither HupL nor NifHDK, although the nif genes were transcribed. Interestingly, biochemical analysis demonstrated that both HupL and NifH could be membrane associated. The results indicated that the nif genes were transcribed but that NifHDK was either not translated or was translated but rapidly degraded. We hypothesized that the Nif proteins were made but were unusually susceptible to O2 damage. Thus, we grew the mutant cells under anaerobic conditions and found that they grew well under N2-fixing conditions. We conclude that in unicellular diazotrophs, like Cyanothece sp. strain PCC 7822, the HupLS complex helps remove oxygen from the nitrogenase, and that this is a more important function than merely oxidizing the H2 produced by the nitrogenase.

  • Analysis of carbohydrate storage granules in the diazotrophic cyanobacterium Cyanothece sp. PCC 7822
    Photosynthesis Research, 2013
    Co-Authors: David G. Welkie, Galya Orr, Debra M Sherman, William B Chrisler, Louis A Sherman
    Abstract:

    The unicellular diazotrophic cyanobacteria of the genus Cyanothece demonstrate oscillations in nitrogenase activity and H2 production when grown under 12 h light–12 h dark cycles. We established that Cyanothece sp. PCC 7822 allows for the construction of knock-out mutants and our objective was to improve the growth characteristics of this strain and to identify the nature of the intracellular storage granules. We report the physiological and morphological effects of reduction in nitrate and phosphate concentrations in BG-11 media on this strain. We developed a series of BG-11-derived growth media and monitored batch culture growth, nitrogenase activity and nitrogenase-mediated hydrogen production, culture synchronicity, and intracellular storage content. Reduction in NaNO3 and K2HPO4 concentrations from 17.6 and 0.23 to 4.41 and 0.06 mM, respectively, improved growth characteristics such as cell size and uniformity, and enhanced the rate of cell division. Cells grown in this low NP BG-11 were less complex, a parameter that related to the composition of the intracellular storage granules. Cells grown in low NP BG-11 had less polyphosphate, fewer polyhydroxybutyrate granules and many smaller granules became evident. Biochemical analysis and transmission electron microscopy using the histocytochemical PATO technique demonstrated that these small granules contained glycogen. The glycogen levels and the number of granules per cell correlated nicely with a 2.3 to 3.3-fold change from the minimum at L0 to the maximum at D0. The differences in granule morphology and enzymes between Cyanothece ATCC 51142 and Cyanothece PCC 7822 provide insights into the formation of large starch-like granules in some cyanobacteria.

  • ultradian metabolic rhythm in the diazotrophic cyanobacterium Cyanothece sp atcc 51142
    Proceedings of the National Academy of Sciences of the United States of America, 2013
    Co-Authors: Jan Cervený, Louis A Sherman, Maria A Sinetova, Ladislav Nedbal, Luis Valledor
    Abstract:

    The unicellular cyanobacterium Cyanothece sp. American Type Culture Collection (ATCC) 51142 is capable of performing oxygenic photosynthesis during the day and microoxic nitrogen fixation at night. These mutually exclusive processes are possible only by temporal separation by circadian clock or another cellular program. We report identification of a temperature-dependent ultradian metabolic rhythm that controls the alternating oxygenic and microoxic processes of Cyanothece sp. ATCC 51142 under continuous high irradiance and in high CO2 concentration. During the oxygenic photosynthesis phase, nitrate deficiency limited protein synthesis and CO2 assimilation was directed toward glycogen synthesis. The carbohydrate accumulation reduced overexcitation of the photosynthetic reactions until a respiration burst initiated a transition to microoxic N2 fixation. In contrast to the circadian clock, this ultradian period is strongly temperature-dependent: 17 h at 27 °C, which continuously decreased to 10 h at 39 °C. The cycle was expressed by an oscillatory modulation of net O2 evolution, CO2 uptake, pH, fluorescence emission, glycogen content, cell division, and culture optical density. The corresponding ultradian modulation was also observed in the transcription of nitrogenase-related nifB and nifH genes and in nitrogenase activities. We propose that the control by the newly identified metabolic cycle adds another rhythmic component to the circadian clock that reflects the true metabolic state depending on the actual temperature, irradiance, and CO2 availability.

Himadri B Pakrasi - One of the best experts on this subject based on the ideXlab platform.

  • enhanced nitrogen fixation in a glgx deficient strain of Cyanothece sp strain atcc 51142 a unicellular nitrogen fixing cyanobacterium
    Applied and Environmental Microbiology, 2019
    Co-Authors: Michelle Liberton, Anindita Bandyopadhyay, Himadri B Pakrasi
    Abstract:

    ABSTRACT Cyanobacteria are oxygenic photosynthetic prokaryotes with important roles in the global carbon and nitrogen cycles. Unicellular nitrogen-fixing cyanobacteria are known to be ubiquitous, contributing to the nitrogen budget in diverse ecosystems. In the unicellular cyanobacterium Cyanothece sp. strain ATCC 51142, carbon assimilation and carbohydrate storage are crucial processes that occur as part of a robust diurnal cycle of photosynthesis and nitrogen fixation. During the light period, cells accumulate fixed carbon in glycogen granules to use as stored energy to power nitrogen fixation in the dark. These processes have not been thoroughly investigated, due to the lack of a genetic modification system in this organism. In bacterial glycogen metabolism, the glgX gene encodes a debranching enzyme that functions in storage polysaccharide catabolism. To probe the consequences of modifying the cycle of glycogen accumulation and subsequent mobilization, we engineered a strain of Cyanothece 51142 in which the glgX gene was genetically disrupted. We found that the ΔglgX strain exhibited a higher growth rate than the wild-type strain and displayed a higher rate of nitrogen fixation. Glycogen accumulated to higher levels at the end of the light period in the ΔglgX strain, compared to the wild-type strain. These data suggest that the larger glycogen pool maintained by the ΔglgX mutant is able to fuel greater growth and nitrogen fixation ability. IMPORTANCE Cyanobacteria are oxygenic photosynthetic bacteria that are found in a wide variety of ecological environments, where they are important contributors to global carbon and nitrogen cycles. Genetic manipulation systems have been developed in a number of cyanobacterial strains, allowing both the interruption of endogenous genes and the introduction of new genes and entire pathways. However, unicellular diazotrophic cyanobacteria have been generally recalcitrant to genetic transformation. These cyanobacteria are becoming important model systems to study diurnally regulated processes. Strains of the Cyanothece genus have been characterized as displaying robust growth and high rates of nitrogen fixation. The significance of our study is in the establishment of a genetic modification system in a unicellular diazotrophic cyanobacterium, the demonstration of the interruption of the glgX gene in Cyanothece sp. strain ATCC 51142, and the characterization of the increased nitrogen-fixing ability of this strain.

  • an atypical psba gene encodes a sentinel d1 protein to form a physiologically relevant inactive photosystem ii complex in cyanobacteria
    Journal of Biological Chemistry, 2015
    Co-Authors: Kimberly M Wegener, Aparna Nagarajan, Himadri B Pakrasi
    Abstract:

    Abstract Photosystem II, a large membrane bound enzyme complex in cyanobacteria and chloroplasts, mediates light-induced oxidation of water to molecular oxygen. The D1 protein of PSII, encoded by the psbA gene, provides multiple ligands for cofactors crucial to this enzymatic reaction. Cyanobacteria contain multiple psbA genes that respond to various physiological cues and environmental factors. Certain unicellular cyanobacterial cells, such as Cyanothece sp. ATCC 51142, is capable of nitrogen fixation, a highly oxygen-sensitive process, by separating oxygen evolution from nitrogen fixation using a day-night cycle. We have shown that c-psbA4, one of the five psbA orthologs in this cyanobacterium, is exclusively expressed during night time. Remarkably, the corresponding D1 isoform has replacements of a number of amino acids that are essential ligands for the catalytic Mn4CaO5 metal center for water oxidation by PSII. At least 30 cyanobacterial strains, most of which are known to have nitrogen-fixing abilities, have similar psbA orthologs. We expressed the c-psbA4 gene from Cyanothece 51142 in a 4E-3 mutant strain of the model non nitrogen-fixing cyanobacterium Synechocystis sp. PCC 6803, which lacks any psbA gene. The resultant strain could not grow photoautotrophically. Moreover these Synechocystis 6803 cells were incapable of PSII-mediated oxygen evolution. Based on our findings, we have named this physiologically relevant, unusual D1 isoform as sentinel D1 (sD1). sD1 represents a new class of D1 protein, which when incorporated in a PSII complex, ensures that PSII can not mediate water oxidation, thus allowing oxygen sensitive processes such as nitrogen fixation to occur in cyanobacterial cells.

  • Identifying Regulatory Changes to Facilitate Nitrogen Fixation in the Nondiazotroph Synechocystis sp. PCC 6803
    2015
    Co-Authors: Thomas J. Mueller, Eric A. Welsh, Himadri B Pakrasi, Costas D. Maranas
    Abstract:

    The incorporation of biological nitrogen fixation into a nondiazotrophic photosynthetic organism provides a promising solution to the increasing fixed nitrogen demand, but is accompanied by a number of challenges for accommodating two incompatible processes within the same organism. Here we present regulatory influence networks for two cyanobacteria, Synechocystis PCC 6803 and Cyanothece ATCC 51142, and evaluate them to co-opt native transcription factors that may be used to control the nif gene cluster once it is transferred to Synechocystis. These networks were further examined to identify candidate transcription factors for other metabolic processes necessary for temporal separation of photosynthesis and nitrogen fixation, glycogen catabolism and cyanophycin synthesis. Two transcription factors native to Synechocystis, LexA and Rcp1, were identified as promising candidates for the control of the nif gene cluster and other pertinent metabolic processes, respectively. Lessons learned in the incorporation of nitrogen fixation into a nondiazotrophic prokaryote may be leveraged to further progress the incorporation of nitrogen fixation in plants

  • carbon availability affects diurnally controlled processes and cell morphology of Cyanothece 51142
    PLOS ONE, 2013
    Co-Authors: Jana Stockel, Thanura R. Elvitigala, Michelle Liberton, Himadri B Pakrasi
    Abstract:

    Cyanobacteria are oxygenic photoautotrophs notable for their ability to utilize atmospheric CO2 as the major source of carbon. The prospect of using cyanobacteria to convert solar energy and high concentrations of CO2 efficiently into biomass and renewable energy sources has sparked substantial interest in using flue gas from coal-burning power plants as a source of inorganic carbon. However, in order to guide further advances in this area, a better understanding of the metabolic changes that occur under conditions of high CO2 is needed. To determine the effect of high CO2 on cell physiology and growth, we analyzed the global transcriptional changes in the unicellular diazotrophic cyanobacterium Cyanothece 51142 grown in 8% CO2-enriched air. We found a concerted response of genes related to photosynthesis, carbon metabolism, respiration, nitrogen fixation, ribosome biosynthesis, and the synthesis of nucleotides and structural cell wall polysaccharides. The overall response to 8% CO2 in Cyanothece 51142 involves different strategies, to compensate for the high C/N ratio during both phases of the diurnal cycle. Our analyses show that high CO2 conditions trigger the production of carbon-rich compounds and stimulate processes such as respiration and nitrogen fixation. In addition, we observed that high levels of CO2 affect fundamental cellular processes such as cell growth and dramatically alter the intracellular morphology. This study provides novel insights on how diurnal and developmental rhythms are integrated to facilitate adaptation to high CO2 in Cyanothece 51142.

  • Variations in the Rhythms of Respiration and Nitrogen Fixation in Members of the Unicellular Diazotrophic Cyanobacterial Genus Cyanothece
    Plant Physiology, 2012
    Co-Authors: Anindita Bandyopadhyay, Thanura R. Elvitigala, Michelle Liberton, Himadri B Pakrasi
    Abstract:

    In order to accommodate the physiologically incompatible processes of photosynthesis and nitrogen fixation within the same cell, unicellular nitrogen-fixing cyanobacteria have to maintain a dynamic metabolic profile in the light as well as the dark phase of a diel cycle. The transition from the photosynthetic to the nitrogen-fixing phase is marked by the onset of various biochemical and regulatory responses, which prime the intracellular environment for nitrogenase activity. Cellular respiration plays an important role during this transition, quenching the oxygen generated by photosynthesis and by providing energy necessary for the process. Although the underlying principles of nitrogen fixation predict unicellular nitrogen-fixing cyanobacteria to function in a certain way, significant variations are observed in the diazotrophic behavior of these microbes. In an effort to elucidate the underlying differences and similarities that govern the nitrogen-fixing ability of unicellular diazotrophic cyanobacteria, we analyzed six members of the genus Cyanothece. Cyanothece sp. ATCC 51142, a member of this genus, has been shown to perform efficient aerobic nitrogen fixation and hydrogen production. Our study revealed significant differences in the patterns of respiration and nitrogen fixation among the Cyanothece spp. strains that were grown under identical culture conditions, suggesting that these processes are not solely controlled by cues from the diurnal cycle but that strain-specific intracellular metabolic signals play a major role. Despite these inherent differences, the ability to perform high rates of aerobic nitrogen fixation and hydrogen production appears to be a characteristic of this genus.

Michelle Liberton - One of the best experts on this subject based on the ideXlab platform.

  • enhanced nitrogen fixation in a glgx deficient strain of Cyanothece sp strain atcc 51142 a unicellular nitrogen fixing cyanobacterium
    Applied and Environmental Microbiology, 2019
    Co-Authors: Michelle Liberton, Anindita Bandyopadhyay, Himadri B Pakrasi
    Abstract:

    ABSTRACT Cyanobacteria are oxygenic photosynthetic prokaryotes with important roles in the global carbon and nitrogen cycles. Unicellular nitrogen-fixing cyanobacteria are known to be ubiquitous, contributing to the nitrogen budget in diverse ecosystems. In the unicellular cyanobacterium Cyanothece sp. strain ATCC 51142, carbon assimilation and carbohydrate storage are crucial processes that occur as part of a robust diurnal cycle of photosynthesis and nitrogen fixation. During the light period, cells accumulate fixed carbon in glycogen granules to use as stored energy to power nitrogen fixation in the dark. These processes have not been thoroughly investigated, due to the lack of a genetic modification system in this organism. In bacterial glycogen metabolism, the glgX gene encodes a debranching enzyme that functions in storage polysaccharide catabolism. To probe the consequences of modifying the cycle of glycogen accumulation and subsequent mobilization, we engineered a strain of Cyanothece 51142 in which the glgX gene was genetically disrupted. We found that the ΔglgX strain exhibited a higher growth rate than the wild-type strain and displayed a higher rate of nitrogen fixation. Glycogen accumulated to higher levels at the end of the light period in the ΔglgX strain, compared to the wild-type strain. These data suggest that the larger glycogen pool maintained by the ΔglgX mutant is able to fuel greater growth and nitrogen fixation ability. IMPORTANCE Cyanobacteria are oxygenic photosynthetic bacteria that are found in a wide variety of ecological environments, where they are important contributors to global carbon and nitrogen cycles. Genetic manipulation systems have been developed in a number of cyanobacterial strains, allowing both the interruption of endogenous genes and the introduction of new genes and entire pathways. However, unicellular diazotrophic cyanobacteria have been generally recalcitrant to genetic transformation. These cyanobacteria are becoming important model systems to study diurnally regulated processes. Strains of the Cyanothece genus have been characterized as displaying robust growth and high rates of nitrogen fixation. The significance of our study is in the establishment of a genetic modification system in a unicellular diazotrophic cyanobacterium, the demonstration of the interruption of the glgX gene in Cyanothece sp. strain ATCC 51142, and the characterization of the increased nitrogen-fixing ability of this strain.

  • proteomic profiles of five strains of oxygenic photosynthetic cyanobacteria of the genus Cyanothece
    Journal of Proteome Research, 2014
    Co-Authors: Uma K. Aryal, Michelle Liberton, Jana Stockel, Xiaohui Zhang, Sujata Mishra, Stephen J Callister, Lee Ann Mccue, Benjamin H Mcmahon, Joseph N Brown, Carrie D Nicora
    Abstract:

    Members of the cyanobacterial genus Cyanothece exhibit considerable variation in physiological and biochemical characteristics. The comparative assessment of the genomes and the proteomes has the p...

  • carbon availability affects diurnally controlled processes and cell morphology of Cyanothece 51142
    PLOS ONE, 2013
    Co-Authors: Jana Stockel, Thanura R. Elvitigala, Michelle Liberton, Himadri B Pakrasi
    Abstract:

    Cyanobacteria are oxygenic photoautotrophs notable for their ability to utilize atmospheric CO2 as the major source of carbon. The prospect of using cyanobacteria to convert solar energy and high concentrations of CO2 efficiently into biomass and renewable energy sources has sparked substantial interest in using flue gas from coal-burning power plants as a source of inorganic carbon. However, in order to guide further advances in this area, a better understanding of the metabolic changes that occur under conditions of high CO2 is needed. To determine the effect of high CO2 on cell physiology and growth, we analyzed the global transcriptional changes in the unicellular diazotrophic cyanobacterium Cyanothece 51142 grown in 8% CO2-enriched air. We found a concerted response of genes related to photosynthesis, carbon metabolism, respiration, nitrogen fixation, ribosome biosynthesis, and the synthesis of nucleotides and structural cell wall polysaccharides. The overall response to 8% CO2 in Cyanothece 51142 involves different strategies, to compensate for the high C/N ratio during both phases of the diurnal cycle. Our analyses show that high CO2 conditions trigger the production of carbon-rich compounds and stimulate processes such as respiration and nitrogen fixation. In addition, we observed that high levels of CO2 affect fundamental cellular processes such as cell growth and dramatically alter the intracellular morphology. This study provides novel insights on how diurnal and developmental rhythms are integrated to facilitate adaptation to high CO2 in Cyanothece 51142.

  • Variations in the Rhythms of Respiration and Nitrogen Fixation in Members of the Unicellular Diazotrophic Cyanobacterial Genus Cyanothece
    Plant Physiology, 2012
    Co-Authors: Anindita Bandyopadhyay, Thanura R. Elvitigala, Michelle Liberton, Himadri B Pakrasi
    Abstract:

    In order to accommodate the physiologically incompatible processes of photosynthesis and nitrogen fixation within the same cell, unicellular nitrogen-fixing cyanobacteria have to maintain a dynamic metabolic profile in the light as well as the dark phase of a diel cycle. The transition from the photosynthetic to the nitrogen-fixing phase is marked by the onset of various biochemical and regulatory responses, which prime the intracellular environment for nitrogenase activity. Cellular respiration plays an important role during this transition, quenching the oxygen generated by photosynthesis and by providing energy necessary for the process. Although the underlying principles of nitrogen fixation predict unicellular nitrogen-fixing cyanobacteria to function in a certain way, significant variations are observed in the diazotrophic behavior of these microbes. In an effort to elucidate the underlying differences and similarities that govern the nitrogen-fixing ability of unicellular diazotrophic cyanobacteria, we analyzed six members of the genus Cyanothece. Cyanothece sp. ATCC 51142, a member of this genus, has been shown to perform efficient aerobic nitrogen fixation and hydrogen production. Our study revealed significant differences in the patterns of respiration and nitrogen fixation among the Cyanothece spp. strains that were grown under identical culture conditions, suggesting that these processes are not solely controlled by cues from the diurnal cycle but that strain-specific intracellular metabolic signals play a major role. Despite these inherent differences, the ability to perform high rates of aerobic nitrogen fixation and hydrogen production appears to be a characteristic of this genus.

  • Novel Metabolic Attributes of the Genus Cyanothece, Comprising a Group of Unicellular Nitrogen-Fixing Cyanobacteria
    Mbio, 2011
    Co-Authors: Anindita Bandyopadhyay, Thanura R. Elvitigala, Michelle Liberton, Eric A. Welsh, Jana Stockel, Louis A Sherman, Himadri B Pakrasi
    Abstract:

    ABSTRACT The genus Cyanothece comprises unicellular cyanobacteria that are morphologically diverse and ecologically versatile. Studies over the last decade have established members of this genus to be important components of the marine ecosystem, contributing significantly to the nitrogen and carbon cycle. System-level studies of Cyanothece sp. ATCC 51142, a prototypic member of this group, revealed many interesting metabolic attributes. To identify the metabolic traits that define this class of cyanobacteria, five additional Cyanothece strains were sequenced to completion. The presence of a large, contiguous nitrogenase gene cluster and the ability to carry out aerobic nitrogen fixation distinguish Cyanothece as a genus of unicellular, aerobic nitrogen-fixing cyanobacteria. Cyanothece cells can create an anoxic intracellular environment at night, allowing oxygen-sensitive processes to take place in these oxygenic organisms. Large carbohydrate reserves accumulate in the cells during the day, ensuring sufficient energy for the processes that require the anoxic phase of the cells. Our study indicates that this genus maintains a plastic genome, incorporating new metabolic capabilities while simultaneously retaining archaic metabolic traits, a unique combination which provides the flexibility to adapt to various ecological and environmental conditions. Rearrangement of the nitrogenase cluster in Cyanothece sp. strain 7425 and the concomitant loss of its aerobic nitrogen-fixing ability suggest that a similar mechanism might have been at play in cyanobacterial strains that eventually lost their nitrogen-fixing ability. IMPORTANCE The unicellular cyanobacterial genus Cyanothece has significant roles in the nitrogen cycle in aquatic and terrestrial environments. Cyanothece sp. ATCC 51142 was extensively studied over the last decade and has emerged as an important model photosynthetic microbe for bioenergy production. To expand our understanding of the distinctive metabolic capabilities of this cyanobacterial group, we analyzed the genome sequences of five additional Cyanothece strains from different geographical habitats, exhibiting diverse morphological and physiological attributes. These strains exhibit high rates of N 2 fixation and H 2 production under aerobic conditions. They can generate copious amounts of carbohydrates that are stored in large starch-like granules and facilitate energy-intensive processes during the dark, anoxic phase of the cells. The genomes of some Cyanothece strains are quite unique in that there are linear elements in addition to a large circular chromosome. Our study provides novel insights into the metabolism of this class of unicellular nitrogen-fixing cyanobacteria.

Jana Stockel - One of the best experts on this subject based on the ideXlab platform.

  • proteomic profiles of five strains of oxygenic photosynthetic cyanobacteria of the genus Cyanothece
    Journal of Proteome Research, 2014
    Co-Authors: Uma K. Aryal, Michelle Liberton, Jana Stockel, Xiaohui Zhang, Sujata Mishra, Stephen J Callister, Lee Ann Mccue, Benjamin H Mcmahon, Joseph N Brown, Carrie D Nicora
    Abstract:

    Members of the cyanobacterial genus Cyanothece exhibit considerable variation in physiological and biochemical characteristics. The comparative assessment of the genomes and the proteomes has the p...

  • carbon availability affects diurnally controlled processes and cell morphology of Cyanothece 51142
    PLOS ONE, 2013
    Co-Authors: Jana Stockel, Thanura R. Elvitigala, Michelle Liberton, Himadri B Pakrasi
    Abstract:

    Cyanobacteria are oxygenic photoautotrophs notable for their ability to utilize atmospheric CO2 as the major source of carbon. The prospect of using cyanobacteria to convert solar energy and high concentrations of CO2 efficiently into biomass and renewable energy sources has sparked substantial interest in using flue gas from coal-burning power plants as a source of inorganic carbon. However, in order to guide further advances in this area, a better understanding of the metabolic changes that occur under conditions of high CO2 is needed. To determine the effect of high CO2 on cell physiology and growth, we analyzed the global transcriptional changes in the unicellular diazotrophic cyanobacterium Cyanothece 51142 grown in 8% CO2-enriched air. We found a concerted response of genes related to photosynthesis, carbon metabolism, respiration, nitrogen fixation, ribosome biosynthesis, and the synthesis of nucleotides and structural cell wall polysaccharides. The overall response to 8% CO2 in Cyanothece 51142 involves different strategies, to compensate for the high C/N ratio during both phases of the diurnal cycle. Our analyses show that high CO2 conditions trigger the production of carbon-rich compounds and stimulate processes such as respiration and nitrogen fixation. In addition, we observed that high levels of CO2 affect fundamental cellular processes such as cell growth and dramatically alter the intracellular morphology. This study provides novel insights on how diurnal and developmental rhythms are integrated to facilitate adaptation to high CO2 in Cyanothece 51142.

  • dynamic proteome analysis of Cyanothece sp atcc 51142 under constant light
    Journal of Proteome Research, 2012
    Co-Authors: Uma K. Aryal, Eric A. Welsh, Jana Stockel, Himadri B Pakrasi, Richard D. Smith, Marina A Gritsenko, David W. Koppenaal, Carrie D Nicora, Jon M Jacobs
    Abstract:

    Understanding the dynamic nature of protein abundances provides insights into protein turnover not readily apparent from conventional, static mass spectrometry measurements. This level of data is particularly informative when surveying protein abundances in biological systems subjected to large perturbations or alterations in environment such as cyanobacteria. Our current analysis expands upon conventional proteomic approaches in cyanobacteria by measuring dynamic changes of the proteome using a 13C15N-l-leucine metabolic labeling in Cyanothece ATCC51142. Metabolically labeled Cyanothece ATCC51142 cells grown under nitrogen-sufficient conditions in continuous light were monitored longitudinally for isotope incorporation over a 48 h period, revealing 414 proteins with dynamic changes in abundances. In particular, proteins involved in carbon fixation, pentose phosphate pathway, cellular protection, redox regulation, protein folding, assembly, and degradation showed higher levels of isotope incorporation, su...

  • Dynamic proteomic profiling of a unicellular cyanobacterium Cyanothece ATCC51142 across light-dark diurnal cycles
    BMC systems biology, 2011
    Co-Authors: Uma K. Aryal, Jana Stockel, Himadri B Pakrasi, Matthew E. Monroe, Richard D. Smith, Marina A Gritsenko, Ravi K. Krovvidi, Ronald J. Moore, David W. Koppenaal, Jon M Jacobs
    Abstract:

    Background Unicellular cyanobacteria of the genus Cyanothece are recognized for their ability to execute nitrogen (N2)-fixation in the dark and photosynthesis in the light. An understanding of these mechanistic processes in an integrated systems context should provide insights into how Cyanothece might be optimized for specialized environments and/or industrial purposes. Systems-wide dynamic proteomic profiling with mass spectrometry (MS) analysis should reveal fundamental insights into the control and regulation of these functions.

  • Novel Metabolic Attributes of the Genus Cyanothece, Comprising a Group of Unicellular Nitrogen-Fixing Cyanobacteria
    Mbio, 2011
    Co-Authors: Anindita Bandyopadhyay, Thanura R. Elvitigala, Michelle Liberton, Eric A. Welsh, Jana Stockel, Louis A Sherman, Himadri B Pakrasi
    Abstract:

    ABSTRACT The genus Cyanothece comprises unicellular cyanobacteria that are morphologically diverse and ecologically versatile. Studies over the last decade have established members of this genus to be important components of the marine ecosystem, contributing significantly to the nitrogen and carbon cycle. System-level studies of Cyanothece sp. ATCC 51142, a prototypic member of this group, revealed many interesting metabolic attributes. To identify the metabolic traits that define this class of cyanobacteria, five additional Cyanothece strains were sequenced to completion. The presence of a large, contiguous nitrogenase gene cluster and the ability to carry out aerobic nitrogen fixation distinguish Cyanothece as a genus of unicellular, aerobic nitrogen-fixing cyanobacteria. Cyanothece cells can create an anoxic intracellular environment at night, allowing oxygen-sensitive processes to take place in these oxygenic organisms. Large carbohydrate reserves accumulate in the cells during the day, ensuring sufficient energy for the processes that require the anoxic phase of the cells. Our study indicates that this genus maintains a plastic genome, incorporating new metabolic capabilities while simultaneously retaining archaic metabolic traits, a unique combination which provides the flexibility to adapt to various ecological and environmental conditions. Rearrangement of the nitrogenase cluster in Cyanothece sp. strain 7425 and the concomitant loss of its aerobic nitrogen-fixing ability suggest that a similar mechanism might have been at play in cyanobacterial strains that eventually lost their nitrogen-fixing ability. IMPORTANCE The unicellular cyanobacterial genus Cyanothece has significant roles in the nitrogen cycle in aquatic and terrestrial environments. Cyanothece sp. ATCC 51142 was extensively studied over the last decade and has emerged as an important model photosynthetic microbe for bioenergy production. To expand our understanding of the distinctive metabolic capabilities of this cyanobacterial group, we analyzed the genome sequences of five additional Cyanothece strains from different geographical habitats, exhibiting diverse morphological and physiological attributes. These strains exhibit high rates of N 2 fixation and H 2 production under aerobic conditions. They can generate copious amounts of carbohydrates that are stored in large starch-like granules and facilitate energy-intensive processes during the dark, anoxic phase of the cells. The genomes of some Cyanothece strains are quite unique in that there are linear elements in addition to a large circular chromosome. Our study provides novel insights into the metabolism of this class of unicellular nitrogen-fixing cyanobacteria.

Eric A. Welsh - One of the best experts on this subject based on the ideXlab platform.

  • Identifying Regulatory Changes to Facilitate Nitrogen Fixation in the Nondiazotroph Synechocystis sp. PCC 6803
    2015
    Co-Authors: Thomas J. Mueller, Eric A. Welsh, Himadri B Pakrasi, Costas D. Maranas
    Abstract:

    The incorporation of biological nitrogen fixation into a nondiazotrophic photosynthetic organism provides a promising solution to the increasing fixed nitrogen demand, but is accompanied by a number of challenges for accommodating two incompatible processes within the same organism. Here we present regulatory influence networks for two cyanobacteria, Synechocystis PCC 6803 and Cyanothece ATCC 51142, and evaluate them to co-opt native transcription factors that may be used to control the nif gene cluster once it is transferred to Synechocystis. These networks were further examined to identify candidate transcription factors for other metabolic processes necessary for temporal separation of photosynthesis and nitrogen fixation, glycogen catabolism and cyanophycin synthesis. Two transcription factors native to Synechocystis, LexA and Rcp1, were identified as promising candidates for the control of the nif gene cluster and other pertinent metabolic processes, respectively. Lessons learned in the incorporation of nitrogen fixation into a nondiazotrophic prokaryote may be leveraged to further progress the incorporation of nitrogen fixation in plants

  • dynamic proteome analysis of Cyanothece sp atcc 51142 under constant light
    Journal of Proteome Research, 2012
    Co-Authors: Uma K. Aryal, Eric A. Welsh, Jana Stockel, Himadri B Pakrasi, Richard D. Smith, Marina A Gritsenko, David W. Koppenaal, Carrie D Nicora, Jon M Jacobs
    Abstract:

    Understanding the dynamic nature of protein abundances provides insights into protein turnover not readily apparent from conventional, static mass spectrometry measurements. This level of data is particularly informative when surveying protein abundances in biological systems subjected to large perturbations or alterations in environment such as cyanobacteria. Our current analysis expands upon conventional proteomic approaches in cyanobacteria by measuring dynamic changes of the proteome using a 13C15N-l-leucine metabolic labeling in Cyanothece ATCC51142. Metabolically labeled Cyanothece ATCC51142 cells grown under nitrogen-sufficient conditions in continuous light were monitored longitudinally for isotope incorporation over a 48 h period, revealing 414 proteins with dynamic changes in abundances. In particular, proteins involved in carbon fixation, pentose phosphate pathway, cellular protection, redox regulation, protein folding, assembly, and degradation showed higher levels of isotope incorporation, su...

  • Novel Metabolic Attributes of the Genus Cyanothece, Comprising a Group of Unicellular Nitrogen-Fixing Cyanobacteria
    Mbio, 2011
    Co-Authors: Anindita Bandyopadhyay, Thanura R. Elvitigala, Michelle Liberton, Eric A. Welsh, Jana Stockel, Louis A Sherman, Himadri B Pakrasi
    Abstract:

    ABSTRACT The genus Cyanothece comprises unicellular cyanobacteria that are morphologically diverse and ecologically versatile. Studies over the last decade have established members of this genus to be important components of the marine ecosystem, contributing significantly to the nitrogen and carbon cycle. System-level studies of Cyanothece sp. ATCC 51142, a prototypic member of this group, revealed many interesting metabolic attributes. To identify the metabolic traits that define this class of cyanobacteria, five additional Cyanothece strains were sequenced to completion. The presence of a large, contiguous nitrogenase gene cluster and the ability to carry out aerobic nitrogen fixation distinguish Cyanothece as a genus of unicellular, aerobic nitrogen-fixing cyanobacteria. Cyanothece cells can create an anoxic intracellular environment at night, allowing oxygen-sensitive processes to take place in these oxygenic organisms. Large carbohydrate reserves accumulate in the cells during the day, ensuring sufficient energy for the processes that require the anoxic phase of the cells. Our study indicates that this genus maintains a plastic genome, incorporating new metabolic capabilities while simultaneously retaining archaic metabolic traits, a unique combination which provides the flexibility to adapt to various ecological and environmental conditions. Rearrangement of the nitrogenase cluster in Cyanothece sp. strain 7425 and the concomitant loss of its aerobic nitrogen-fixing ability suggest that a similar mechanism might have been at play in cyanobacterial strains that eventually lost their nitrogen-fixing ability. IMPORTANCE The unicellular cyanobacterial genus Cyanothece has significant roles in the nitrogen cycle in aquatic and terrestrial environments. Cyanothece sp. ATCC 51142 was extensively studied over the last decade and has emerged as an important model photosynthetic microbe for bioenergy production. To expand our understanding of the distinctive metabolic capabilities of this cyanobacterial group, we analyzed the genome sequences of five additional Cyanothece strains from different geographical habitats, exhibiting diverse morphological and physiological attributes. These strains exhibit high rates of N 2 fixation and H 2 production under aerobic conditions. They can generate copious amounts of carbohydrates that are stored in large starch-like granules and facilitate energy-intensive processes during the dark, anoxic phase of the cells. The genomes of some Cyanothece strains are quite unique in that there are linear elements in addition to a large circular chromosome. Our study provides novel insights into the metabolism of this class of unicellular nitrogen-fixing cyanobacteria.

  • diurnal rhythms result in significant changes in the cellular protein complement in the cyanobacterium Cyanothece 51142
    PLOS ONE, 2011
    Co-Authors: Jana Stockel, Thanura R. Elvitigala, Michelle Liberton, Eric A. Welsh, Jon M Jacobs, Marina A Gritsenko, David W. Koppenaal, Ashoka D Polpitiya, Carrie D Nicora, Richard D. Smith
    Abstract:

    Cyanothece sp. ATCC 51142 is a diazotrophic cyanobacterium notable for its ability to perform oxygenic photosynthesis and dinitrogen fixation in the same single cell. Previous transcriptional analysis revealed that the existence of these incompatible cellular processes largely depends on tightly synchronized expression programs involving ∼30% of genes in the genome. To expand upon current knowledge, we have utilized sensitive proteomic approaches to examine the impact of diurnal rhythms on the protein complement in Cyanothece 51142. We found that 250 proteins accounting for ∼5% of the predicted ORFs from the Cyanothece 51142 genome and 20% of proteins detected under alternating light/dark conditions exhibited periodic oscillations in their abundances. Our results suggest that altered enzyme activities at different phases during the diurnal cycle can be attributed to changes in the abundance of related proteins and key compounds. The integration of global proteomics and transcriptomic data further revealed that post-transcriptional events are important for temporal regulation of processes such as photosynthesis in Cyanothece 51142. This analysis is the first comprehensive report on global quantitative proteomics in a unicellular diazotrophic cyanobacterium and uncovers novel findings about diurnal rhythms.

  • reply to zhang et al identification of origins of replication in the Cyanothece 51142 genome
    Proceedings of the National Academy of Sciences of the United States of America, 2008
    Co-Authors: Eric A. Welsh, Michelle Liberton, Jana Stockel, Himadri B Pakrasi
    Abstract:

    We recently reported (1) our analysis of the Cyanothece 51142 genome, which included an attempt to identify the origins of replication in the circular and linear chromosomes in this genome. We used the web-based Ori-Finder software developed by Gao and Zhang (2). The program output at the time of submission of the revised version of our article is shown in Fig. 1.