Cyanotoxins

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 4482 Experts worldwide ranked by ideXlab platform

Samuel Cirés - One of the best experts on this subject based on the ideXlab platform.

  • degradation of widespread Cyanotoxins with high impact in drinking water microcystins cylindrospermopsin anatoxin a and saxitoxin by cwpo
    Water Research, 2019
    Co-Authors: Macarena Munoz, Samuel Cirés, Antonio Quesada, Julia Nietosandoval, Zahara M De Pedro, Jose A Casas
    Abstract:

    Abstract The occurrence of harmful cyanobacterial blooms has unabated increased over the last few decades, posing a significant risk for public health. In this work, we investigate the feasibility of catalytic wet peroxide oxidation (CWPO) promoted by modified natural magnetite (Fe3O4-R400/H2O2), as an inexpensive, simple-operation and environmentally-friendly process for the removal of the Cyanotoxins that show the major impact on drinking water: microcystins (MC-LR and MC-RR), cylindrospermopsin (CYN), anatoxin-a (ATX) and saxitoxin (STX). The performance of the system was evaluated under ambient conditions and circumneutral pH (pH0 = 5) using relevant cyanotoxin concentrations (100–500 μg L−1). The nature of the Cyanotoxins determined their reactivity towards CWPO, which decreased in the following order: MC-RR > CYN > MC-LR ≫ ATX > STX. In this sense, microcystins and CYN were completely removed in short reaction times (1–1.5 h) with a low catalyst concentration (0.2 g L−1) and the stoichiometric amount of H2O2 (2–2.6 mg L−1), while only 60–80% conversion was achieved with ATX and STX in 5 h. In these cases, an intensification of the operating conditions (1 g L−1 catalyst and up to 30 mg H2O2 L−1) was required to remove both toxins in 1 h. The impact of the main components of freshwaters i.e. natural organic matter (NOM) and several inorganic ions (HCO3−, HPO42-, SO42-) on the performance of the process was also investigated. Although the former led to a partial inhibition of the reaction due to HO· scavenging and catalyst coating, the latter did not show any remarkably effect, and the versatility of the process was finally confirmed in a real surface water. To further demonstrate the effectiveness of the catalytic system, the toxicity of both the initial Cyanotoxins and the resulting CWPO effluents was measured with the brine shrimp Artemia salina. Remarkably, all CWPO effluents were non-toxic at the end of the treatment.

  • diversity of toxin and non toxin containing cyanobacterial mats of meltwater ponds on the antarctic peninsula a pyrosequencing approach
    Antarctic Science, 2014
    Co-Authors: Julia Kleinteich, Ramsy Agha, Samuel Cirés, Antonio Quesada, Frank Hildebrand, Susie Wood, David Pearce, Peter Convey, Frithjof C Kupper
    Abstract:

    Despite their pivotal role as primary producers, there is little information as to the diversity and physiology of cyanobacteria in the meltwater ecosystems of polar regions. Thirty cyanobacterial mats from Adelaide Island, Antarctica were investigated using 16S rRNA gene pyrosequencing and automated ribosomal intergenic spacer analysis, and screened for cyanobacterial toxins using molecular and chemical approaches. A total of 274 operational taxonomic units (OTUs) were detected. The richness ranged between 8 and 33 cyanobacterial OTUs per sample, reflecting a high mat diversity. Leptolyngbya and Phormidium (c. 55% and 37% of the OTUs per mat) were dominant. Cyanobacterial community composition was similar between mats, particularly those obtained from closely adjacent locations. The cyanotoxin microcystin was detected in 26 of 27 mats (10–300 ng g-1 organic mass), while cylindrospermopsin, detected for the first time in Antarctica, was present in 21 of 30 mats (2–156 ng g-1 organic mass). The latter was confirmed via liquid chromatography-mass spectrometry and by the presence of the cyrAB and cyrJ genes. This study demonstrates the usefulness of pyrosequencing for characterizing diverse cyanobacterial communities, and confirms that cyanobacteria from extreme environments produce a similar range of Cyanotoxins as their temperate counterparts.

  • phylogeography of cylindrospermopsin and paralytic shellfish toxin producing nostocales cyanobacteria from mediterranean europe spain
    Applied and Environmental Microbiology, 2014
    Co-Authors: Samuel Cirés, Ramsy Agha, Andreas Ballot, David Velázquez, Mar Ia Cristina Casero
    Abstract:

    Planktonic Nostocales cyanobacteria represent a challenge for microbiological research because of the wide range of Cyanotoxins that they synthesize and their invasive behavior, which is presumably enhanced by global warming. To gain insight into the phylogeography of potentially toxic Nostocales from Mediterranean Europe, 31 strains of Anabaena (Anabaena crassa, A. lemmermannii, A. mendotae, and A. planctonica), Aphanizomenon (Aphanizomenon gracile, A. ovalisporum), and Cylindrospermopsis raciborskii were isolated from 14 freshwater bodies in Spain and polyphasically analyzed for their phylogeography, cyanotoxin production, and the presence of cyanotoxin biosynthesis genes. The potent cytotoxin cylindrospermopsin (CYN) was produced by all 6 Aphanizomenon ovalisporum strains at high levels (5.7 to 9.1 μg CYN mg−1 [dry weight]) with low variation between strains (1.5 to 3.9-fold) and a marked extracellular release (19 to 41% dissolved CYN) during exponential growth. Paralytic shellfish poisoning (PSP) neurotoxins (saxitoxin, neosaxitoxin, and decarbamoylsaxitoxin) were detected in 2 Aphanizomenon gracile strains, both containing the sxtA gene. This gene was also amplified in non-PSP toxin-producing Aphanizomenon gracile and Aphanizomenon ovalisporum. Phylogenetic analyses supported the species identification and confirmed the high similarity of Spanish Anabaena and Aphanizomenon strains with other European strains. In contrast, Cylindrospermopsis raciborskii from Spain grouped together with American strains and was clearly separate from the rest of the European strains, raising questions about the current assumptions of the phylogeography and spreading routes of C. raciborskii. The present study confirms that the nostocalean genus Aphanizomenon is a major source of CYN and PSP toxins in Europe and demonstrates the presence of the sxtA gene in CYN-producing Aphanizomenon ovalisporum.

  • phylogeography of cylindrospermopsin and paralytic shellfish toxin producing nostocales cyanobacteria from mediterranean europe spain
    Applied and Environmental Microbiology, 2014
    Co-Authors: Samuel Cirés, Ramsy Agha, Mar Ia Cristina Casero, Claudia Wiedner, Andreas Ballot, Lars Wörmer, David Velázquez, Antonio Quesada
    Abstract:

    Planktonic Nostocales cyanobacteria represent a challenge for microbiological research because of the wide range of Cyanotoxins that they synthesize and their invasive behavior, which is presumably enhanced by global warming. To gain insight into the phylogeography of potentially toxic Nostocales from Mediterranean Europe, 31 strains of Anabaena (Anabaena crassa, A. lemmermannii, A. mendotae, and A. planctonica), Aphanizomenon (Aphanizomenon gracile, A. ovalisporum), and Cylindrospermopsis raciborskii were isolated from 14 freshwater bodies in Spain and polyphasically analyzed for their phylogeography, cyanotoxin production, and the presence of cyanotoxin biosynthesis genes. The potent cytotoxin cylindrospermopsin (CYN) was produced by all 6 Aphanizomenon ovalisporum strains at high levels (5.7 to 9.1 μg CYN mg−1 [dry weight]) with low variation between strains (1.5 to 3.9-fold) and a marked extracellular release (19 to 41% dissolved CYN) during exponential growth. Paralytic shellfish poisoning (PSP) neurotoxins (saxitoxin, neosaxitoxin, and decarbamoylsaxitoxin) were detected in 2 Aphanizomenon gracile strains, both containing the sxtA gene. This gene was also amplified in non-PSP toxin-producing Aphanizomenon gracile and Aphanizomenon ovalisporum. Phylogenetic analyses supported the species identification and confirmed the high similarity of Spanish Anabaena and Aphanizomenon strains with other European strains. In contrast, Cylindrospermopsis raciborskii from Spain grouped together with American strains and was clearly separate from the rest of the European strains, raising questions about the current assumptions of the phylogeography and spreading routes of C. raciborskii. The present study confirms that the nostocalean genus Aphanizomenon is a major source of CYN and PSP toxins in Europe and demonstrates the presence of the sxtA gene in CYN-producing Aphanizomenon ovalisporum.

Antonio Quesada - One of the best experts on this subject based on the ideXlab platform.

  • degradation of widespread Cyanotoxins with high impact in drinking water microcystins cylindrospermopsin anatoxin a and saxitoxin by cwpo
    Water Research, 2019
    Co-Authors: Macarena Munoz, Samuel Cirés, Antonio Quesada, Julia Nietosandoval, Zahara M De Pedro, Jose A Casas
    Abstract:

    Abstract The occurrence of harmful cyanobacterial blooms has unabated increased over the last few decades, posing a significant risk for public health. In this work, we investigate the feasibility of catalytic wet peroxide oxidation (CWPO) promoted by modified natural magnetite (Fe3O4-R400/H2O2), as an inexpensive, simple-operation and environmentally-friendly process for the removal of the Cyanotoxins that show the major impact on drinking water: microcystins (MC-LR and MC-RR), cylindrospermopsin (CYN), anatoxin-a (ATX) and saxitoxin (STX). The performance of the system was evaluated under ambient conditions and circumneutral pH (pH0 = 5) using relevant cyanotoxin concentrations (100–500 μg L−1). The nature of the Cyanotoxins determined their reactivity towards CWPO, which decreased in the following order: MC-RR > CYN > MC-LR ≫ ATX > STX. In this sense, microcystins and CYN were completely removed in short reaction times (1–1.5 h) with a low catalyst concentration (0.2 g L−1) and the stoichiometric amount of H2O2 (2–2.6 mg L−1), while only 60–80% conversion was achieved with ATX and STX in 5 h. In these cases, an intensification of the operating conditions (1 g L−1 catalyst and up to 30 mg H2O2 L−1) was required to remove both toxins in 1 h. The impact of the main components of freshwaters i.e. natural organic matter (NOM) and several inorganic ions (HCO3−, HPO42-, SO42-) on the performance of the process was also investigated. Although the former led to a partial inhibition of the reaction due to HO· scavenging and catalyst coating, the latter did not show any remarkably effect, and the versatility of the process was finally confirmed in a real surface water. To further demonstrate the effectiveness of the catalytic system, the toxicity of both the initial Cyanotoxins and the resulting CWPO effluents was measured with the brine shrimp Artemia salina. Remarkably, all CWPO effluents were non-toxic at the end of the treatment.

  • diversity of toxin and non toxin containing cyanobacterial mats of meltwater ponds on the antarctic peninsula a pyrosequencing approach
    Antarctic Science, 2014
    Co-Authors: Julia Kleinteich, Ramsy Agha, Samuel Cirés, Antonio Quesada, Frank Hildebrand, Susie Wood, David Pearce, Peter Convey, Frithjof C Kupper
    Abstract:

    Despite their pivotal role as primary producers, there is little information as to the diversity and physiology of cyanobacteria in the meltwater ecosystems of polar regions. Thirty cyanobacterial mats from Adelaide Island, Antarctica were investigated using 16S rRNA gene pyrosequencing and automated ribosomal intergenic spacer analysis, and screened for cyanobacterial toxins using molecular and chemical approaches. A total of 274 operational taxonomic units (OTUs) were detected. The richness ranged between 8 and 33 cyanobacterial OTUs per sample, reflecting a high mat diversity. Leptolyngbya and Phormidium (c. 55% and 37% of the OTUs per mat) were dominant. Cyanobacterial community composition was similar between mats, particularly those obtained from closely adjacent locations. The cyanotoxin microcystin was detected in 26 of 27 mats (10–300 ng g-1 organic mass), while cylindrospermopsin, detected for the first time in Antarctica, was present in 21 of 30 mats (2–156 ng g-1 organic mass). The latter was confirmed via liquid chromatography-mass spectrometry and by the presence of the cyrAB and cyrJ genes. This study demonstrates the usefulness of pyrosequencing for characterizing diverse cyanobacterial communities, and confirms that cyanobacteria from extreme environments produce a similar range of Cyanotoxins as their temperate counterparts.

  • phylogeography of cylindrospermopsin and paralytic shellfish toxin producing nostocales cyanobacteria from mediterranean europe spain
    Applied and Environmental Microbiology, 2014
    Co-Authors: Samuel Cirés, Ramsy Agha, Mar Ia Cristina Casero, Claudia Wiedner, Andreas Ballot, Lars Wörmer, David Velázquez, Antonio Quesada
    Abstract:

    Planktonic Nostocales cyanobacteria represent a challenge for microbiological research because of the wide range of Cyanotoxins that they synthesize and their invasive behavior, which is presumably enhanced by global warming. To gain insight into the phylogeography of potentially toxic Nostocales from Mediterranean Europe, 31 strains of Anabaena (Anabaena crassa, A. lemmermannii, A. mendotae, and A. planctonica), Aphanizomenon (Aphanizomenon gracile, A. ovalisporum), and Cylindrospermopsis raciborskii were isolated from 14 freshwater bodies in Spain and polyphasically analyzed for their phylogeography, cyanotoxin production, and the presence of cyanotoxin biosynthesis genes. The potent cytotoxin cylindrospermopsin (CYN) was produced by all 6 Aphanizomenon ovalisporum strains at high levels (5.7 to 9.1 μg CYN mg−1 [dry weight]) with low variation between strains (1.5 to 3.9-fold) and a marked extracellular release (19 to 41% dissolved CYN) during exponential growth. Paralytic shellfish poisoning (PSP) neurotoxins (saxitoxin, neosaxitoxin, and decarbamoylsaxitoxin) were detected in 2 Aphanizomenon gracile strains, both containing the sxtA gene. This gene was also amplified in non-PSP toxin-producing Aphanizomenon gracile and Aphanizomenon ovalisporum. Phylogenetic analyses supported the species identification and confirmed the high similarity of Spanish Anabaena and Aphanizomenon strains with other European strains. In contrast, Cylindrospermopsis raciborskii from Spain grouped together with American strains and was clearly separate from the rest of the European strains, raising questions about the current assumptions of the phylogeography and spreading routes of C. raciborskii. The present study confirms that the nostocalean genus Aphanizomenon is a major source of CYN and PSP toxins in Europe and demonstrates the presence of the sxtA gene in CYN-producing Aphanizomenon ovalisporum.

Mar Ia Cristina Casero - One of the best experts on this subject based on the ideXlab platform.

  • phylogeography of cylindrospermopsin and paralytic shellfish toxin producing nostocales cyanobacteria from mediterranean europe spain
    Applied and Environmental Microbiology, 2014
    Co-Authors: Samuel Cirés, Ramsy Agha, Andreas Ballot, David Velázquez, Mar Ia Cristina Casero
    Abstract:

    Planktonic Nostocales cyanobacteria represent a challenge for microbiological research because of the wide range of Cyanotoxins that they synthesize and their invasive behavior, which is presumably enhanced by global warming. To gain insight into the phylogeography of potentially toxic Nostocales from Mediterranean Europe, 31 strains of Anabaena (Anabaena crassa, A. lemmermannii, A. mendotae, and A. planctonica), Aphanizomenon (Aphanizomenon gracile, A. ovalisporum), and Cylindrospermopsis raciborskii were isolated from 14 freshwater bodies in Spain and polyphasically analyzed for their phylogeography, cyanotoxin production, and the presence of cyanotoxin biosynthesis genes. The potent cytotoxin cylindrospermopsin (CYN) was produced by all 6 Aphanizomenon ovalisporum strains at high levels (5.7 to 9.1 μg CYN mg−1 [dry weight]) with low variation between strains (1.5 to 3.9-fold) and a marked extracellular release (19 to 41% dissolved CYN) during exponential growth. Paralytic shellfish poisoning (PSP) neurotoxins (saxitoxin, neosaxitoxin, and decarbamoylsaxitoxin) were detected in 2 Aphanizomenon gracile strains, both containing the sxtA gene. This gene was also amplified in non-PSP toxin-producing Aphanizomenon gracile and Aphanizomenon ovalisporum. Phylogenetic analyses supported the species identification and confirmed the high similarity of Spanish Anabaena and Aphanizomenon strains with other European strains. In contrast, Cylindrospermopsis raciborskii from Spain grouped together with American strains and was clearly separate from the rest of the European strains, raising questions about the current assumptions of the phylogeography and spreading routes of C. raciborskii. The present study confirms that the nostocalean genus Aphanizomenon is a major source of CYN and PSP toxins in Europe and demonstrates the presence of the sxtA gene in CYN-producing Aphanizomenon ovalisporum.

  • phylogeography of cylindrospermopsin and paralytic shellfish toxin producing nostocales cyanobacteria from mediterranean europe spain
    Applied and Environmental Microbiology, 2014
    Co-Authors: Samuel Cirés, Ramsy Agha, Mar Ia Cristina Casero, Claudia Wiedner, Andreas Ballot, Lars Wörmer, David Velázquez, Antonio Quesada
    Abstract:

    Planktonic Nostocales cyanobacteria represent a challenge for microbiological research because of the wide range of Cyanotoxins that they synthesize and their invasive behavior, which is presumably enhanced by global warming. To gain insight into the phylogeography of potentially toxic Nostocales from Mediterranean Europe, 31 strains of Anabaena (Anabaena crassa, A. lemmermannii, A. mendotae, and A. planctonica), Aphanizomenon (Aphanizomenon gracile, A. ovalisporum), and Cylindrospermopsis raciborskii were isolated from 14 freshwater bodies in Spain and polyphasically analyzed for their phylogeography, cyanotoxin production, and the presence of cyanotoxin biosynthesis genes. The potent cytotoxin cylindrospermopsin (CYN) was produced by all 6 Aphanizomenon ovalisporum strains at high levels (5.7 to 9.1 μg CYN mg−1 [dry weight]) with low variation between strains (1.5 to 3.9-fold) and a marked extracellular release (19 to 41% dissolved CYN) during exponential growth. Paralytic shellfish poisoning (PSP) neurotoxins (saxitoxin, neosaxitoxin, and decarbamoylsaxitoxin) were detected in 2 Aphanizomenon gracile strains, both containing the sxtA gene. This gene was also amplified in non-PSP toxin-producing Aphanizomenon gracile and Aphanizomenon ovalisporum. Phylogenetic analyses supported the species identification and confirmed the high similarity of Spanish Anabaena and Aphanizomenon strains with other European strains. In contrast, Cylindrospermopsis raciborskii from Spain grouped together with American strains and was clearly separate from the rest of the European strains, raising questions about the current assumptions of the phylogeography and spreading routes of C. raciborskii. The present study confirms that the nostocalean genus Aphanizomenon is a major source of CYN and PSP toxins in Europe and demonstrates the presence of the sxtA gene in CYN-producing Aphanizomenon ovalisporum.

Vitor Vasconcelos - One of the best experts on this subject based on the ideXlab platform.

  • cyanotoxin screening in baca culture collection identification of new cylindrospermopsin producing cyanobacteria
    Toxins, 2021
    Co-Authors: Rita Cordeiro, Vitor Vasconcelos, Joana Azevedo, Ruben Luz, Vitor Goncalves, Amelia Fonseca
    Abstract:

    Microcystins (MCs), Saxitoxins (STXs), and Cylindrospermopsins (CYNs) are some of the more well-known Cyanotoxins. Taking into consideration the impacts of Cyanotoxins, many studies have focused on the identification of unknown cyanotoxin(s)-producing strains. This study aimed to screen strains from the Azorean Bank of Algae and Cyanobacteria (BACA) for MCs, STX, and CYN production. A total of 157 strains were searched for mcy, sxt, and cyr producing genes by PCR, toxin identification by ESI-LC-MS/MS, and cyanotoxin-producing strains morphological identification and confirmation by 16S rRNA phylogenetic analysis. Cyanotoxin-producing genes were amplified in 13 strains and four were confirmed as toxin producers by ESI-LC-MS/MS. As expected Aphanizomenon gracile BACA0041 was confirmed as an STX producer, with amplification of genes sxtA, sxtG, sxtH, and sxtI, and Microcystis aeruginosa BACA0148 as an MC-LR producer, with amplification of genes mcyC, mcyD, mcyE, and mcyG. Two nostocalean strains, BACA0025 and BACA0031, were positive for both cyrB and cyrC genes and ESI-LC-MS/MS confirmed CYN production. Although these strains morphologically resemble Sphaerospermopsis, the 16S rRNA phylogenetic analysis reveals that they probably belong to a new genus.

  • Effects of microcystin-LR and cylindrospermopsin on plant-soil systems: A review of their relevance for agricultural plant quality and public health.
    Environmental research, 2016
    Co-Authors: Joana Machado, Alexandre Campos, Vitor Vasconcelos, M. C. Freitas
    Abstract:

    Toxic cyanobacterial blooms are recognized as an emerging environmental threat worldwide. Although microcystin-LR is the most frequently documented cyanotoxin, studies on cylindrospermopsin have been increasing due to the invasive nature of cylindrospermopsin-producing cyanobacteria. The number of studies regarding the effects of Cyanotoxins on agricultural plants has increased in recent years, and it has been suggested that the presence of microcystin-LR and cylindrospermopsin in irrigation water may cause toxic effects in edible plants. The uptake of these Cyanotoxins by agricultural plants has been shown to induce morphological and physiological changes that lead to a potential loss of productivity. There is also evidence that edible terrestrial plants can bioaccumulate Cyanotoxins in their tissues in a concentration dependent-manner. Moreover, the number of consecutive cycles of watering and planting in addition to the potential persistence of microcystin-LR and cylindrospermopsin in the environment are likely to result in groundwater contamination. The use of cyanotoxin-contaminated water for agricultural purposes may therefore represent a threat to both food security and food safety. However, the deleterious effects of Cyanotoxins on agricultural plants and public health seem to be dependent on the concentrations studied, which in most cases are non-environmentally relevant. Interestingly, at ecologically relevant concentrations, the productivity and nutritional quality of some agricultural plants seem not to be impaired and may even be enhanced. However, studies assessing if the potential tolerance of agricultural plants to these concentrations can result in cyanotoxin and allergen accumulation in the edible tissues are lacking. This review combines the most current information available regarding this topic with a realistic assessment of the impact of cyanobacterial toxins on agricultural plants, groundwater quality and public health.

  • global changes and the new challenges in the research on cyanotoxin risk evaluation
    Limnetica, 2015
    Co-Authors: Vitor Vasconcelos
    Abstract:

    Global c hanges and the new challenges in the research on cyanotoxin risk evaluation Global changes comprehend a series of changes in populations, climate, economy, atmospheric and oceanic circulations, water cycle, pollution, biodiversity among many others that have significant impacts in the eutrophication of aquatic ecosystems and consequently on the occurrence of bloom forming toxic cyanobacteria and on their toxins. The development of sensitive and specific techniques together with an increased effort in the research related to cyanobacteria and Cyanotoxins has contributed to a significant increase on the knowledge of these toxins. The understanding of the dynamics of Cyanotoxins along food chains and about their biological activity allows us to estimate environmental and human health risks. Nevertheless, there is still much to do in what concerns with effective management measures and risk communication concerning Cyanotoxins. Scientists, environmental and health technicians as also politicians and common population should all be involved so as to minimize animal and humans intoxications due to Cyanotoxins. In this paper we discuss also the challenges for the scientists working on Cyanotoxins and also the future needs in terms of research so as to minimize risks.

  • cylindrospermopsin occurrence methods of detection and toxicology
    Journal of Applied Microbiology, 2013
    Co-Authors: Cristiana Moreira, Joana Azevedo, Agostinho Antunes, Vitor Vasconcelos
    Abstract:

    Cyanobacteria are aquatic micro-organisms that pose a great threat to aquatic ecosystems by the production of dense blooms, but most importantly by the production of secondary metabolites, namely the Cyanotoxins. One of these is cylindrospermopsin (CYN), a hepatotoxic polyketide-derived alkaloid with well-known associated cases of animal mortalities and human morbidity. First described as being associated with liver damage, this toxin is now considered a cytotoxic and a genotoxic toxin, due to its effects in other organs and in DNA. Its occurrence has been reported so far in eight different cyanobacteria species and in several water samples from four of the five continents. With a guideline value of 1 μg l−1, CYN is now considered the second most studied cyanotoxin worldwide. It is important to review the information regarding the findings made until now about this cyanotoxin 30 years since its first report.

Bryan W Brooks - One of the best experts on this subject based on the ideXlab platform.

  • determination of microcystins nodularin anatoxin a cylindrospermopsin and saxitoxin in water and fish tissue using isotope dilution liquid chromatography tandem mass spectrometry
    Journal of Chromatography A, 2019
    Co-Authors: Samuel P Haddad, Jonathan M Bobbitt, Raegyn B Taylor, Lea M Lovin, Jeremy L Conkle, Kevin C Chambliss, Bryan W Brooks
    Abstract:

    Abstract Cyanobacteria can form dense blooms under specific environmental conditions, and some species produce secondary metabolites known as Cyanotoxins, which present significant risks to public health and the environment. Identifying toxins produced by cyanobacteria present in surface water and fish is critical to ensuring high quality food and water for consumption, and protectionn of recreational uses. Current analytical screening methods typically focus on one class of Cyanotoxins in a single matrix and rarely include saxitoxin. Thus, a cross-class screening method for microcystins, nodularin, anatoxin-a, cylindrospermopsin, and saxitoxin was developed to examine target analytes in environmental water and fish tissue. This was done, due to the broad range of cyanotoxin physicochemical properties, by pairing two extraction and separation techniques to improve isolation and detection. For the first time a zwitterionic hydrophilic interaction liquid chromatography column was evaluated to separate anatoxin-a, cylindrospermopsin, and saxitoxin, demonstrating greater sensitivity for all three compounds over previous techniques. Further, the method for microcystins, nodularin, anatoxin-a, and cylindrospermopsin were validated using isotopically labeled internal standards, again for the first time, resulting in improved compensation for recovery bias and matrix suppression. Optimized extractions for water and fish tissue can be extended to other congeners in the future. These improved separation and isotope dilution techniques are a launching point for more complex, non-targeted analyses, with preliminary targeted screening.