CYP2D6

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 24625566 Experts worldwide ranked by ideXlab platform

Rachel F. Tyndale - One of the best experts on this subject based on the ideXlab platform.

  • Human CYP2D6 in the Brain Is Protective Against Harmine-Induced Neurotoxicity: Evidence from Humanized CYP2D6 Transgenic Mice
    2020
    Co-Authors: Marlaina R. Stocco, Frank J Gonzalez, Cole Tolledo, Fariba Baghai Wadji, Sharon Miksys, Rachel F. Tyndale
    Abstract:

    CYP2D6 metabolically inactivates several neurotoxins, including beta-carbolines, which are implicated in neurodegenerative diseases. Variation in CYP2D6 within the brain may alter local inactivation of neurotoxic beta-carbolines, thereby influencing neurotoxicity. The beta-carboline harmine, which induces hypothermia and tremor, is metabolized by CYP2D6 to the non-hypothermic/non-tremorgenic harmol. Transgenic mice (TG), expressing human CYP2D6 in addition to their endogenous mouse CYP2D, experience less harmine-induced hypothermia and tremor compared with wild-type mice (WT). We first sought to elucidate the role of CYP2D in general within the brain in harmine-induced hypothermia and tremor severity. A 4-h intracerebroventricular (ICV) pretreatment with the CYP2D inhibitor propranolol increased harmine-induced hypothermia and tremor in TG and increased harmine-induced hypothermia in WT. We next sought to specifically demonstrate that human CYP2D6 expressed in TG brain altered harmine response severity. A 24-h ICV propranolol pretreatment, which selectively and irreversibly inhibits human CYP2D6 in TG brain, increased harmine-induced hypothermia. This 24-h pretreatment had no impact on harmine response in WT, as propranolol is not an irreversible inhibitor of mouse CYP2D in the brain, thus confirming no off-target effects of ICV propranolol pretreatment. Human CYP2D6 activity in TG brain was sufficient in vivo to mitigate harmine-induced neurotoxicity. These findings suggest that human CYP2D6 in the brain is protective against beta-carboline-induced neurotoxicity and that the extensive interindividual variability in CYP2D6 expression in human brain may contribute to variation in susceptibility to certain neurotoxin-associated neurodegenerative disorders.

  • Human CYP2D6 Is Functional in Brain In Vivo: Evidence from Humanized CYP2D6 Transgenic Mice
    2020
    Co-Authors: Cole Tolledo, Frank J Gonzalez, Marlaina R. Stocco, Sharon Miksys, Rachel F. Tyndale
    Abstract:

    CYP2D metabolizes many drugs that act within the brain, and variable expression of CYP2D in the brain may alter local drug and metabolite levels sufficiently to affect behavioral responses. Transgenic mice that express human CYP2D6 (TG) were compared to wild type mice (WT). Following selective inhibition of human CYP2D6 in TG brain, we demonstrated in vivo that human CYP2D6 in the brain was sufficient to alter a drug-induced behavioral response. After a 4-h pre-treatment with intracerebroventricular (i.c.v.) propranolol, CYP2D activity in vivo and in vitro was reduced in TG brain, whereas CYP2D activity in vivo, but not in vitro, was reduced in WT brain. After a 24-h pre-treatment with i.c.v. propranolol, CYP2D activity in vivo and in vitro was reduced in TG brain, whereas CYP2D activity in vivo and in vitro was not changed in WT brain. These results indicate that i.c.v. propranolol irreversibly inhibited human CYP2D6 in TG brain but not mouse CYP2D in TG and WT brain. Pre-treatments with propranolol did not change liver CYP2D activity in vivo or in vitro. Furthermore, 24-h pre-treatment with i.c.v. propranolol resulted in a significant decrease of the haloperidol-induced catalepsy response in TG, but not in WT, without changing serum haloperidol levels in either mouse line. These studies reveal a new tool to selectively and irreversibly inhibit human CYP2D6 in TG brain and indicate that human CYP2D6 has a functional role within the brain sufficient to impact the central nervous system response from peripherally administered drugs.

  • propranolol is a mechanism based inhibitor of cyp2d and CYP2D6 in humanized CYP2D6 transgenic mice effects on activity and drug responses
    2020
    Co-Authors: Edgor Cole Tolledo, Frank J Gonzalez, Sharon Miksys, Rachel F. Tyndale
    Abstract:

    Background and purpose Genetics and drug interactions contribute to large interindividual variation in human CYP2D6 activity. Here, we have characterized propranolol inhibition of human and mouse CYP2D using transgenic (TG) mice, which express both mouse CYP2D and human CYP2D6, and wild-type (WT) mice. Our purpose was to develop a method for in vivo manipulation of CYP2D6 enzyme activity which could be used to investigate the role of CYP2D6 in drug-induced behaviours. Experimental approach Dextromethorphan metabolism to dextrorphan was used to measure CYP2D activity and to characterize propranolol inhibition in vitro and in vivo. Effects of propranolol pretreatment (24 hr) on serum levels of the CYP2D6 substrate haloperidol and haloperidol-induced catalepsy were also studied. Key results Dextrorphan formation velocity in vitro was threefold higher in liver microsomes of TG compared to WT mice. Propranolol acted as a mechanism-based inhibitor (MBI), inactivating CYP2D in liver microsomes from TG and WT mice, and humans. Pretreatment (24 hr) of TG and WT mice with 20 mg·kg-1 intraperitoneal propranolol reduced dextrorphan formation in vivo and by liver microsomes in vitro. Serum haloperidol levels and catalepsy were increased. Conclusions and implications Propranolol was a potent MBI of dextrorphan formation in liver microsomes from TG and WT mice, and humans. The inhibition parameters in TG overlapped with those in WT mice and in humans. Inhibition of CYP2D with propranolol in vivo in TG and WT mice altered drug responses, allowing further investigation of variations in CYP2D6 on drug interactions and drug responses.

  • induction of the drug metabolizing enzyme cyp2d in monkey brain by chronic nicotine treatment
    2008
    Co-Authors: Amandeep Mann, Sharon Miksys, Anna M Lee, Deborah C Mash, Rachel F. Tyndale
    Abstract:

    Abstract Cytochrome P450 (CYP) 2D6, an enzyme found in the liver and the brain, is involved in the metabolism of numerous centrally acting drugs (e.g. antidepressants, neuroleptics, opiates), endogenous neurochemicals (e.g. catecholamines) and in the inactivation of neurotoxins (e.g. pesticides, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)). Although CYP2D6 is essentially an uninducible enzyme in the liver, we show that smokers have higher CYP2D6 in the brain, especially in the basal ganglia. In order to determine whether nicotine, a component of cigarette smoke, could increase brain CYP2D, African Green monkeys were treated chronically with nicotine (0.05 mg/kg for 2 days, then 0.15 mg/kg for 2 days followed by 0.3 mg/kg for 18 days s.c., b.i.d.). Monkeys treated with nicotine showed significant induction of CYP2D in brain when compared to saline-treated animals as detected by western blotting and immunocytochemistry. No changes in liver CYP2D were observed in nicotine-treated monkeys. Induction was observed in various brain regions including those affected in Parkinson's disease (PD) such as substantia nigra (3-fold, p  = 0.01), putamen (2.1-fold, p  = 0.001) and brainstem (2.4-fold, p  = 0.001), with the caudate nucleus approaching significance (1.6-fold, p  = 0.07). Immunocytochemistry revealed that the expression of CYP2D in both saline- and nicotine-treated monkeys is cell-specific particularly in the cerebellum, frontal cortex and hippocampus. These results suggest that monkey brain expresses CYP2D, which is induced in specific cells and brain regions upon chronic nicotine treatment. Smokers, or those using nicotine treatment, may have higher levels of brain CYP2D6 that may result in altered localized CNS drug metabolism and inactivation of neurotoxins.

  • human CYP2D6 and mouse cyp2ds organ distribution in a humanized mouse model
    2005
    Co-Authors: Sharon Miksys, Frank J Gonzalez, Connie Cheung, Rachel F. Tyndale
    Abstract:

    Polymorphic cytochrome P450 (P450) 2D6 (CYP2D6) metabolizes several classes of therapeutic drugs, endogenous neurochemicals, and toxins. A CYP2D6-humanized transgenic mouse line was previously developed to model CYP2D6-poor and -extensive metabolizer phenotypes. Human CYP2D6 was detected in the liver, kidney, and intestine of these animals. In this study, we investigated further the cellular expression and relative tissue levels of human CYP2D6 in these transgenic mice in liver, intestine, kidney, and brain. In addition, we compared this with the expression of mouse CYP2D enzymes in these organs. In humans, these organs are of interest with respect to P450-mediated drug metabolism, toxicity, and disease. The expression of human CYP2D6 and mouse CYP2D enzymes in humanized and wild-type mice was quantified by immunoblotting and detected at the cellular level by immunocytochemistry. The cell-specific expression of human CYP2D6 in liver, kidney, and intestine in humanized mice was similar to that reported in humans. The expression patterns of mouse CYP2D proteins were similar to those in humans in liver and kidney but substantially different in intestine. Human CYP2D6 was not detected in brain of transgenic mice. Mouse CYP2D proteins were detected in brain, allowing, for the first time, a direct comparison of CYP2D expression among mouse, rat, and human brain. This transgenic mouse model is useful for investigating CYP2D6-mediated metabolism in liver, kidney, and especially the intestine, where expression patterns demonstrated substantial species differences.

Zeruesenay Desta - One of the best experts on this subject based on the ideXlab platform.

  • cyp2b6 genotype dependent inhibition of cyp1a2 and induction of cyp2a6 by the antiretroviral drug efavirenz in healthy volunteers
    2019
    Co-Authors: Ingrid F Metzger, Nimita Dave, Yvonne Kreutz, Raymond E Galinsky, Zeruesenay Desta
    Abstract:

    We investigated the effect of efavirenz on the activities of cytochrome P450 (CYP)1A2, CYP2A6, xanthine oxidase (XO), and N-acetyltransferase 2 (NAT2), using caffeine as a probe. A single 150 mg oral dose of caffeine was administered to healthy volunteers (n = 58) on two separate occasions; with a single 600 mg oral dose of efavirenz and after treatment with 600 mg/day efavirenz for 17 days. Caffeine and its metabolites in plasma and urine were quantified using liquid chromatography/tandem-mass spectrometry. DNA was genotyped for CYP2B6*4 (785A>G), CYP2B6*9 (516G>T), and CYP2B6*18 (983T>C) alleles using TaqMan assays. Relative to single-dose efavirenz treatment, multiple doses of efavirenz decreased CYP1A2 (by 38%) and increased CYP2A6 (by 85%) activities (P < 0.05); XO and NAT2 activities were unaffected. CYP2B6*6*6 genotype was associated with lower CYP1A2 activity following both single and multiple doses of efavirenz. No similar association was noted for CYP2A6 activity. This is the first report showing that efavirenz reduces hepatic CYP1A2 and suggesting chronic efavirenz exposure likely enhances the elimination of CYP2A6 substrates. This is also the first to report the extent of efavirenz-CYP1A2 interaction may be efavirenz exposure-dependent and CYP2B6 genotype-dependent.

  • in vitro analysis and quantitative prediction of efavirenz inhibition of eight cytochrome p450 cyp enzymes major effects on cyps 2b6 2c8 2c9 and 2c19
    2013
    Co-Authors: Zeruesenay Desta
    Abstract:

    In order to quantitatively predict drug interactions associated with efavirenz-based anti-HIV therapy, we evaluated reversible and time-dependent inhibitions of efavirenz on eight cytochrome P450 (CYP) enzymes in vitro. The present study showed that efavirenz was a potent competitive inhibitor of CYP2B6 (average K(i) = 1.68 µM in HLMs and K(i) = 1.38 µM in expressed CYP2B6) and CYP2C8 (K(i) = 4.78 µM in pooled HLMs and K(i) = 4.80 µM in HLMs with CYP2C8*3/*3 genotype). Efavirenz was a moderate inhibitor of CYP2C9 (K(i) = 19.46 µM) and CYP2C19 (K(i) = 21.31 µM); and a weak inhibitor of CYP3A (K(i) = 40.33 µM). No appreciable inhibition was observed on CYP1A2, CYP2A6 or CYP2D6. No time-dependent inhibition of the CYPs by efavirenz was observed in this study. Quantitative predictions showed that single dose of efavirenz may substantially slow the elimination of drugs predominantly cleared by CYP2B6, CYP2C19 or by both enzymes and may also lower the area under the plasma concentration time curve (AUC) of active metabolites of some pro-drugs (e.g., clopidogrel and proguanil) by up to 30%. Depending on substrates, chronic administration of efavirenz may increase the AUC of CYP2C8 and CYP2C9 substrates about 3.5-4.4-fold and 1.7-2.0-fold at steady state.

  • efavirenz primary and secondary metabolism in vitro and in vivo identification of novel metabolic pathways and cytochrome p450 2a6 as the principal catalyst of efavirenz 7 hydroxylation
    2010
    Co-Authors: Evan T Ogburn, David R Jones, Andrea R Masters, Yingying Guo, Zeruesenay Desta
    Abstract:

    Efavirenz primary and secondary metabolism was investigated in vitro and in vivo. In human liver microsome (HLM) samples, 7- and 8-hydroxyefavirenz accounted for 22.5 and 77.5% of the overall efavirenz metabolism, respectively. Kinetic, inhibition, and correlation analyses in HLM samples and experiments in expressed cytochrome P450 show that CYP2A6 is the principal catalyst of efavirenz 7-hydroxylation. Although CYP2B6 was the main enzyme catalyzing efavirenz 8-hydroxylation, CYP2A6 also seems to contribute. Both 7- and 8-hydroxyefavirenz were further oxidized to novel dihydroxylated metabolite(s) primarily by CYP2B6. These dihydroxylated metabolite(s) were not the same as 8,14-dihydroxyefavirenz, a metabolite that has been suggested to be directly formed via 14-hydroxylation of 8-hydroxyefavirenz, because 8,14-dihydroxyefavirenz was not detected in vitro when efavirenz, 7-, or 8-hydroxyefavirenz were used as substrates. Efavirenz and its primary and secondary metabolites that were identified in vitro were quantified in plasma samples obtained from subjects taking a single 600-mg oral dose of efavirenz. 8,14-Dihydroxyefavirenz was detected and quantified in these plasma samples, suggesting that the glucuronide or the sulfate of 8-hydroxyefavirenz might undergo 14-hydroxylation in vivo. In conclusion, efavirenz metabolism is complex, involving unique and novel secondary metabolism. Although efavirenz 8-hydroxylation by CYP2B6 remains the major clearance mechanism of efavirenz, CYP2A6-mediated 7-hydroxylation (and to some extent 8-hydroxylation) may also contribute. Efavirenz may be a valuable dual phenotyping tool to study CYP2B6 and CYP2A6, and this should be further tested in vivo.

  • composite functional genetic and comedication CYP2D6 activity score in predicting tamoxifen drug exposure among breast cancer patients
    2010
    Co-Authors: S Borges, Zeruesenay Desta, Y Jin, Azzouz Faouzi, Jason D Robarge, Santosh Philip, Anne Nguyen, Vered Stearns, Daniel F Hayes, James M Rae
    Abstract:

    Accurate assessment of CYP2D6 phenotypes from genotype is inadequate in patients taking CYP2D6 substrate together with CYP2D6 inhibitors. A novel CYP2D6 scoring system is proposed that incorporates the impact of concomitant medications with the genotype in calculating the CYP2D6 activity score. Training (n = 159) and validation (n = 81) data sets were obtained from a prospective cohort tamoxifen pharmacogenetics registry. Two inhibitor factors were defined: 1 genotype independent and 1 genotype based. Three CYP2D6 gene scoring systems, and their combination with the inhibitor factors, were compared. These 3 scores were based on Zineh, Zanger, and Gaedigk's approaches. Endoxifen/NDM-Tam plasma ratio was used as the phenotype. The overall performance of the 3 gene scoring systems without consideration of CYP2D6-inhibiting medications in predicting CYP2D6 phenotype was poor in both the training set (R(2) = 0.24, 0.22, and 0.18) and the validation set (R(2) = 0.30, 0.24, and 0.15). Once the CYP2D6 genotype-independent inhibitor factor was integrated into the score calculation, the R(2) values in the training and validation data sets were nearly twice as high as the genotype-only scoring model: (0.44, 0.43, 0.38) and (0.53, 0.50, 0.41), respectively. The integration of the inhibitory effect of concomitant medications with the CYP2D6 genotype into the composite CYP2D6 activity score doubled the ability to predict the CYP2D6 phenotype. However, endoxifen phenotypes still varied substantially, even with incorporation of CYD2D6 genotype and inhibiting factors, suggesting that other, as yet unidentified factors must be involved in tamoxifen activation.

  • comprehensive in vitro analysis of voriconazole inhibition of eight cytochrome p450 cyp enzymes major effect on cyps 2b6 2c9 2c19 and 3a
    2009
    Co-Authors: Seong Wook Jeong, Phuong D Nguyen, Zeruesenay Desta
    Abstract:

    Voriconazole is an effective antifungal drug, but adverse drug-drug interactions associated with its use are of major clinical concern. To identify the mechanisms of these interactions, we tested the inhibitory potency of voriconazole with eight human cytochrome P450 (CYP) enzymes. Isoform-specific probes were incubated with human liver microsomes (HLMs) (or expressed CYPs) and cofactors in the absence and the presence of voriconazole. Preincubation experiments were performed to test mechanism-based inactivation. In pilot experiments, voriconazole showed inhibition of CYP2B6, CYP2C9, CYP2C19, and CYP3A (half-maximal [50%] inhibitory concentrations, <6 microM); its effect on CYP1A2, CYP2A6, CYP2C8, and CYP2D6 was marginal (<25% inhibition at 100 microM voriconazole). Further detailed experiments with HLMs showed that voriconazole is a potent competitive inhibitor of CYP2B6 (K(i) < 0.5), CYP2C9 (K(i) = 2.79 microM), and CYP2C19 (K(i) = 5.1 microM). The inhibition of CYP3A by voriconazole was explained by noncompetitive (K(i) = 2.97 microM) and competitive (K(i) = 0.66 microM) modes of inhibition. Prediction of the in vivo interaction of voriconazole from these in vitro data suggests that voriconazole would substantially increase the exposure of drugs metabolized by CYP2B6, CYP2C9, CYP2C19, and CYP3A. Clinicians should be aware of these interactions and monitor patients for adverse effects or failure of therapy.

Frank J Gonzalez - One of the best experts on this subject based on the ideXlab platform.

  • Human CYP2D6 in the Brain Is Protective Against Harmine-Induced Neurotoxicity: Evidence from Humanized CYP2D6 Transgenic Mice
    2020
    Co-Authors: Marlaina R. Stocco, Frank J Gonzalez, Cole Tolledo, Fariba Baghai Wadji, Sharon Miksys, Rachel F. Tyndale
    Abstract:

    CYP2D6 metabolically inactivates several neurotoxins, including beta-carbolines, which are implicated in neurodegenerative diseases. Variation in CYP2D6 within the brain may alter local inactivation of neurotoxic beta-carbolines, thereby influencing neurotoxicity. The beta-carboline harmine, which induces hypothermia and tremor, is metabolized by CYP2D6 to the non-hypothermic/non-tremorgenic harmol. Transgenic mice (TG), expressing human CYP2D6 in addition to their endogenous mouse CYP2D, experience less harmine-induced hypothermia and tremor compared with wild-type mice (WT). We first sought to elucidate the role of CYP2D in general within the brain in harmine-induced hypothermia and tremor severity. A 4-h intracerebroventricular (ICV) pretreatment with the CYP2D inhibitor propranolol increased harmine-induced hypothermia and tremor in TG and increased harmine-induced hypothermia in WT. We next sought to specifically demonstrate that human CYP2D6 expressed in TG brain altered harmine response severity. A 24-h ICV propranolol pretreatment, which selectively and irreversibly inhibits human CYP2D6 in TG brain, increased harmine-induced hypothermia. This 24-h pretreatment had no impact on harmine response in WT, as propranolol is not an irreversible inhibitor of mouse CYP2D in the brain, thus confirming no off-target effects of ICV propranolol pretreatment. Human CYP2D6 activity in TG brain was sufficient in vivo to mitigate harmine-induced neurotoxicity. These findings suggest that human CYP2D6 in the brain is protective against beta-carboline-induced neurotoxicity and that the extensive interindividual variability in CYP2D6 expression in human brain may contribute to variation in susceptibility to certain neurotoxin-associated neurodegenerative disorders.

  • Human CYP2D6 Is Functional in Brain In Vivo: Evidence from Humanized CYP2D6 Transgenic Mice
    2020
    Co-Authors: Cole Tolledo, Frank J Gonzalez, Marlaina R. Stocco, Sharon Miksys, Rachel F. Tyndale
    Abstract:

    CYP2D metabolizes many drugs that act within the brain, and variable expression of CYP2D in the brain may alter local drug and metabolite levels sufficiently to affect behavioral responses. Transgenic mice that express human CYP2D6 (TG) were compared to wild type mice (WT). Following selective inhibition of human CYP2D6 in TG brain, we demonstrated in vivo that human CYP2D6 in the brain was sufficient to alter a drug-induced behavioral response. After a 4-h pre-treatment with intracerebroventricular (i.c.v.) propranolol, CYP2D activity in vivo and in vitro was reduced in TG brain, whereas CYP2D activity in vivo, but not in vitro, was reduced in WT brain. After a 24-h pre-treatment with i.c.v. propranolol, CYP2D activity in vivo and in vitro was reduced in TG brain, whereas CYP2D activity in vivo and in vitro was not changed in WT brain. These results indicate that i.c.v. propranolol irreversibly inhibited human CYP2D6 in TG brain but not mouse CYP2D in TG and WT brain. Pre-treatments with propranolol did not change liver CYP2D activity in vivo or in vitro. Furthermore, 24-h pre-treatment with i.c.v. propranolol resulted in a significant decrease of the haloperidol-induced catalepsy response in TG, but not in WT, without changing serum haloperidol levels in either mouse line. These studies reveal a new tool to selectively and irreversibly inhibit human CYP2D6 in TG brain and indicate that human CYP2D6 has a functional role within the brain sufficient to impact the central nervous system response from peripherally administered drugs.

  • sex steroid hormones differentially regulate cyp2d in female wild type and CYP2D6 humanized mice
    2020
    Co-Authors: Maria Konstandi, Christina E Andriopoulou, Jie Cheng, Frank J Gonzalez
    Abstract:

    The CYP2D subfamily catalyses the metabolism of about 25% of prescribed drugs, including the majority of antidepressants and antipsychotics. At present, the mechanism of hepatic CYP2D regulation remains largely unknown. This study investigated the role of sex steroid hormones in CYP2D regulation. For this purpose, Cyp2d22 expression was assessed in the distinct phases of the estrous cycle of normocyclic C57BL/6J (WT) female mice. Cyp2d22 was also evaluated in ovariectomised WT and CYP2D6-humanized (hCYP2D6) mice that received hormonal supplementation with either 17β-estradiol (E2) and/or progesterone. Comparisons were also made to male mice. The data revealed that hepatic Cyp2d22 mRNA, protein and activity levels were higher at estrous compared to the other phases of the estrous cycle and that ovariectomy repressed Cyp2d22 expression in WT mice. Tamoxifen, an anti-estrogenic compound, also repressed hepatic Cyp2d22 via activation of GH/STAT5b and PI3k/AKT signaling pathways. Both hormones prevented the ovariectomy-mediated Cyp2d22 repression. In case of progesterone, this may be mediated by inhibition of the PI3k/AKT/FOX01 pathway. Notably, Cyp2d22 mRNA levels in WT males were similar to those in ovariectomised mice and were markedly lower compared to females at estrous, a differentiation potentially regulated by the GH/STAT5b pathway. Sex steroid hormone-related alterations in Cyp2d22 mRNA expression were highly correlated with Hnf1a mRNA. Interestingly, fluctuations in Cyp2d22 in hippocampus and cerebellum followed those in liver. In contrast to WT mice, ovariectomy induced hepatic CYP2D6 expression in hCYP2D6 mice, whereas E2 and/or progesterone prevented this induction. Apparently, sex steroid hormones display a significant gender- and species-specific role in the regulation of CYP2D.

  • propranolol is a mechanism based inhibitor of cyp2d and CYP2D6 in humanized CYP2D6 transgenic mice effects on activity and drug responses
    2020
    Co-Authors: Edgor Cole Tolledo, Frank J Gonzalez, Sharon Miksys, Rachel F. Tyndale
    Abstract:

    Background and purpose Genetics and drug interactions contribute to large interindividual variation in human CYP2D6 activity. Here, we have characterized propranolol inhibition of human and mouse CYP2D using transgenic (TG) mice, which express both mouse CYP2D and human CYP2D6, and wild-type (WT) mice. Our purpose was to develop a method for in vivo manipulation of CYP2D6 enzyme activity which could be used to investigate the role of CYP2D6 in drug-induced behaviours. Experimental approach Dextromethorphan metabolism to dextrorphan was used to measure CYP2D activity and to characterize propranolol inhibition in vitro and in vivo. Effects of propranolol pretreatment (24 hr) on serum levels of the CYP2D6 substrate haloperidol and haloperidol-induced catalepsy were also studied. Key results Dextrorphan formation velocity in vitro was threefold higher in liver microsomes of TG compared to WT mice. Propranolol acted as a mechanism-based inhibitor (MBI), inactivating CYP2D in liver microsomes from TG and WT mice, and humans. Pretreatment (24 hr) of TG and WT mice with 20 mg·kg-1 intraperitoneal propranolol reduced dextrorphan formation in vivo and by liver microsomes in vitro. Serum haloperidol levels and catalepsy were increased. Conclusions and implications Propranolol was a potent MBI of dextrorphan formation in liver microsomes from TG and WT mice, and humans. The inhibition parameters in TG overlapped with those in WT mice and in humans. Inhibition of CYP2D with propranolol in vivo in TG and WT mice altered drug responses, allowing further investigation of variations in CYP2D6 on drug interactions and drug responses.

  • human CYP2D6 and mouse cyp2ds organ distribution in a humanized mouse model
    2005
    Co-Authors: Sharon Miksys, Frank J Gonzalez, Connie Cheung, Rachel F. Tyndale
    Abstract:

    Polymorphic cytochrome P450 (P450) 2D6 (CYP2D6) metabolizes several classes of therapeutic drugs, endogenous neurochemicals, and toxins. A CYP2D6-humanized transgenic mouse line was previously developed to model CYP2D6-poor and -extensive metabolizer phenotypes. Human CYP2D6 was detected in the liver, kidney, and intestine of these animals. In this study, we investigated further the cellular expression and relative tissue levels of human CYP2D6 in these transgenic mice in liver, intestine, kidney, and brain. In addition, we compared this with the expression of mouse CYP2D enzymes in these organs. In humans, these organs are of interest with respect to P450-mediated drug metabolism, toxicity, and disease. The expression of human CYP2D6 and mouse CYP2D enzymes in humanized and wild-type mice was quantified by immunoblotting and detected at the cellular level by immunocytochemistry. The cell-specific expression of human CYP2D6 in liver, kidney, and intestine in humanized mice was similar to that reported in humans. The expression patterns of mouse CYP2D proteins were similar to those in humans in liver and kidney but substantially different in intestine. Human CYP2D6 was not detected in brain of transgenic mice. Mouse CYP2D proteins were detected in brain, allowing, for the first time, a direct comparison of CYP2D expression among mouse, rat, and human brain. This transgenic mouse model is useful for investigating CYP2D6-mediated metabolism in liver, kidney, and especially the intestine, where expression patterns demonstrated substantial species differences.

Hiroshi Yamazaki - One of the best experts on this subject based on the ideXlab platform.

  • comparison of p450 enzymes between cynomolgus monkeys and humans p450 identities protein contents kinetic parameters and potential for inhibitory profiles
    2013
    Co-Authors: Chie Emoto, Noriaki Yoda, Eiji Kashiyama, Kazuhide Iwasaki, Ken Umehara, Hiroshi Yamazaki
    Abstract:

    Cynomolgus monkeys are used to predict human pharmacokinetic and/or toxic profiles in the drug developmental stage. Cynomolgus P450s exhibit a high degree of identity (more than 90%) in both cDNA and amino acid sequences with corresponding human P450s. CYP3A protein predominantly exists in cynomolgus monkey liver microsomes, followed by CYP2A, CYP2C, CYP2B6, CYP2E1, and CYP2D. There are many similarities of metabolic properties in cytochrome P450s between cynomolgus monkeys and humans, but the species differences between cynomolgus monkey and human P450s are clearly present in substrate specificity and inhibitor selectivity. Diclofenac 4’-hydroxylation (DFOH) in monkey liver and intestinal microsomes shows much lower activities compared with those in human liver and intestinal microsomes. Sulfaphenazole strongly inhibits DFOH in human liver microsomes, but does not effectively inhibit DFOH in monkey liver and intestinal microsomes. Cynomolgus CYP2C19 exhibits higher activity for DFOH than cynomolgus CYP2C9 although this reaction is a marker reaction of human CYP2C9. On the other hand, cynomolgus CYP2C76 orthologue is not expressed in humans and shows 70-72% identity in amino acid sequences of human CYP2C subfamilies. Cynomolgus CYP2C76 metabolizes non-CYP2C substrates, 7-ethoxyresorufin (human CYP1A substrate) and bufuralol (human CYP2D6 substrate). In addition, cynomolgus CYP3A4 and CYP3A5 also exhibits wider substrate selectivity toward human CYP2D6 and CYP2E1 substrates. These enzymes may be responsible for species difference in drug metabolism between cynomolgus monkeys and humans. The comparative data presented here can be helpful for designing in vivo metabolic assays using cynomolgus monkeys in terms of substrate specificity and inhibitor selectivity.

  • cynomolgus monkey cyp2d44 newly identified in liver metabolizes bufuralol and dextromethorphan
    2010
    Co-Authors: Yasuhiro Uno, Shotaro Uehara, Sakae Kohara, Norie Murayama, Hiroshi Yamazaki
    Abstract:

    The cynomolgus monkey is used in drug metabolism studies, because of its evolutionary closeness to human, including cytochrome P450. Cynomolgus monkey CYP2D17, highly homologous to human CYP2D6, has been identified and characterized. Here, we report characterization of another CYP2D, CYP2D44, identified in cynomolgus monkey liver. The CYP2D44 cDNA contained an open reading frame of 497 amino acids sharing high sequence identity (87-93%) with other primate CYP2Ds. CYP2D44 mRNA was predominantly expressed in liver, similar to CYP2D17 mRNA. CYP2D17 and CYP2D44 form a gene cluster in the genome, similar to human CYP2Ds. Metabolic assays of the CYP2D17 and CYP2D44 proteins heterologously expressed in Escherichia coli indicated that CYP2D44 metabolized human CYP2D6 substrates, bufuralol and dextromethorphan (bufuralol 1'-hydroxylation and dextromethorphan O-demethylation) but to a lesser extent than CYP2D17. Kinetic analysis of dextromethorphan metabolism indicated that the apparent K(m) and V(max) of CYP2D17 and CYP2D44 catalyzed O-demethylation were similar, and, the V(max) values of CYP2D17 and CYP2D44 catalyzed N-demethylation (which human CYP2D6 catalyzes much less effectively) were similar, but the apparent K(m) of the CYP2D44 reaction was higher. Western blot analysis showed that CYP2D proteins were expressed in cynomolgus and rhesus monkey liver as well as in human and marmoset liver. Similar to CYP2D6, CYP2D44 copy number varied among the eight cynomolgus monkeys and four rhesus monkeys used in this study. These results indicated that CYP2D44, together with CYP2D17, had functional characteristics similar to those of human CYP2D6 but measurably differed in dextromethorphan N-demethylation, suggesting its importance for CYP2D-dependent drug metabolism in macaque.

  • roles of nadph p450 reductase and apo and holo cytochrome b5 on xenobiotic oxidations catalyzed by 12 recombinant human cytochrome p450s expressed in membranes of escherichia coli
    2002
    Co-Authors: Hiroshi Yamazaki, Tsutomu Shimada, Noriaki Shimada, Mami Nakamura, Tomoko Komatsu, Katsuhiro Ohyama, Naoya Hatanaka, Satoru Asahi, Peter F Guengerich, Miki Nakajima
    Abstract:

    Drug oxidation activities of 12 recombinant human cytochrome P450s (P450) coexpressed with human NADPH-P450 reductase (NPR) in bacterial membranes (P450/NPR membranes) were determined and compared with those of other recombinant systems and those of human liver microsomes. Addition of exogenous membrane-bound NPR to the P450/NPR membranes enhanced the catalytic activities of CYP2C8, CYP2C9, CYP2C19, CYP3A4, and CYP3A5. Enhancement of activities of CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2D6, and CYP2E1 in membranes was not observed after the addition of NPR (4 molar excess to each P450). Exogenous purified human cytochrome b5 (b5) further enhanced catalytic activities of CYP2A6, CYP2B6, CYP2C8, CYP2E1, CYP3A4, and CYP3A5/NPR membranes. Catalytic activities of CYP2C9 and CYP2C19 were enhanced by addition of b5 in reconstituted systems but not in the P450/NPR membranes. Apo b5 (devoid of heme) enhanced catalytic activities when added to both membrane and reconstituted systems, except for CYP2E1/NPR membranes and the reconstituted system containing purified CYP2E1 and NPR. Catalytic activities in P450/NPR membranes fortified with b5 were roughly similar to those measured with microsomes of insect cells coexpressing P450 with NPR (and b5) and/or human liver microsomes, based on equivalent P450 contents. These results suggest that interactions of P450 and NPR coexpressed in membranes or mixed in reconstituted systems appear to be different in some human CYP2 family enzymes, possibly due to a conformational role of b5. P450/NPR membrane systems containing b5 are useful models for prediction of the rates for liver microsomal P450-dependent drug oxidations.

  • inhibitory effects of amiodarone and its n deethylated metabolite on human cytochrome p450 activities prediction of in vivo drug interactions
    2000
    Co-Authors: Katsuhiro Ohyama, Hiroshi Yamazaki, Noriaki Shimada, Miki Nakajima, M Suzuki, Tsuyoshi Yokoi
    Abstract:

    Aims To predict the drug interactions of amiodarone and other drugs, the inhibitory effects and inactivation potential for human cytochrome P450 (CYP) enzymes by amiodarone and its N-dealkylated metabolite, desethylamiodarone were examined. Methods The inhibition or inactivation potency of amiodarone and desethylamiodarone for human CYP activities were investigated using microsomes from B-lymphoblastoid cell lines expressing CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4. The in vivo drug interactions of amiodarone and desethylamiodarone were predicted in vitro using the 1+Iu/Ki values. Results Amiodarone weakly inhibited CYP2C9, CYP2D6, and CYP3A4-mediated activities with Ki values of 45.1–271.6 μm. Desethylamiodarone competitively inhibited the catalytic activities of CYP2D6 (Ki=4.5 μm ) and noncompetitively inhibited CYP2A6 (Ki=13.5 μm ), CYP2B6 (Ki=5.4 μm ), and CYP3A4 (Ki=12.1 μm ). The catalytic activities of CYP1A1 (Ki=1.5 μm, α=5.7), CYP1A2 (Ki=18.8 μm, α=2.6), CYP2C9 (Ki=2.3 μm, α=5.9), and CYP2C19 (Ki=15.7 μm, α=4.5) were inhibited by desethylamiodarone with mixed type. The 1+Iu/Ki values of desethylamiodarone were higher than those of amiodarone. Amiodarone inactivated CYP3A4, while desethylamiodarone inactivated CYP1A1, CYP1A2, CYP2B6, and CYP2D6. Conclusions The interactions between amiodarone and other drugs might occur via the inhibition of CYP activities by its N-dealkylated metabolite, desethylamiodarone, rather than by amiodarone itself. In addition, the inactivation of CYPs by desethylamiodarone as well as by amiodarone would also contribute to the drug interactions.

  • roles of cyp2a6 and cyp2b6 in nicotine c oxidation by human liver microsomes
    1999
    Co-Authors: Hiroshi Yamazaki, Kiyoshi Inoue, Masafumi Hashimoto, Tsutomu Shimada
    Abstract:

    Nicotine C-oxidation by recombinant human cytochrome P450 (P450 or CYP) enzymes and by human liver microsomes was investigated using a convenient high-performance liquid chromatographic method. Experiments with recombinant human P450 enzymes in baculovirus systems, which co-express human nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH)-P450 reductase, revealed that CYP2A6 had the highest nicotine C-oxidation activities followed by CYP2B6 and CYP2D6; the K m values by these three P450 enzymes were determined to be 11.0, 105, and 132 μM, respectively, and the V max values to be 11.0, 8.2, and 8.6 nmol/min per nmol P450, respectively. CYP2E1, 2C19, 1A2, 2C8, 3A4, 2C9, and 1A1 catalysed nicotine C-oxidation only at high (500 μM) substrate concentration. CYP1B1, 2C18, 3A5, and 4A11 had no measurable activities even at 500 μM nicotine. In liver microsomes of 16 human samples, nicotine C-oxidation activities were correlated with CYP2A6 contents at 10 μM substrate concentration, whereas such correlation coefficients were decreased when the substrate concentration was increased to 500 μM. Contribution of CYP2B6 (as well as CYP2A6) was demonstrated by experiments with the effects of orphenadrine (and also coumarin and anti-CYP2A6) on the nicotine C-oxidation activities by human liver microsomes at 500 μM nicotine. CYP2D6 was found to have minor roles since quinidine did not inhibit microsomal nicotine C-oxidation at both 10 and 500 μM substrate concentrations. These results support the view that CYP2A6 has major roles for nicotine C-oxidation at lower substrate concentration and both CYP2A6 and 2B6 play roles at higher substrate concentrations in human liver microsomes.

Magnus Ingelmansundberg - One of the best experts on this subject based on the ideXlab platform.

  • cyp2b6 and cyp2c19 as the major enzymes responsible for the metabolism of selegiline a drug used in the treatment of parkinson s disease as revealed from experiments with recombinant enzymes
    2001
    Co-Authors: Mats Hidestrand, Olavi Pelkonen, Leena Nyman, Mikael Oscarson, Jarmo S Salonen, Miia Turpeinen, Magnus Ingelmansundberg
    Abstract:

    In view of conflicting data in the literature regarding the enzyme(s) responsible for metabolism of selegiline, a drug used in the treatment of Parkinson's disease, investigations were carried out in vitro using the human cytochrome P450 enzymes CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 recombinantly expressed in yeast to elucidate the enzyme specificity in selegiline metabolism. In the yeast microsomes used, desmethylselegiline and levomethamphetamine were formed from selegiline at significant rates. The highest contribution to the hepatic clearance of selegiline was calculated to be exerted by CYP2B6 (124 l/h) CYP2C19 (82 l/h), whereas CYP3A4 (27 l/h) and CYP1A2 (21 l/h) were of less importance. Antibodies against CYP2B6 inhibited metabolism of selegiline in microsomes containing CYP2B6 but not in microsomes without significant amounts of the enzyme. In contrast to previous reports, we could not find any role for CYP2D6 in the metabolism of selegiline. The data strongly indicate that the high extent of interindividual variation seen in vivo for selegiline clearance is caused by the metabolism of the compound by the highly polymorphic CYP2B6 and CYP2C19.

  • phenotype and genotype analysis of debrisoquine hydroxylase CYP2D6 in a black zimbabwean population reduced enzyme activity and evaluation of metabolic correlation of CYP2D6 probe drugs
    1996
    Co-Authors: Collen Masimirembwa, Inger Johansson, Julia A Hasler, L Bertilssons, O Ekberg, Magnus Ingelmansundberg
    Abstract:

    Objective: Debrisoquine hydroxylase (CYP2D6) is responsible for the oxidative metabolism of many clinically used drugs. Since this enzyme has been poorly studied in the southern part of Africa, we examined the CYP2D6 phenotypes and genotypes in 103 unrelated black Zimbabweans. Methods: Phenotyping for CYP2D6 activity was done using debrisoquine and metoprolol as probe drugs by measuring the urinary metabolic ratio (MR) of parent drug to metabolite concentration ratios. Genotyping was done using polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP), single-strand conformation polymorphism (SSCP) and sequencing analyses with respect to CYP2D6 variants of interest. Results and conclusion: Phenotyping with debrisoquine revealed two poor metabolisers (PMs), whereas 5 subjects out of 94 were PMs using metoprolol as probe drug. Genotypes predictive of the poor metaboliser status were observed for the two subjects who were PMs with both probe drugs, whereas no mutations could explain the PM phenotype for metoprolol among the three remaining subjects, a fact possibly explained by lack of compliance in metoprolol intake. There was a moderate correlation of 0.67 between the debrisoquine and metoprolol metabolic ratios in the 89 subjects who were extensive metabolisers for both probe drugs. The median values for the metabolic ratios for debrisoquine and metoprolol as probe drugs were 1.00 and 1.35, respectively, which are higher than those observed in Caucasian populations. This is indicative of a decreased capacity for metabolism of CYP2D6 substrates by Zimbabweans compared to Caucasians. Evaluation of the DNA samples for the known allelic variants CYP2D6A, CYP2D6B, CYP2D6C,CYP2D6D or CYP2D6Ch 1 yielded no explanation for these results.

  • ultrarapid hydroxylation of debrisoquine in a swedish population analysis of the molecular genetic basis
    1995
    Co-Authors: Marja-liisa Dahl, Leif Bertilsson, Inger Johansson, Magnus Ingelmansundberg, Folke Sjöqvist
    Abstract:

    Hydroxylation of debrisoquine, catalyzed by the cytochrome P450 CYP2D6 exhibits genetic polymorphism, with large inter-individual differences in metabolic capacity. About 7% of Caucasians carry deficient CYP2D6 alleles and lack the CYP2D6 enzyme (poor metabolizers). We have shown in two Swedish families, individuals carrying duplicated or amplified functional CYP2D6L-genes (CYP2D6L2), causing the opposite phenomenon, ultrarapid metabolism of debrisoquine. In the present study, the occurrence of extra copies of CYP2D6L-alleles was studied in relation to debrisoquine metabolic ratio (MR) in 270 Swedish Caucasians including 64 selected subjects with very rapid metabolism (MR < or = 0.2). Thirteen of the 64 subjects carried a duplicated CYP2D6-gene as identified by EcoRI and XbaI restriction fragment length polymorphism and allele-specific polymerase chain reaction-amplification of genomic DNA. A new allele with three active CYP2D6L-genes was identified, characterized by an XbaI 54 kilobase fragment. This indicates a preference of the CYP2D6L-gene to be amplified compared to other CYP2D6 genes. Only one subject with an MR higher than 0.2 carried the duplicated CYP2D6L-allele, also being heterozygous for the defect CYP2D6B-allele. The overall frequency of the duplicated/amplified CYP2D6-allele was about 1%, and was present in 40% of subjects with MRs < or = 0.1. Thus, other variant CYP2D6-genes may exist that cause increased CYP2D6 activity. In conclusion, a haplotype with duplicated or amplified functional CYP2D6 genes predicts, with high accuracy, ultrarapid metabolism of debrisoquine. Genotyping for this CYP2D locus variant might be of value in patients not responding to generally recommended doses of CYP2D6 substrates, to distinguish between high metabolic capacity and noncompliance.

  • inherited amplification of an active gene in the cytochrome p450 cyp2d locus as a cause of ultrarapid metabolism of debrisoquine
    1993
    Co-Authors: Inger Johansson, Marja-liisa Dahl, Leif Bertilsson, Folke Sjöqvist, Eva Lundqvist, Magnus Ingelmansundberg
    Abstract:

    Deficient hydroxylation of debrisoquine is an autosomal recessive trait that affects approximately 7% of the Caucasian population. These individuals (poor metabolizers) carry deficient CYP2D6 gene variants and have an impaired metabolism of severely commonly used drugs. The opposite phenomenon also exists, and certain individuals metabolize the drugs very rapidly, resulting in subtherapeutic plasma concentrations at normal doses. In the present study, we have investigated the molecular genetic basis for ultrarapid metabolism of debrisoquine. Restriction fragment length polymorphism analysis of the CYP2D locus in two families with very rapid metabolism of debrisoquine [metabolic ratio (MR) for debrisoquine = 0.01-0.1] revealed the variant CYP2D6 gene CYP2D6L. Eco RI RFLP and Xba I pulsed-field gel electrophoresis analyses showed that this gene had been amplified 12-fold in three members (father and his two children) of one of the families, and two copies were present among members of the other family. The CYP2D6L gene had an open reading frame and carried two mutations causing amino acid substitutions: one in exon 6, yielding an Arg-296-->Cys exchange and one in exon 9 causing Ser-486-->Thr. The MR of subjects carrying one copy of the CYP2D6L gene did not significantly differ from that of those with the wild-type gene, indicating that the structural alterations were not of importance of the catalytic properties of the gene product. Examination of the MR among subjects carrying wild-type CYP2D6, CYP2D6L, or deficient alleles revealed a relationship between the number of active genes and MR. The data show the principle of inherited amplification of an active gene. Furthermore, the finding of a specific haplotype with two or more active CYP2D6 genes allows genotyping for ultrarapid drug metabolizers. This genotyping could be of predictive value for individualized and more efficient drug therapy.

  • analysis of the CYP2D6 gene in relation to debrisoquin and desipramine hydroxylation in a swedish population
    1992
    Co-Authors: Marja-liisa Dahl, Inger Johansson, Magnus Ingelmansundberg, Margareta Porsmyr Palmertz, Folke Sjöqvist
    Abstract:

    The molecular basis of polymorphic debrisoquin hydroxylation was studied in 223 Swedish white subjects, 187 extensive metabolizers and 36 poor metabolizers phenotyped with debrisoquin and desipramine. Restriction fragment length polymorphism (RFLP) analysis of the CYP2D6 gene revealed that 52% of unrelated poor metabolizers were homozygous for Xba I 29 kb fragment, and only 8% had two mutant alleles detected with RFLP. Alkie-specific polymerase chain reaction (PCR)?based DNA amplification, however, revealed that all but one of the poor metabolizers had two mutant alleles of the CYP2D6A or CYP2D6B type or both. Extensive metabolizers who were heterozygous for wild-type and CYP2D6B genes had metabolic ratios for debrisoquin and desipramine that were higher than those of subjects who were homozygous for the wild-type gene. The 16 + 9 kb Xba I RFLP pattern was associated with the poor metabolizer phenotype and CYP2D6B mutations. Three extremely rapid metabolizers of debrisoquin had a 44 kb Xba I fragment that did not carry either CYP2D6A or CYP2D6B mutations. In conclusion, in the Swedish population studied, allele-specific PCR amplification allowed prediction of the debrisoquin hydroxylation phenotype with 99% accuracy. Clinical Pharmacology and Therapeutics (1992) 51, 12–17; doi:10.1038/clpt.1992.2