Deciduous Tooth

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 5157 Experts worldwide ranked by ideXlab platform

Minoru Ueda - One of the best experts on this subject based on the ideXlab platform.

  • stem cells from human exfoliated Deciduous Tooth derived conditioned medium enhance recovery of focal cerebral ischemia in rats
    Tissue Engineering Part A, 2013
    Co-Authors: Takanori Inoue, Masahiko Sugiyama, Hisashi Hattori, Hideaki Wakita, Toshihiko Wakabayashi, Minoru Ueda
    Abstract:

    Regenerative therapy using stem cells is a promising approach for the treatment of stroke. Recently, we reported that dental pulp stem cells (DPSC) ameliorated ischemic tissue injury in the rat brain and accelerated functional recovery after middle cerebral artery occlusion (MCAO). In this study, we investigated the effects of stem cells from human exfoliated Deciduous Tooth (SHED)-derived conditioned medium (SHED-CM) on permanent MCAO (pMCAO). Adult male Sprague-Dawley rats were subjected to pMCAO. SHED-CM were then administered intranasally, and the motor function and infarct volume were evaluated. Neurogenesis and vasculogenesis were determined using immunochemical markers. The SHED-CM group had more positive signals than the Dulbecco's modified Eagle's medium group, with doublecortin (DCX), neurofilament H, neuronal nuclei, and rat endothelial cell antigen observed in the peri-infarct area. Migration of neuronal progenitor cells (NPC) with DCX from the subventricular zone to the peri-infarct area was observed on days 6 and 16, with migration on day 6 being the most prominent. In conclusion, SHED-CM promoted the migration and differentiation of endogenous NPC, induced vasculogenesis, and ameliorated ischemic brain injury after pMCAO as well as transplantation of DPSC.

  • a feasibility of useful cell based therapy by bone regeneration with Deciduous Tooth stem cells dental pulp stem cells or bone marrow derived mesenchymal stem cells for clinical study using tissue engineering technology
    Tissue Engineering Part A, 2010
    Co-Authors: Yoichi Yamada, Sayaka Nakamura, Takayuki Sugito, Ryoko Yoshimi, Tetsuro Nagasaka, Minoru Ueda
    Abstract:

    This study investigated the effect of bone regeneration with dental pulp stem cells (DPSCs), Deciduous Tooth stem cells (DTSCs), or bone-marrow-derived mesenchymal stem cells (BMMSCs) for clinical study on hydroxyapatite-coated osseointegrated dental implants, using tissue engineering technology. In vitro, human DPSCs and DTSCs expressed STRO-1, CD13, CD29, CD 44, CD73, and osteogenic marker genes such as alkaline phosphatase, Runx2, and osteocalcin. In vivo, prepared bone defect model was implanted using graft materials as follows: platelet-rich plasma (PRP), PRP and canine BMMSCs (cBMMSCs), PRP and canine DPSCs (cDPSCs), PRP and puppy DTSCs (pDTSCs), and control (defect only). After 8 weeks, the dental implants were installed, and 16 weeks later the sections were evaluated histologically and histometrically. The cBMMSCs/PRP, cDPSCs/PRP, and pDTSCs/PRP groups had well-formed mature bone and neovascularization. Histometrically, the bone–implant contact was significantly different between the cBMMSCs/PRP, ...

  • a feasibility of useful cell based therapy by bone regeneration with Deciduous Tooth stem cells dental pulp stem cells or bone marrow derived mesenchymal stem cells for clinical study using tissue engineering technology
    Tissue Engineering Part A, 2010
    Co-Authors: Yoichi M A Yamada, Sayaka Nakamura, Takayuki Sugito, Ryoko Yoshimi, Tetsuro Nagasaka, Kenji Ito, Minoru Ueda
    Abstract:

    This study investigated the effect of bone regeneration with dental pulp stem cells (DPSCs), Deciduous Tooth stem cells (DTSCs), or bone-marrow-derived mesenchymal stem cells (BMMSCs) for clinical study on hydroxyapatite-coated osseointegrated dental implants, using tissue engineering technology. In vitro, human DPSCs and DTSCs expressed STRO-1, CD13, CD29, CD 44, CD73, and osteogenic marker genes such as alkaline phosphatase, Runx2, and osteocalcin. In vivo, prepared bone defect model was implanted using graft materials as follows: platelet-rich plasma (PRP), PRP and canine BMMSCs (cBMMSCs), PRP and canine DPSCs (cDPSCs), PRP and puppy DTSCs (pDTSCs), and control (defect only). After 8 weeks, the dental implants were installed, and 16 weeks later the sections were evaluated histologically and histometrically. The cBMMSCs/PRP, cDPSCs/PRP, and pDTSCs/PRP groups had well-formed mature bone and neovascularization. Histometrically, the bone-implant contact was significantly different between the cBMMSCs/PRP, cDPSCs/PRP, pDTSCs/PRP groups, and the control and PRP groups (p < 0.01). These results demonstrated that these stem cells with PRP have the ability to form bone, and this bone formation activity might be useful for osseointegrated hydroxyapatite-coated dental implants with good levels of bone-implant contact.

Songtao Shi - One of the best experts on this subject based on the ideXlab platform.

  • stem cells from Deciduous Tooth repair mandibular defect in swine
    Journal of Dental Research, 2009
    Co-Authors: Yuxin Zheng, Y Liu, C M Zhang, H Y Zhang, Songtao Shi, Songlin Wang
    Abstract:

    Stem cells from human exfoliated Deciduous teeth have been identified as a new post-natal stem cell population with multipotential differentiation capabilities, including regeneration of mineralized tissues in vivo. To examine the efficacy of utilizing these stem cells in regenerating orofacial bone defects, we isolated stem cells from miniature pig Deciduous teeth and engrafted the critical-size bone defects generated in swine mandible models. Our results indicated that stem cells from miniature pig Deciduous teeth, an autologous and easily accessible stem cell source, were able to engraft and regenerate bone to repair critical-size mandibular defects at 6 months post-surgical reconstruction. This pre-clinical study in a large-animal model, specifically swine, allows for testing of a stem cells/scaffold construct in the restoration of orofacial skeletal defects and provides rapid translation of stem-cell-based therapy in orofacial reconstruction in human clinical trials.

  • shed stem cells from human exfoliated Deciduous teeth
    Proceedings of the National Academy of Sciences of the United States of America, 2003
    Co-Authors: Masako Miura, Sta Gronthos, Mingrui Zhao, Larry W Fishe, Pamela Gehro Robey, Songtao Shi
    Abstract:

    To isolate high-quality human postnatal stem cells from accessible resources is an important goal for stem-cell research. In this study we found that exfoliated human Deciduous Tooth contains multipotent stem cells [stem cells from human exfoliated Deciduous teeth (SHED)]. SHED were identified to be a population of highly proliferative, clonogenic cells capable of differentiating into a variety of cell types including neural cells, adipocytes, and odontoblasts. After in vivo transplantation, SHED were found to be able to induce bone formation, generate dentin, and survive in mouse brain along with expression of neural markers. Here we show that a naturally exfoliated human organ contains a population of stem cells that are completely different from previously identified stem cells. SHED are not only derived from a very accessible tissue resource but are also capable of providing enough cells for potential clinical application. Thus, exfoliated teeth may be an unexpected unique resource for stem-cell therapies including autologous stem-cell transplantation and tissue engineering.

Yoko Iwase - One of the best experts on this subject based on the ideXlab platform.

  • rna analysis based on a small number of manually isolated fixed cells rna snmifxc to profile stem cells from human Deciduous Tooth derived dental pulp cells
    Biological Procedures Online, 2021
    Co-Authors: Emi Inada, Issei Saitoh, Yoko Iwase, Hirofumi Noguchi, Naoko Kubota, Yuki Kiyokawa, Youichi Yamasaki, Masahiro Sato
    Abstract:

    Expression of stemness factors, such as octamer-binding transcription factor 3/4 (OCT3/4), sex determining region Y-box 2 (SOX2), and alkaline phosphatase (ALP) in human Deciduous Tooth-derived dental pulp cells (HDDPCs) can be assessed through fixation and subsequent immuno- or cytochemical staining. Fluorescence-activated cell sorting (FACS), a powerful system to collect cells of interest, is limited by the instrument cost and difficulty in handling. Magnetic-activated cell sorting is inexpensive compared to FACS, but is confined to cells with surface expression of the target molecule. In this study, a simple and inexpensive method was developed for the molecular analysis of immuno- or cytochemically stained cells with intracellular expression of a target molecule, through isolation of a few cells under a dissecting microscope using a mouthpiece-controlled micropipette. Two or more colored cells (~ 10), after staining with a chromogen such a 3,3′-diaminobenzidine, were successfully segregated from unstained cells. Expression of glyceraldehyde 3-phosphate dehydrogenase, a housekeeping gene, was discernible in all samples, while the expression of stemness genes (such as OCT3/4, SOX2, and ALP) was confined to positively stained cells. These findings indicate the fidelity of these approaches in profiling cells exhibiting cytoplasmic or nuclear localization of stemness-specific gene products at a small-scale.

  • RNA analysis based on a small number of manually isolated fixed cells (RNA-snMIFxC) to profile stem cells from human Deciduous Tooth-derived dental pulp cells
    'Springer Science and Business Media LLC', 2021
    Co-Authors: Emi Inada, Issei Saitoh, Yoko Iwase, Hirofumi Noguchi, Naoko Kubota, Yuki Kiyokawa, Youichi Yamasaki, Masahiro Sato
    Abstract:

    Abstract Background Expression of stemness factors, such as octamer-binding transcription factor 3/4 (OCT3/4), sex determining region Y-box 2 (SOX2), and alkaline phosphatase (ALP) in human Deciduous Tooth-derived dental pulp cells (HDDPCs) can be assessed through fixation and subsequent immuno- or cytochemical staining. Fluorescence-activated cell sorting (FACS), a powerful system to collect cells of interest, is limited by the instrument cost and difficulty in handling. Magnetic-activated cell sorting is inexpensive compared to FACS, but is confined to cells with surface expression of the target molecule. In this study, a simple and inexpensive method was developed for the molecular analysis of immuno- or cytochemically stained cells with intracellular expression of a target molecule, through isolation of a few cells under a dissecting microscope using a mouthpiece-controlled micropipette. Results Two or more colored cells (~ 10), after staining with a chromogen such a 3,3′-diaminobenzidine, were successfully segregated from unstained cells. Expression of glyceraldehyde 3-phosphate dehydrogenase, a housekeeping gene, was discernible in all samples, while the expression of stemness genes (such as OCT3/4, SOX2, and ALP) was confined to positively stained cells. Conclusion These findings indicate the fidelity of these approaches in profiling cells exhibiting cytoplasmic or nuclear localization of stemness-specific gene products at a small-scale

  • Repeated human Deciduous Tooth-derived dental pulp cell reprogramming factor transfection yields multipotent intermediate cells with enhanced iPS cell formation capability
    Scientific reports, 2019
    Co-Authors: Miki Soda, Issei Saitoh, Tomoya Murakami, Emi Inada, Yoko Iwase, Hirofumi Noguchi, Shinji Shibasaki, Mie Kurosawa, Tadashi Sawami, Miho Terunuma
    Abstract:

    Human tissue-specific stem cells (hTSCs), found throughout the body, can differentiate into several lineages under appropriate conditions in vitro and in vivo. By transfecting terminally differentiated cells with reprogramming factors, we previously produced induced TSCs from the pancreas and hepatocytes that exhibit additional properties than iPSCs, as exemplified by very low tumour formation after xenogenic transplantation. We hypothesised that hTSCs, being partially reprogrammed in a state just prior to iPSC transition, could be isolated from any terminally differentiated cell type through transient reprogramming factor overexpression. Cytochemical staining of human Deciduous Tooth-derived dental pulp cells (HDDPCs) and human skin-derived fibroblasts following transfection with Yamanaka’s factors demonstrated increased ALP activity, a stem cell marker, three weeks after transfection albeit in a small percentage of clones. Repeated transfections (≤3) led to more efficient iPSC generation, with HDDPCs exhibiting greater multipotentiality at two weeks post-transfection than the parental intact HDDPCs. These results indicated the utility of iPSC technology to isolate TSCs from HDDPCs and fibroblasts. Generally, a step-wise loss of pluripotential phenotypes in ESCs/iPSCs occurs during their differentiation process. Our present findings suggest that the reverse phenomenon can also occur upon repeated introduction of reprogramming factors into differentiated cells such as HDDPCs and fibroblasts.

Issei Saitoh - One of the best experts on this subject based on the ideXlab platform.

  • rna analysis based on a small number of manually isolated fixed cells rna snmifxc to profile stem cells from human Deciduous Tooth derived dental pulp cells
    Biological Procedures Online, 2021
    Co-Authors: Emi Inada, Issei Saitoh, Yoko Iwase, Hirofumi Noguchi, Naoko Kubota, Yuki Kiyokawa, Youichi Yamasaki, Masahiro Sato
    Abstract:

    Expression of stemness factors, such as octamer-binding transcription factor 3/4 (OCT3/4), sex determining region Y-box 2 (SOX2), and alkaline phosphatase (ALP) in human Deciduous Tooth-derived dental pulp cells (HDDPCs) can be assessed through fixation and subsequent immuno- or cytochemical staining. Fluorescence-activated cell sorting (FACS), a powerful system to collect cells of interest, is limited by the instrument cost and difficulty in handling. Magnetic-activated cell sorting is inexpensive compared to FACS, but is confined to cells with surface expression of the target molecule. In this study, a simple and inexpensive method was developed for the molecular analysis of immuno- or cytochemically stained cells with intracellular expression of a target molecule, through isolation of a few cells under a dissecting microscope using a mouthpiece-controlled micropipette. Two or more colored cells (~ 10), after staining with a chromogen such a 3,3′-diaminobenzidine, were successfully segregated from unstained cells. Expression of glyceraldehyde 3-phosphate dehydrogenase, a housekeeping gene, was discernible in all samples, while the expression of stemness genes (such as OCT3/4, SOX2, and ALP) was confined to positively stained cells. These findings indicate the fidelity of these approaches in profiling cells exhibiting cytoplasmic or nuclear localization of stemness-specific gene products at a small-scale.

  • RNA analysis based on a small number of manually isolated fixed cells (RNA-snMIFxC) to profile stem cells from human Deciduous Tooth-derived dental pulp cells
    'Springer Science and Business Media LLC', 2021
    Co-Authors: Emi Inada, Issei Saitoh, Yoko Iwase, Hirofumi Noguchi, Naoko Kubota, Yuki Kiyokawa, Youichi Yamasaki, Masahiro Sato
    Abstract:

    Abstract Background Expression of stemness factors, such as octamer-binding transcription factor 3/4 (OCT3/4), sex determining region Y-box 2 (SOX2), and alkaline phosphatase (ALP) in human Deciduous Tooth-derived dental pulp cells (HDDPCs) can be assessed through fixation and subsequent immuno- or cytochemical staining. Fluorescence-activated cell sorting (FACS), a powerful system to collect cells of interest, is limited by the instrument cost and difficulty in handling. Magnetic-activated cell sorting is inexpensive compared to FACS, but is confined to cells with surface expression of the target molecule. In this study, a simple and inexpensive method was developed for the molecular analysis of immuno- or cytochemically stained cells with intracellular expression of a target molecule, through isolation of a few cells under a dissecting microscope using a mouthpiece-controlled micropipette. Results Two or more colored cells (~ 10), after staining with a chromogen such a 3,3′-diaminobenzidine, were successfully segregated from unstained cells. Expression of glyceraldehyde 3-phosphate dehydrogenase, a housekeeping gene, was discernible in all samples, while the expression of stemness genes (such as OCT3/4, SOX2, and ALP) was confined to positively stained cells. Conclusion These findings indicate the fidelity of these approaches in profiling cells exhibiting cytoplasmic or nuclear localization of stemness-specific gene products at a small-scale

  • Repeated human Deciduous Tooth-derived dental pulp cell reprogramming factor transfection yields multipotent intermediate cells with enhanced iPS cell formation capability
    Scientific reports, 2019
    Co-Authors: Miki Soda, Issei Saitoh, Tomoya Murakami, Emi Inada, Yoko Iwase, Hirofumi Noguchi, Shinji Shibasaki, Mie Kurosawa, Tadashi Sawami, Miho Terunuma
    Abstract:

    Human tissue-specific stem cells (hTSCs), found throughout the body, can differentiate into several lineages under appropriate conditions in vitro and in vivo. By transfecting terminally differentiated cells with reprogramming factors, we previously produced induced TSCs from the pancreas and hepatocytes that exhibit additional properties than iPSCs, as exemplified by very low tumour formation after xenogenic transplantation. We hypothesised that hTSCs, being partially reprogrammed in a state just prior to iPSC transition, could be isolated from any terminally differentiated cell type through transient reprogramming factor overexpression. Cytochemical staining of human Deciduous Tooth-derived dental pulp cells (HDDPCs) and human skin-derived fibroblasts following transfection with Yamanaka’s factors demonstrated increased ALP activity, a stem cell marker, three weeks after transfection albeit in a small percentage of clones. Repeated transfections (≤3) led to more efficient iPSC generation, with HDDPCs exhibiting greater multipotentiality at two weeks post-transfection than the parental intact HDDPCs. These results indicated the utility of iPSC technology to isolate TSCs from HDDPCs and fibroblasts. Generally, a step-wise loss of pluripotential phenotypes in ESCs/iPSCs occurs during their differentiation process. Our present findings suggest that the reverse phenomenon can also occur upon repeated introduction of reprogramming factors into differentiated cells such as HDDPCs and fibroblasts.

Emi Inada - One of the best experts on this subject based on the ideXlab platform.

  • rna analysis based on a small number of manually isolated fixed cells rna snmifxc to profile stem cells from human Deciduous Tooth derived dental pulp cells
    Biological Procedures Online, 2021
    Co-Authors: Emi Inada, Issei Saitoh, Yoko Iwase, Hirofumi Noguchi, Naoko Kubota, Yuki Kiyokawa, Youichi Yamasaki, Masahiro Sato
    Abstract:

    Expression of stemness factors, such as octamer-binding transcription factor 3/4 (OCT3/4), sex determining region Y-box 2 (SOX2), and alkaline phosphatase (ALP) in human Deciduous Tooth-derived dental pulp cells (HDDPCs) can be assessed through fixation and subsequent immuno- or cytochemical staining. Fluorescence-activated cell sorting (FACS), a powerful system to collect cells of interest, is limited by the instrument cost and difficulty in handling. Magnetic-activated cell sorting is inexpensive compared to FACS, but is confined to cells with surface expression of the target molecule. In this study, a simple and inexpensive method was developed for the molecular analysis of immuno- or cytochemically stained cells with intracellular expression of a target molecule, through isolation of a few cells under a dissecting microscope using a mouthpiece-controlled micropipette. Two or more colored cells (~ 10), after staining with a chromogen such a 3,3′-diaminobenzidine, were successfully segregated from unstained cells. Expression of glyceraldehyde 3-phosphate dehydrogenase, a housekeeping gene, was discernible in all samples, while the expression of stemness genes (such as OCT3/4, SOX2, and ALP) was confined to positively stained cells. These findings indicate the fidelity of these approaches in profiling cells exhibiting cytoplasmic or nuclear localization of stemness-specific gene products at a small-scale.

  • RNA analysis based on a small number of manually isolated fixed cells (RNA-snMIFxC) to profile stem cells from human Deciduous Tooth-derived dental pulp cells
    'Springer Science and Business Media LLC', 2021
    Co-Authors: Emi Inada, Issei Saitoh, Yoko Iwase, Hirofumi Noguchi, Naoko Kubota, Yuki Kiyokawa, Youichi Yamasaki, Masahiro Sato
    Abstract:

    Abstract Background Expression of stemness factors, such as octamer-binding transcription factor 3/4 (OCT3/4), sex determining region Y-box 2 (SOX2), and alkaline phosphatase (ALP) in human Deciduous Tooth-derived dental pulp cells (HDDPCs) can be assessed through fixation and subsequent immuno- or cytochemical staining. Fluorescence-activated cell sorting (FACS), a powerful system to collect cells of interest, is limited by the instrument cost and difficulty in handling. Magnetic-activated cell sorting is inexpensive compared to FACS, but is confined to cells with surface expression of the target molecule. In this study, a simple and inexpensive method was developed for the molecular analysis of immuno- or cytochemically stained cells with intracellular expression of a target molecule, through isolation of a few cells under a dissecting microscope using a mouthpiece-controlled micropipette. Results Two or more colored cells (~ 10), after staining with a chromogen such a 3,3′-diaminobenzidine, were successfully segregated from unstained cells. Expression of glyceraldehyde 3-phosphate dehydrogenase, a housekeeping gene, was discernible in all samples, while the expression of stemness genes (such as OCT3/4, SOX2, and ALP) was confined to positively stained cells. Conclusion These findings indicate the fidelity of these approaches in profiling cells exhibiting cytoplasmic or nuclear localization of stemness-specific gene products at a small-scale

  • Repeated human Deciduous Tooth-derived dental pulp cell reprogramming factor transfection yields multipotent intermediate cells with enhanced iPS cell formation capability
    Scientific reports, 2019
    Co-Authors: Miki Soda, Issei Saitoh, Tomoya Murakami, Emi Inada, Yoko Iwase, Hirofumi Noguchi, Shinji Shibasaki, Mie Kurosawa, Tadashi Sawami, Miho Terunuma
    Abstract:

    Human tissue-specific stem cells (hTSCs), found throughout the body, can differentiate into several lineages under appropriate conditions in vitro and in vivo. By transfecting terminally differentiated cells with reprogramming factors, we previously produced induced TSCs from the pancreas and hepatocytes that exhibit additional properties than iPSCs, as exemplified by very low tumour formation after xenogenic transplantation. We hypothesised that hTSCs, being partially reprogrammed in a state just prior to iPSC transition, could be isolated from any terminally differentiated cell type through transient reprogramming factor overexpression. Cytochemical staining of human Deciduous Tooth-derived dental pulp cells (HDDPCs) and human skin-derived fibroblasts following transfection with Yamanaka’s factors demonstrated increased ALP activity, a stem cell marker, three weeks after transfection albeit in a small percentage of clones. Repeated transfections (≤3) led to more efficient iPSC generation, with HDDPCs exhibiting greater multipotentiality at two weeks post-transfection than the parental intact HDDPCs. These results indicated the utility of iPSC technology to isolate TSCs from HDDPCs and fibroblasts. Generally, a step-wise loss of pluripotential phenotypes in ESCs/iPSCs occurs during their differentiation process. Our present findings suggest that the reverse phenomenon can also occur upon repeated introduction of reprogramming factors into differentiated cells such as HDDPCs and fibroblasts.