Ecotoxicology

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 8844 Experts worldwide ranked by ideXlab platform

Gisela De Aragao Umbuzeiro - One of the best experts on this subject based on the ideXlab platform.

  • development of an acute toxicity test with the tropical marine amphipod parhyale hawaiensis
    Ecotoxicology, 2018
    Co-Authors: Mariana Coletty Artal, Amanda Dos Santos, Theodore B Henry, Gisela De Aragao Umbuzeiro
    Abstract:

    There is a lack of suitable tropical marine species for ecotoxicity tests. An attractive model organism for Ecotoxicology is the marine amphipod Parhyale hawaiensis, which is already a model for genetic and developmental studies. This species is widespread, can tolerate changes in salinity, is easy to handle and is representative of circumtropical regions. The aim of this work was to describe standardized procedures for laboratory husbandry, define conditions for acute toxicity tests, and to provide acute toxicity test results for some reference toxicants. Culturing conditions for the organism in the laboratory were established in reconstituted seawater (30 ± 2 salinity), 24 ± 2 °C, photoperiod 12/12 h light/dark. Acute toxicity test procedures were developed for 96 h-exposure time, and organisms at ages <7 days. The miniaturized version of the test, based on 96-well microplates and 200 µL of exposure media provided consistent results compared to larger exposure volumes (80-mL vials protocol). Acute toxicity of Ag, Cd, Cu, Zn and ammonia determined for P. hawaiensis were consistent to previous results for other marine amphipods. We conclude that P. hawaiensis can be successfully cultured in standardized conditions and be effectively used in acute toxicity testing. Further development and use of this model will enable standardized and reproducible Ecotoxicology investigations in understudied and vulnerable tropical marine ecosystems.

Jason R. Rohr - One of the best experts on this subject based on the ideXlab platform.

  • community responses to contaminants using basic ecological principles to predict ecotoxicological effects
    Environmental Toxicology and Chemistry, 2009
    Co-Authors: William H. Clements, Jason R. Rohr
    Abstract:

    Community Ecotoxicology is defined as the study of the effects of contaminants on patterns of species abundance, diversity, community composition, and species interactions. Recent discoveries that species diversity is positively associated with ecosystem stability, recovery, and services have made a community-level perspective on Ecotoxicology more important than ever. Community Ecotoxicology must explicitly consider both present and impending global change and shift from a purely descriptive to a more predictive science. Greater consideration of the ecological factors and threshold responses that determine community resistance and resilience should improve our ability to predict how and when communities will respond to, and recover from, xenobiotics. A better understanding of pollution-induced community tolerance, and of the costs of this tolerance, should facilitate identifying contaminant- impacted communities, thus forecasting the ecological consequences of contaminant exposure and determining the restoration effectiveness. Given the vast complexity of community Ecotoxicology, simplifying assumptions, such as the possibility that the approximately 100,000 registered chemicals could be reduced to a more manageable number of contaminant classes with similar modes of action, must be identified and validated. In addition to providing a framework for predicting contaminant fate and effects, food-web ecology can help to identify communities that are sensitive to contaminants, contaminants that are particularly insidious to communities, and species that are crucial for transmitting adverse effects across trophic levels. Integration of basic ecological principles into the design and implementation of ecotoxicological research is essential for predicting contaminant effects within the context of rapidly changing, global environmental conditions. Keywords—Community Ecotoxicology Contaminant transport Global change Indirect effects Resistance/resilience

  • community responses to contaminants using basic ecological principles to predict ecotoxicological effects
    Environmental Toxicology and Chemistry, 2009
    Co-Authors: William H. Clements, Jason R. Rohr
    Abstract:

    Community Ecotoxicology is defined as the study of the effects of contaminants on patterns of species abundance, diversity, community composition, and species interactions. Recent discoveries that species diversity is positively associated with ecosystem stability, recovery, and services have made a community-level perspective on Ecotoxicology more important than ever. Community Ecotoxicology must explicitly consider both present and impending global change and shift from a purely descriptive to a more predictive science. Greater consideration of the ecological factors and threshold responses that determine community resistance and resilience should improve our ability to predict how and when communities will respond to, and recover from, xenobiotics. A better understanding of pollution-induced community tolerance, and of the costs of this tolerance, should facilitate identifying contaminant-impacted communities, thus forecasting the ecological consequences of contaminant exposure and determining the restoration effectiveness. Given the vast complexity of community Ecotoxicology, simplifying assumptions, such as the possibility that the approximately 100,000 registered chemicals could be reduced to a more manageable number of contaminant classes with similar modes of action, must be identified and validated. In addition to providing a framework for predicting contaminant fate and effects, food-web ecology can help to identify communities that are sensitive to contaminants, contaminants that are particularly insidious to communities, and species that are crucial for transmitting adverse effects across trophic levels. Integration of basic ecological principles into the design and implementation of ecotoxicological research is essential for predicting contaminant effects within the context of rapidly changing, global environmental conditions.

Mariana Coletty Artal - One of the best experts on this subject based on the ideXlab platform.

  • development of an acute toxicity test with the tropical marine amphipod parhyale hawaiensis
    Ecotoxicology, 2018
    Co-Authors: Mariana Coletty Artal, Amanda Dos Santos, Theodore B Henry, Gisela De Aragao Umbuzeiro
    Abstract:

    There is a lack of suitable tropical marine species for ecotoxicity tests. An attractive model organism for Ecotoxicology is the marine amphipod Parhyale hawaiensis, which is already a model for genetic and developmental studies. This species is widespread, can tolerate changes in salinity, is easy to handle and is representative of circumtropical regions. The aim of this work was to describe standardized procedures for laboratory husbandry, define conditions for acute toxicity tests, and to provide acute toxicity test results for some reference toxicants. Culturing conditions for the organism in the laboratory were established in reconstituted seawater (30 ± 2 salinity), 24 ± 2 °C, photoperiod 12/12 h light/dark. Acute toxicity test procedures were developed for 96 h-exposure time, and organisms at ages <7 days. The miniaturized version of the test, based on 96-well microplates and 200 µL of exposure media provided consistent results compared to larger exposure volumes (80-mL vials protocol). Acute toxicity of Ag, Cd, Cu, Zn and ammonia determined for P. hawaiensis were consistent to previous results for other marine amphipods. We conclude that P. hawaiensis can be successfully cultured in standardized conditions and be effectively used in acute toxicity testing. Further development and use of this model will enable standardized and reproducible Ecotoxicology investigations in understudied and vulnerable tropical marine ecosystems.

Jocelyne Hellou - One of the best experts on this subject based on the ideXlab platform.

  • behavioural Ecotoxicology an early warning signal to assess environmental quality
    Environmental Science and Pollution Research, 2011
    Co-Authors: Jocelyne Hellou
    Abstract:

    Background In this review, the position of behavioural Ecotoxicology within the available means to assess the status of marine environments is described as filling the gap for the needed “early warning” signals. A few examples of studies performed since the 1960s are discussed to highlight the sensitivity of these approaches in investigating the effects of chemicals, including priority pollutants and emerging contaminants, relative to conventional toxicity tests measuring survival.

William H. Clements - One of the best experts on this subject based on the ideXlab platform.

  • community responses to contaminants using basic ecological principles to predict ecotoxicological effects
    Environmental Toxicology and Chemistry, 2009
    Co-Authors: William H. Clements, Jason R. Rohr
    Abstract:

    Community Ecotoxicology is defined as the study of the effects of contaminants on patterns of species abundance, diversity, community composition, and species interactions. Recent discoveries that species diversity is positively associated with ecosystem stability, recovery, and services have made a community-level perspective on Ecotoxicology more important than ever. Community Ecotoxicology must explicitly consider both present and impending global change and shift from a purely descriptive to a more predictive science. Greater consideration of the ecological factors and threshold responses that determine community resistance and resilience should improve our ability to predict how and when communities will respond to, and recover from, xenobiotics. A better understanding of pollution-induced community tolerance, and of the costs of this tolerance, should facilitate identifying contaminant- impacted communities, thus forecasting the ecological consequences of contaminant exposure and determining the restoration effectiveness. Given the vast complexity of community Ecotoxicology, simplifying assumptions, such as the possibility that the approximately 100,000 registered chemicals could be reduced to a more manageable number of contaminant classes with similar modes of action, must be identified and validated. In addition to providing a framework for predicting contaminant fate and effects, food-web ecology can help to identify communities that are sensitive to contaminants, contaminants that are particularly insidious to communities, and species that are crucial for transmitting adverse effects across trophic levels. Integration of basic ecological principles into the design and implementation of ecotoxicological research is essential for predicting contaminant effects within the context of rapidly changing, global environmental conditions. Keywords—Community Ecotoxicology Contaminant transport Global change Indirect effects Resistance/resilience

  • community responses to contaminants using basic ecological principles to predict ecotoxicological effects
    Environmental Toxicology and Chemistry, 2009
    Co-Authors: William H. Clements, Jason R. Rohr
    Abstract:

    Community Ecotoxicology is defined as the study of the effects of contaminants on patterns of species abundance, diversity, community composition, and species interactions. Recent discoveries that species diversity is positively associated with ecosystem stability, recovery, and services have made a community-level perspective on Ecotoxicology more important than ever. Community Ecotoxicology must explicitly consider both present and impending global change and shift from a purely descriptive to a more predictive science. Greater consideration of the ecological factors and threshold responses that determine community resistance and resilience should improve our ability to predict how and when communities will respond to, and recover from, xenobiotics. A better understanding of pollution-induced community tolerance, and of the costs of this tolerance, should facilitate identifying contaminant-impacted communities, thus forecasting the ecological consequences of contaminant exposure and determining the restoration effectiveness. Given the vast complexity of community Ecotoxicology, simplifying assumptions, such as the possibility that the approximately 100,000 registered chemicals could be reduced to a more manageable number of contaminant classes with similar modes of action, must be identified and validated. In addition to providing a framework for predicting contaminant fate and effects, food-web ecology can help to identify communities that are sensitive to contaminants, contaminants that are particularly insidious to communities, and species that are crucial for transmitting adverse effects across trophic levels. Integration of basic ecological principles into the design and implementation of ecotoxicological research is essential for predicting contaminant effects within the context of rapidly changing, global environmental conditions.