Explosive Decompression

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 225 Experts worldwide ranked by ideXlab platform

Michael H. Studer - One of the best experts on this subject based on the ideXlab platform.

  • The influence of the Explosive Decompression in steam-explosion pretreatment on the enzymatic digestibility of different biomasses.
    Faraday discussions, 2017
    Co-Authors: Christoph-maximilian Seidel, Thomas Pielhop, Michael H. Studer, Philipp Rudolf Von Rohr
    Abstract:

    For the production of second generation biofuels from lignocellulosic biomass, pretreatment of the biomass feedstock is necessary to overcome its recalcitrance in order to gain fermentable sugars. Due to many reasons, steam-explosion pretreatment is currently the most commonly used pretreatment method for lignocellulosic biomass on a commercial scale [S. Brethauer and M. H. Studer, CHIMIA, 2015, 69, 572–581]. In contrast to others, we showed that the Explosive Decompression at the end of this pretreatment step can have a positive influence on the enzymatic digestibility of softwood, especially in combination with high enzyme dosages [T. Pielhop, et al., Biotechnology for Biofuels, 2016, 9, 152]. In this study, the influence of the Explosive Decompression on the enzymatic digestibility of hardwood and herbaceous plants was systematically studied. Beech and corn stover were pretreated under different pretreatment conditions and enzymatically hydrolysed with different enzyme dosages. The maximum enhancement of the digestibility of corn stover was 16.53% after a 2.5 min pretreatment step at 15 barg steam pressure. For beech, a maximum relative enhancement of 58.29% after a 10 min pretreatment step at 15 barg steam pressure could be reached. With this, we show that the Explosive Decompression can also enhance the enzymatic cellulose digestibility of hardwood and herbaceous plants.

  • Steam explosion pretreatment of softwood: the effect of the Explosive Decompression on enzymatic digestibility
    Biotechnology for Biofuels, 2016
    Co-Authors: Thomas Pielhop, Janick Amgarten, Philipp Rudolf Rohr, Michael H. Studer
    Abstract:

    Background Steam explosion pretreatment has been examined in many studies for enhancing the enzymatic digestibility of lignocellulosic biomass and is currently the most common pretreatment method in commercial biorefineries. The information available about the effect of the Explosive Decompression on the biochemical conversion is, however, very limited, and no studies prove that the latter is actually enhanced by the explosion. Hence, it is of great value to discern between the effect of the explosion on the one hand and the steaming on the other hand, to identify their particular influences on enzymatic digestibility. Results The effect of the Explosive Decompression in the steam explosion pretreatment of spruce wood chips on their enzymatic cellulose digestibility was studied systematically. The explosion had a high influence on digestibility, improving it by up to 90 % compared to a steam pretreatment without explosion. Two factors were identified to be essentially responsible for the effect of the explosion on enzymatic digestibility: pretreatment severity and pressure difference of the explosion. A higher pretreatment severity can soften up and weaken the lignocellulose structure more, so that the explosion can better break up the biomass and decrease its particle size, which enhances its digestibility. In particular, increasing the pressure difference of the explosion leads to more defibration, a smaller particle size and a better digestibility. Though differences were found in the micro- and nanostructure of exploded and non-exploded biomass, the only influence of the explosion on digestibility was found to be the macroscopic particle size reduction. Steam explosion treatments with a high severity and a high pressure difference of the explosion lead to a comparatively high cellulose digestibility of the—typically very recalcitrant—softwood biomass. Conclusions This is the first study to show that explosion can enhance the enzymatic digestibility of lignocellulosic biomass. If the enhancing effect of the explosion is thoroughly exploited, even very recalcitrant biomass like softwood can be made enzymatically digestible.

  • steam explosion pretreatment of softwood the effect of the Explosive Decompression on enzymatic digestibility
    Biotechnology for Biofuels, 2016
    Co-Authors: Thomas Pielhop, Janick Amgarten, Philipp Rudolf Von Rohr, Michael H. Studer
    Abstract:

    Steam explosion pretreatment has been examined in many studies for enhancing the enzymatic digestibility of lignocellulosic biomass and is currently the most common pretreatment method in commercial biorefineries. The information available about the effect of the Explosive Decompression on the biochemical conversion is, however, very limited, and no studies prove that the latter is actually enhanced by the explosion. Hence, it is of great value to discern between the effect of the explosion on the one hand and the steaming on the other hand, to identify their particular influences on enzymatic digestibility. The effect of the Explosive Decompression in the steam explosion pretreatment of spruce wood chips on their enzymatic cellulose digestibility was studied systematically. The explosion had a high influence on digestibility, improving it by up to 90 % compared to a steam pretreatment without explosion. Two factors were identified to be essentially responsible for the effect of the explosion on enzymatic digestibility: pretreatment severity and pressure difference of the explosion. A higher pretreatment severity can soften up and weaken the lignocellulose structure more, so that the explosion can better break up the biomass and decrease its particle size, which enhances its digestibility. In particular, increasing the pressure difference of the explosion leads to more defibration, a smaller particle size and a better digestibility. Though differences were found in the micro- and nanostructure of exploded and non-exploded biomass, the only influence of the explosion on digestibility was found to be the macroscopic particle size reduction. Steam explosion treatments with a high severity and a high pressure difference of the explosion lead to a comparatively high cellulose digestibility of the—typically very recalcitrant—softwood biomass. This is the first study to show that explosion can enhance the enzymatic digestibility of lignocellulosic biomass. If the enhancing effect of the explosion is thoroughly exploited, even very recalcitrant biomass like softwood can be made enzymatically digestible.

Thomas Pielhop - One of the best experts on this subject based on the ideXlab platform.

  • The influence of the Explosive Decompression in steam-explosion pretreatment on the enzymatic digestibility of different biomasses.
    Faraday discussions, 2017
    Co-Authors: Christoph-maximilian Seidel, Thomas Pielhop, Michael H. Studer, Philipp Rudolf Von Rohr
    Abstract:

    For the production of second generation biofuels from lignocellulosic biomass, pretreatment of the biomass feedstock is necessary to overcome its recalcitrance in order to gain fermentable sugars. Due to many reasons, steam-explosion pretreatment is currently the most commonly used pretreatment method for lignocellulosic biomass on a commercial scale [S. Brethauer and M. H. Studer, CHIMIA, 2015, 69, 572–581]. In contrast to others, we showed that the Explosive Decompression at the end of this pretreatment step can have a positive influence on the enzymatic digestibility of softwood, especially in combination with high enzyme dosages [T. Pielhop, et al., Biotechnology for Biofuels, 2016, 9, 152]. In this study, the influence of the Explosive Decompression on the enzymatic digestibility of hardwood and herbaceous plants was systematically studied. Beech and corn stover were pretreated under different pretreatment conditions and enzymatically hydrolysed with different enzyme dosages. The maximum enhancement of the digestibility of corn stover was 16.53% after a 2.5 min pretreatment step at 15 barg steam pressure. For beech, a maximum relative enhancement of 58.29% after a 10 min pretreatment step at 15 barg steam pressure could be reached. With this, we show that the Explosive Decompression can also enhance the enzymatic cellulose digestibility of hardwood and herbaceous plants.

  • Steam explosion pretreatment of softwood: the effect of the Explosive Decompression on enzymatic digestibility
    Biotechnology for Biofuels, 2016
    Co-Authors: Thomas Pielhop, Janick Amgarten, Philipp Rudolf Rohr, Michael H. Studer
    Abstract:

    Background Steam explosion pretreatment has been examined in many studies for enhancing the enzymatic digestibility of lignocellulosic biomass and is currently the most common pretreatment method in commercial biorefineries. The information available about the effect of the Explosive Decompression on the biochemical conversion is, however, very limited, and no studies prove that the latter is actually enhanced by the explosion. Hence, it is of great value to discern between the effect of the explosion on the one hand and the steaming on the other hand, to identify their particular influences on enzymatic digestibility. Results The effect of the Explosive Decompression in the steam explosion pretreatment of spruce wood chips on their enzymatic cellulose digestibility was studied systematically. The explosion had a high influence on digestibility, improving it by up to 90 % compared to a steam pretreatment without explosion. Two factors were identified to be essentially responsible for the effect of the explosion on enzymatic digestibility: pretreatment severity and pressure difference of the explosion. A higher pretreatment severity can soften up and weaken the lignocellulose structure more, so that the explosion can better break up the biomass and decrease its particle size, which enhances its digestibility. In particular, increasing the pressure difference of the explosion leads to more defibration, a smaller particle size and a better digestibility. Though differences were found in the micro- and nanostructure of exploded and non-exploded biomass, the only influence of the explosion on digestibility was found to be the macroscopic particle size reduction. Steam explosion treatments with a high severity and a high pressure difference of the explosion lead to a comparatively high cellulose digestibility of the—typically very recalcitrant—softwood biomass. Conclusions This is the first study to show that explosion can enhance the enzymatic digestibility of lignocellulosic biomass. If the enhancing effect of the explosion is thoroughly exploited, even very recalcitrant biomass like softwood can be made enzymatically digestible.

  • steam explosion pretreatment of softwood the effect of the Explosive Decompression on enzymatic digestibility
    Biotechnology for Biofuels, 2016
    Co-Authors: Thomas Pielhop, Janick Amgarten, Philipp Rudolf Von Rohr, Michael H. Studer
    Abstract:

    Steam explosion pretreatment has been examined in many studies for enhancing the enzymatic digestibility of lignocellulosic biomass and is currently the most common pretreatment method in commercial biorefineries. The information available about the effect of the Explosive Decompression on the biochemical conversion is, however, very limited, and no studies prove that the latter is actually enhanced by the explosion. Hence, it is of great value to discern between the effect of the explosion on the one hand and the steaming on the other hand, to identify their particular influences on enzymatic digestibility. The effect of the Explosive Decompression in the steam explosion pretreatment of spruce wood chips on their enzymatic cellulose digestibility was studied systematically. The explosion had a high influence on digestibility, improving it by up to 90 % compared to a steam pretreatment without explosion. Two factors were identified to be essentially responsible for the effect of the explosion on enzymatic digestibility: pretreatment severity and pressure difference of the explosion. A higher pretreatment severity can soften up and weaken the lignocellulose structure more, so that the explosion can better break up the biomass and decrease its particle size, which enhances its digestibility. In particular, increasing the pressure difference of the explosion leads to more defibration, a smaller particle size and a better digestibility. Though differences were found in the micro- and nanostructure of exploded and non-exploded biomass, the only influence of the explosion on digestibility was found to be the macroscopic particle size reduction. Steam explosion treatments with a high severity and a high pressure difference of the explosion lead to a comparatively high cellulose digestibility of the—typically very recalcitrant—softwood biomass. This is the first study to show that explosion can enhance the enzymatic digestibility of lignocellulosic biomass. If the enhancing effect of the explosion is thoroughly exploited, even very recalcitrant biomass like softwood can be made enzymatically digestible.

Timo Kikas - One of the best experts on this subject based on the ideXlab platform.

  • Enhancing Bioenergy Yields from Sequential Bioethanol and Biomethane Production by Means of Solid–Liquid Separation of the Substrates
    Energies, 2019
    Co-Authors: Lisandra Rocha-meneses, Jorge A. Ferreira, Nemailla Bonturi, Kaja Orupõld, Timo Kikas
    Abstract:

    The production of second-generation ethanol using lignocellulosic feedstock is crucial in order to be able to meet the increasing fuel demands by the transportation sector. However, the technology still needs to overcome several bottlenecks before feasible commercialization can be realized. These include, for example, the development of cost-effective and environmentally friendly pretreatment strategies and valorization of the sidestream that is obtained following ethanol distillation. This work uses two chemical-free pretreatment methods—nitrogen Explosive Decompression (NED) and synthetic flue gas Explosive Decompression—to investigate the potential of a bioethanol production sidestream in terms of further anaerobic digestion. For this purpose, samples from different stages of the bioethanol production process (pretreatment, hydrolysis, and fermentation) and the bioethanol sidestream went through a separation process (involving solid–liquid separation), following which a biomethane potential (BMP) assay was carried out. The results show that both factors being studied in this article (involving the pretreatment method and the separation process) served to influence methane yields. Liquid fractions that were obtained during the process with NED gave rise to methane yields that were 8% to 12% higher than when synthetic flue gas was used; fermented and distillation sidestream gave rise to the highest methane yields (0.53 and 0.58 mol CH4/100 g respectively). The methane yields from the liquid fractions were between 60–88% lower than those that were obtained from solid fractions. Samples from the bioethanol sidestream (solid fraction) that were pretreated with NED had the highest methane yield (1.7 mol CH4/100 g). A solid–liquid separation step can be a promising strategy when it comes to improving the energy output from lignocellulosic biomass and the management of the ethanol distillation sidestream.

  • Nitrogen Explosive Decompression pre-treatment: An alternative to steam explosion
    Energy, 2019
    Co-Authors: Merlin Raud, Klaus Krennhuber, A. Jäger, Timo Kikas
    Abstract:

    Abstract When using the novel N2 Explosive Decompression pre-treatment, its effect was investigated in relation to the biomass structure and chemical processes during the treatment process. The results that were gained from this testing were compared to those for the widely-used steam explosion pre-treatment method in order to be able to present the advantages in using each method. Both methods are economically and environmentally attractive since only the pressure and water or steam are used to break down the biomass structure. Two pre-treatment methods were used at different temperatures and samples from various process steps were analysed. The results were used to assess the pre-treatment effect and the chemical changes in the biomass and, finally, mass balances were compiled for the bioethanol process at different process steps. The results show that the highest glucose and ethanol yields were obtained by means of the steam explosion pre-treatment method at a temperature of 200 °C (24.29 g and 12.72 g for 100 g of biomass respectively), and at 175 °C (15.4 g and 9.0 g for 100 g of biomass respectively). At lower temperatures the nitrogen explosion treatment produced better yields.

  • The effect of flue gas Explosive Decompression pretreatment on methane recovery from bioethanol production waste
    Industrial Crops and Products, 2019
    Co-Authors: Lisandra Rocha-meneses, Merlin Raud, Kaja Orupõld, Anastasia Ivanova, Guilherme Atouguia, Isaac Ávila, Timo Kikas
    Abstract:

    Abstract Lignocellulosic biomass is an attractive feedstock for the production of liquid (eg. biofuel) or gaseous (eg. methane) fuels for the transportation sector. The bioethanol production process still produces a large quantity of production waste following the distillation process. Stillage consists mostly of lignin, hemicellulose, extractives, and yeast and therefore does not have any commercial value. The conversion of bioethanol production waste into gaseous biofuels like biogas or biomethane is a promising solution when it comes to transforming stillage into value-added products, enhancing the value of the biomass, and as a strategy for achieving zero-waste societies. This study aims to investigate the potential of bioethanol production waste for biomethane production. The results are compared with samples from different stages of the bioethanol production process. Milled barley straw (Hordeum vulgare) was used as a feedstock to produce energy in the form of methane, and the flue gas pre-treatment method (with and without bubbling) was applied. The results show that the methane production yield of bioethanol production waste, which has been pretreated with flue gas without bubbling is 5% higher than that of untreated substrate, and can achieve 94% of the methane production of fermented samples. Bioethanol production waste from substrates, which have been pretreated with flue gas with bubbling have a methane production level that is 29% higher than that of untreated materials. The results suggest that methane yields are influenced by the bubbling process. It is reasonable to use bioethanol production waste for the production of energy in the form of methane and to increase the energy output from the biomass.

  • The Efficiency of Nitrogen and Flue Gas as Operating Gases in Explosive Decompression Pretreatment
    Energies, 2018
    Co-Authors: Merlin Raud, Vahur Rooni, Timo Kikas
    Abstract:

    As the pretreatment process is the most expensive and energy-consuming step in the overall second generation bioethanol production process, it is vital that it is studied and optimized in order to be able to develop the most efficient production process. The aim of this paper was to investigate chemical and physical changes in biomass during the process of applying the Explosive Decompression pretreatment method using two different gases—N 2 and synthetic flue gas. The Explosive Decompression method is economically and environmentally attractive since no chemicals are used—rather it is pressure that is applied—and water is used to break down the biomass structure. Both pre-treatment methods were used at different temperatures. To be able to compare the effects of the pretreatment, samples from different process steps were gathered together and analysed. The results were used to assess the efficiency of the pretreatment, the chemical and physical changes in the biomass and, finally, the mass balances were compiled for the process during the different process steps of bioethanol production. The results showed that both pre-treatment methods are effective in hemicellulose dissolution, while the cellulose content decreases to a smaller degree. The high glucose and ethanol yields were gained with both Explosive pretreatment methods at 175 °C (15.2–16.0 g glucose and 5.6–9.0 g ethanol per 100 g of dry biomass, respectively).

  • The Efficiency of Nitrogen and Flue Gas as Operating Gases in Explosive Decompression Pretreatment
    MDPI AG, 2018
    Co-Authors: Merlin Raud, Vahur Rooni, Timo Kikas
    Abstract:

    As the pretreatment process is the most expensive and energy-consuming step in the overall second generation bioethanol production process, it is vital that it is studied and optimized in order to be able to develop the most efficient production process. The aim of this paper was to investigate chemical and physical changes in biomass during the process of applying the Explosive Decompression pretreatment method using two different gases—N2 and synthetic flue gas. The Explosive Decompression method is economically and environmentally attractive since no chemicals are used—rather it is pressure that is applied—and water is used to break down the biomass structure. Both pre-treatment methods were used at different temperatures. To be able to compare the effects of the pretreatment, samples from different process steps were gathered together and analysed. The results were used to assess the efficiency of the pretreatment, the chemical and physical changes in the biomass and, finally, the mass balances were compiled for the process during the different process steps of bioethanol production. The results showed that both pre-treatment methods are effective in hemicellulose dissolution, while the cellulose content decreases to a smaller degree. The high glucose and ethanol yields were gained with both Explosive pretreatment methods at 175 °C (15.2–16.0 g glucose and 5.6–9.0 g ethanol per 100 g of dry biomass, respectively)

Philipp Rudolf Von Rohr - One of the best experts on this subject based on the ideXlab platform.

  • The influence of the Explosive Decompression in steam-explosion pretreatment on the enzymatic digestibility of different biomasses.
    Faraday discussions, 2017
    Co-Authors: Christoph-maximilian Seidel, Thomas Pielhop, Michael H. Studer, Philipp Rudolf Von Rohr
    Abstract:

    For the production of second generation biofuels from lignocellulosic biomass, pretreatment of the biomass feedstock is necessary to overcome its recalcitrance in order to gain fermentable sugars. Due to many reasons, steam-explosion pretreatment is currently the most commonly used pretreatment method for lignocellulosic biomass on a commercial scale [S. Brethauer and M. H. Studer, CHIMIA, 2015, 69, 572–581]. In contrast to others, we showed that the Explosive Decompression at the end of this pretreatment step can have a positive influence on the enzymatic digestibility of softwood, especially in combination with high enzyme dosages [T. Pielhop, et al., Biotechnology for Biofuels, 2016, 9, 152]. In this study, the influence of the Explosive Decompression on the enzymatic digestibility of hardwood and herbaceous plants was systematically studied. Beech and corn stover were pretreated under different pretreatment conditions and enzymatically hydrolysed with different enzyme dosages. The maximum enhancement of the digestibility of corn stover was 16.53% after a 2.5 min pretreatment step at 15 barg steam pressure. For beech, a maximum relative enhancement of 58.29% after a 10 min pretreatment step at 15 barg steam pressure could be reached. With this, we show that the Explosive Decompression can also enhance the enzymatic cellulose digestibility of hardwood and herbaceous plants.

  • steam explosion pretreatment of softwood the effect of the Explosive Decompression on enzymatic digestibility
    Biotechnology for Biofuels, 2016
    Co-Authors: Thomas Pielhop, Janick Amgarten, Philipp Rudolf Von Rohr, Michael H. Studer
    Abstract:

    Steam explosion pretreatment has been examined in many studies for enhancing the enzymatic digestibility of lignocellulosic biomass and is currently the most common pretreatment method in commercial biorefineries. The information available about the effect of the Explosive Decompression on the biochemical conversion is, however, very limited, and no studies prove that the latter is actually enhanced by the explosion. Hence, it is of great value to discern between the effect of the explosion on the one hand and the steaming on the other hand, to identify their particular influences on enzymatic digestibility. The effect of the Explosive Decompression in the steam explosion pretreatment of spruce wood chips on their enzymatic cellulose digestibility was studied systematically. The explosion had a high influence on digestibility, improving it by up to 90 % compared to a steam pretreatment without explosion. Two factors were identified to be essentially responsible for the effect of the explosion on enzymatic digestibility: pretreatment severity and pressure difference of the explosion. A higher pretreatment severity can soften up and weaken the lignocellulose structure more, so that the explosion can better break up the biomass and decrease its particle size, which enhances its digestibility. In particular, increasing the pressure difference of the explosion leads to more defibration, a smaller particle size and a better digestibility. Though differences were found in the micro- and nanostructure of exploded and non-exploded biomass, the only influence of the explosion on digestibility was found to be the macroscopic particle size reduction. Steam explosion treatments with a high severity and a high pressure difference of the explosion lead to a comparatively high cellulose digestibility of the—typically very recalcitrant—softwood biomass. This is the first study to show that explosion can enhance the enzymatic digestibility of lignocellulosic biomass. If the enhancing effect of the explosion is thoroughly exploited, even very recalcitrant biomass like softwood can be made enzymatically digestible.

Janick Amgarten - One of the best experts on this subject based on the ideXlab platform.

  • Steam explosion pretreatment of softwood: the effect of the Explosive Decompression on enzymatic digestibility
    Biotechnology for Biofuels, 2016
    Co-Authors: Thomas Pielhop, Janick Amgarten, Philipp Rudolf Rohr, Michael H. Studer
    Abstract:

    Background Steam explosion pretreatment has been examined in many studies for enhancing the enzymatic digestibility of lignocellulosic biomass and is currently the most common pretreatment method in commercial biorefineries. The information available about the effect of the Explosive Decompression on the biochemical conversion is, however, very limited, and no studies prove that the latter is actually enhanced by the explosion. Hence, it is of great value to discern between the effect of the explosion on the one hand and the steaming on the other hand, to identify their particular influences on enzymatic digestibility. Results The effect of the Explosive Decompression in the steam explosion pretreatment of spruce wood chips on their enzymatic cellulose digestibility was studied systematically. The explosion had a high influence on digestibility, improving it by up to 90 % compared to a steam pretreatment without explosion. Two factors were identified to be essentially responsible for the effect of the explosion on enzymatic digestibility: pretreatment severity and pressure difference of the explosion. A higher pretreatment severity can soften up and weaken the lignocellulose structure more, so that the explosion can better break up the biomass and decrease its particle size, which enhances its digestibility. In particular, increasing the pressure difference of the explosion leads to more defibration, a smaller particle size and a better digestibility. Though differences were found in the micro- and nanostructure of exploded and non-exploded biomass, the only influence of the explosion on digestibility was found to be the macroscopic particle size reduction. Steam explosion treatments with a high severity and a high pressure difference of the explosion lead to a comparatively high cellulose digestibility of the—typically very recalcitrant—softwood biomass. Conclusions This is the first study to show that explosion can enhance the enzymatic digestibility of lignocellulosic biomass. If the enhancing effect of the explosion is thoroughly exploited, even very recalcitrant biomass like softwood can be made enzymatically digestible.

  • steam explosion pretreatment of softwood the effect of the Explosive Decompression on enzymatic digestibility
    Biotechnology for Biofuels, 2016
    Co-Authors: Thomas Pielhop, Janick Amgarten, Philipp Rudolf Von Rohr, Michael H. Studer
    Abstract:

    Steam explosion pretreatment has been examined in many studies for enhancing the enzymatic digestibility of lignocellulosic biomass and is currently the most common pretreatment method in commercial biorefineries. The information available about the effect of the Explosive Decompression on the biochemical conversion is, however, very limited, and no studies prove that the latter is actually enhanced by the explosion. Hence, it is of great value to discern between the effect of the explosion on the one hand and the steaming on the other hand, to identify their particular influences on enzymatic digestibility. The effect of the Explosive Decompression in the steam explosion pretreatment of spruce wood chips on their enzymatic cellulose digestibility was studied systematically. The explosion had a high influence on digestibility, improving it by up to 90 % compared to a steam pretreatment without explosion. Two factors were identified to be essentially responsible for the effect of the explosion on enzymatic digestibility: pretreatment severity and pressure difference of the explosion. A higher pretreatment severity can soften up and weaken the lignocellulose structure more, so that the explosion can better break up the biomass and decrease its particle size, which enhances its digestibility. In particular, increasing the pressure difference of the explosion leads to more defibration, a smaller particle size and a better digestibility. Though differences were found in the micro- and nanostructure of exploded and non-exploded biomass, the only influence of the explosion on digestibility was found to be the macroscopic particle size reduction. Steam explosion treatments with a high severity and a high pressure difference of the explosion lead to a comparatively high cellulose digestibility of the—typically very recalcitrant—softwood biomass. This is the first study to show that explosion can enhance the enzymatic digestibility of lignocellulosic biomass. If the enhancing effect of the explosion is thoroughly exploited, even very recalcitrant biomass like softwood can be made enzymatically digestible.