Fundulus

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 297 Experts worldwide ranked by ideXlab platform

Richard T. Di Giulio - One of the best experts on this subject based on the ideXlab platform.

  • Silver toxicity across salinity gradients: the role of dissolved silver chloride species (AgCl x ) in Atlantic killifish (Fundulus heteroclitus) and medaka (Oryzias latipes) early life-stage toxicity
    Ecotoxicology, 2016
    Co-Authors: Cole W. Matson, Audrey J. Bone, Mélanie Auffan, T. Ty Lindberg, Mariah C. Arnold, Heileen Hsu-kim, Mark R. Wiesner, Richard T. Di Giulio
    Abstract:

    The influence of salinity on Ag toxicity was investigated in Atlantic killifish (Fundulus heteroclitus) early life-stages. Embryo mortality was significantly reduced as salinity increased and Ag+ was converted to AgCl(solid). However, as salinity continued to rise (>5 ‰), toxicity increased to a level at least as high as observed for Ag+ in deionized water. Rather than correlating with Ag+, Fundulus embryo toxicity was better explained (R2 = 0.96) by total dissolved Ag (Ag+, AgCl2 −, AgCl3 2−, AgCl4 3−). Complementary experiments were conducted with medaka (Oryzias latipes) embryos to determine if this pattern was consistent among evolutionarily divergent euryhaline species. Contrary to Fundulus data, medaka toxicity data were best explained by Ag+ concentrations (R2 = 0.94), suggesting that differing ionoregulatory physiology may drive observed differences. Fundulus larvae were also tested, and toxicity did increase at higher salinities, but did not track predicted silver speciation. Alternatively, toxicity began to increase only at salinities above the isosmotic point, suggesting that shifts in osmoregulatory strategy at higher salinities might be an important factor. Na+ dysregulation was confirmed as the mechanism of toxicity in Ag-exposed Fundulus larvae at both low and high salinities. While Ag uptake was highest at low salinities for both Fundulus embryos and larvae, uptake was not predictive of toxicity.

  • Fundulus heteroclitus adapted to PAHs are cross-resistant to multiple insecticides
    Ecotoxicology, 2012
    Co-Authors: Bryan W. Clark, Richard T. Di Giulio
    Abstract:

    Atlantic killifish ( Fundulus heteroclitus ) from the Atlantic Wood Superfund site on the Elizabeth River (ER), VA are dramatically resistant to the acute toxicity and teratogenesis caused by polycyclic aromatic hydrocarbons (PAHs). To understand the consequences of adaptation to chronic PAH pollution, we have attempted to further define the chemical tolerance associated with this resistance. An important component of the PAH adaptation of ER fish is the dramatic down-regulation of the aryl hydrocarbon receptor (AHR) pathway, resulting in decreased cytochrome p450 (CYP) 1 activity. Herein, we compared the susceptibility to several insecticides of ER fish to that of reference site (King's Creek; KC) fish; use of these chemicals as probes of the resistance will help to demonstrate if the contaminant adaptation exhibited by ER fish is broad or narrow and AHR-focused. We hypothesized that ER fish would be less susceptible to the organophosphate chlorpyrifos (activated by CYP) and more susceptible to the pyrethroid permethrin (detoxified by CYP). Comparison of acute toxicity in 5-day-old larvae supported this hypothesis for chlorpyrifos. As expected, chemical up-regulation of CYP by co-exposure to β-naphthoflavone (BNF) enhanced the susceptibility of KC but it did not affect ER larvae. Unexpectedly, ER larvae were much less susceptible to permethrin than KC larvae. However, co-exposure to BNF greatly decreased the susceptibility of KC larvae, indicating that metabolism of permethrin by CYP was protective. Additionally, fish from each population were compared for susceptibility to the carbamate carbaryl, an acute neurotoxicant and weak AHR agonist that induces teratogenesis similar to that caused by PAHs. ER embryos and larvae were less susceptible than KC fish. These results suggest that the adaptive phenotype of ER fish is multi-faceted and that aspects other than CYP response are likely to greatly affect their response to contaminants.

  • ahr2 mediates cardiac teratogenesis of polycyclic aromatic hydrocarbons and pcb 126 in atlantic killifish Fundulus heteroclitus
    Aquatic Toxicology, 2010
    Co-Authors: Bryan W. Clark, Dawoon Jung, Cole W. Matson, Richard T. Di Giulio
    Abstract:

    Exposure of developing fish to polycyclic aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons (HAHs) results in a suite of defects including cardiac malformation, pericardial and yolk sac edema, craniofacial defects, and hemorrhaging. Several populations of Atlantic killifish or mummichog (Fundulus heteroclitus) on the Atlantic coast of the United States are resistant to the developmental and acute toxicity caused by PAHs and HAHs; this has made Fundulus a valuable model for studying aryl hydrocarbon sensitivity and adaptation. In order to further increase the utility of Fundulus, better understanding of the components of the molecular pathways governing aryl hydrocarbon response in Fundulus is required. The aryl hydrocarbon receptor (AHR) is known to mediate many of the toxic responses to PAHs and HAHs. A single AHR has been identified in mammals, but Fundulus has two AHRs and their relative roles are not clear. In the current study, translation-blocking and splice-junction morpholino gene knockdown was used to determine the roles of AHR1 and AHR2 in mediating cardiac teratogenesis induced by β-naphthoflavone (BNF), benzo[k]fluoranthene (BkF), and 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126). Here we report that AHR2 and not AHR1 knockdown resulted in rescue of teratogenicity induced by BNF, BkF, and PCB-126. These data demonstrate that AHR2 is the primary mediator of cardiac teratogenesis caused by multiple aryl hydrocarbons in Fundulus and suggest that suppression of the AHR pathway through modulation of AHR2 is a plausible mechanism for PAH resistance in adapted fish. Additionally, this is the first reported use of splice-junction morpholinos in Fundulus.

  • Development of the morpholino gene knockdown technique in Fundulus heteroclitus: a tool for studying molecular mechanisms in an established environmental model.
    Aquatic Toxicology, 2008
    Co-Authors: Cole W. Matson, Bryan W. Clark, Matthew J. Jenny, Carrie R. Fleming, Mark E Hahn, Richard T. Di Giulio
    Abstract:

    A significant challenge in environmental toxicology is that many genetic and genomic tools available in laboratory models are not developed for commonly used environmental models. The Atlantic killifish (Fundulus heteroclitus) is one of the most studied teleost environmental models, yet few genetic or genomic tools have been developed for use in this species. The advancement of genetic and evolutionary toxicology will require that many of the tools developed in laboratory models be transferred into species more applicable to environmental toxicology. Antisense morpholino oligonucleotide (MO) gene knockdown technology has been widely utilized to study development in zebrafish and has been proven to be a powerful tool in toxicological investigations through direct manipulation of molecular pathways. To expand the utility of killifish as an environmental model, MO gene knockdown technology was adapted for use in Fundulus. Morpholino microinjection methods were altered to overcome the significant differences between these two species. Morpholino efficacy and functional duration were evaluated with molecular and phenotypic methods. A cytochrome P450-1A (CYP1A) MO was used to confirm effectiveness of the methodology. For CYP1A MO-injected embryos, a 70% reduction in CYP1A activity, a 86% reduction in total CYP1A protein, a significant increase in β-naphthoflavone-induced teratogenicity, and estimates of functional duration (50% reduction in activity 10 dpf, and 86% reduction in total protein 12 dpf) conclusively demonstrated that MO technologies can be used effectively in killifish and will likely be just as informative as they have been in zebrafish.

  • Fundulus as the premier teleost model in environmental biology opportunities for new insights using genomics
    Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2007
    Co-Authors: Karen G Burnett, Mark E Hahn, Richard T. Di Giulio, Lisa J Bain, William S Baldwin, Gloria V Callard, Sarah Cohen, David H Evans, Marta Gomezchiarri, Cindi A Hoover
    Abstract:

    A strong foundation of basic and applied research documents that the estuarine fish Fundulus heteroclitus and related species are unique laboratory and field models for understanding how individuals and populations interact with their environment. In this paper we summarize an extensive body of work examining the adaptive responses of Fundulus species to environmental conditions, and describe how this research has contributed importantly to our understanding of physiology, gene regulation, toxicology, and ecological and evolutionary genetics of teleosts and other vertebrates. These explorations have reached a critical juncture at which advancement is hindered by the lack of genomic resources for these species. We suggest that a more complete genomics toolbox for F. heteroclitus and related species will permit researchers to exploit the power of this model organism to rapidly advance our understanding of fundamental biological and pathological mechanisms among vertebrates, as well as ecological strategies and evolutionary processes common to all living organisms.

Andrew Whitehead - One of the best experts on this subject based on the ideXlab platform.

  • draft genome assemblies using sequencing reads from oxford nanopore technology and illumina platforms for four species of north american Fundulus killifish
    GigaScience, 2020
    Co-Authors: Lisa Johnson, Ruta Sahasrabudhe, Jennifer L Roach, Lutz Froenicke, Christopher T Brown, James Anthony Gill, Andrew Whitehead
    Abstract:

    Background Whole-genome sequencing data from wild-caught individuals of closely related North American killifish species (Fundulus xenicus, Fundulus catenatus, Fundulus nottii, and Fundulus olivaceus) were obtained using long-read Oxford Nanopore Technology (ONT) PromethION and short-read Illumina platforms. Findings Draft de novo reference genome assemblies were generated using a combination of long and short sequencing reads. For each species, the PromethION platform was used to generate 30-45× sequence coverage, and the Illumina platform was used to generate 50-160× sequence coverage. Illumina-only assemblies were fragmented with high numbers of contigs, while ONT-only assemblies were error prone with low BUSCO scores. The highest N50 values, ranging from 0.4 to 2.7 Mb, were from assemblies generated using a combination of short- and long-read data. BUSCO scores were consistently >90% complete using the Eukaryota database. Conclusions High-quality genomes can be obtained from a combination of using short-read Illumina data to polish assemblies generated with long-read ONT data. Draft assemblies and raw sequencing data are available for public use. We encourage use and reuse of these data for assembly benchmarking and other analyses.

  • evolutionary physiology and genomics in the highly adaptable killifish Fundulus heteroclitus
    Comprehensive Physiology, 2020
    Co-Authors: Douglas L Crawford, Andrew Whitehead, Patricia M Schulte, Marjorie F Oleksiak
    Abstract:

    By investigating evolutionary adaptations that change physiological functions, we can enhance our understanding of how organisms work, the importance of physiological traits, and the genes that influence these traits. This approach of investigating the evolution of physiological adaptation has been used with the teleost fish Fundulus heteroclitus and has produced insights into (i) how protein polymorphisms enhance swimming and development; (ii) the role of equilibrium enzymes in modulating metabolic flux; (iii) how variation in DNA sequences and mRNA expression patterns mitigate changes in temperature, pollution, and salinity; and (iv) the importance of nuclear-mitochondrial genome interactions for energy metabolism. Fundulus heteroclitus provides so many examples of adaptive evolution because their local population sizes are large, they have significant standing genetic variation, and they experience large ranges of environmental conditions that enhance the likelihood that adaptive evolution will occur. Thus, F. heteroclitus research takes advantage of evolutionary changes associated with exposure to diverse environments, both across the North American Atlantic coast and within local habitats, to contrast neutral versus adaptive divergence. Based on evolutionary analyses contrasting neutral and adaptive evolution in F. heteroclitus populations, we conclude that adaptive evolution can occur readily and rapidly, at least in part because it depends on large amounts of standing genetic variation among many genes that can alter physiological traits. These observations of polygenic adaptation enhance our understanding of how evolution and physiological adaptation progresses, thus informing both biological and medical scientists about genotype-phenotype relationships. © 2020 American Physiological Society. Compr Physiol 10:637-671, 2020.

  • draft genome assemblies using sequencing reads from oxford nanopore technology and illumina platforms for four species of north american killifish from the Fundulus genus
    bioRxiv, 2019
    Co-Authors: Lisa Johnson, Ruta Sahasrabudhe, T Gill, Jennifer L Roach, Lutz Froenicke, Christopher T Brown, Andrew Whitehead
    Abstract:

    Abstract Draft de novo reference genome assemblies were obtained from four North American killifish species (Fundulus xenicus, Fundulus catenatus, Fundulus nottii, and Fundulus olivaceus) using sequence reads from Illumina and Oxford Nanopore Technologies’ PromethION platforms. For each species, the PromethION platform was used to generate 30-45x sequence coverage, and the Illumina platform was used to generate 50-160x sequence coverage. Contig N50 values ranged from 0.4 Mb to 2.7 Mb, and BUSCO scores were consistently above 90% complete using the Eukaryota database. Draft assemblies and raw sequencing data are available for public use. We encourage use and re-use of these data for assembly benchmarking and external analyses.

  • adaptive introgression enables evolutionary rescue from extreme environmental pollution
    Science, 2019
    Co-Authors: Elias M Oziolor, Noah M Reid, Sivan Yair, Kristin M Lee, Sarah Guberman Verploeg, Peter C Bruns, Joseph R Shaw, Andrew Whitehead
    Abstract:

    Radical environmental change that provokes population decline can impose constraints on the sources of genetic variation that may enable evolutionary rescue. Adaptive toxicant resistance has rapidly evolved in Gulf killifish (Fundulus grandis) that occupy polluted habitats. We show that resistance scales with pollution level and negatively correlates with inducibility of aryl hydrocarbon receptor (AHR) signaling. Loci with the strongest signatures of recent selection harbor genes regulating AHR signaling. Two of these loci introgressed recently (18 to 34 generations ago) from Atlantic killifish (F. heteroclitus). One introgressed locus contains a deletion in AHR that confers a large adaptive advantage [selection coefficient (s) = 0.8]. Given the limited migration of killifish, recent adaptive introgression was likely mediated by human-assisted transport. We suggest that interspecies connectivity may be an important source of adaptive variation during extreme environmental change.

  • rna seq reveals complex genetic response to deepwater horizon oil release in Fundulus grandis
    BMC Genomics, 2012
    Co-Authors: Tzintzuni Garcia, Andrew Whitehead, Marjorie F Oleksiak, Douglas L Crawford, Yingjia Shen, Ronald B Walter
    Abstract:

    The release of oil resulting from the blowout of the Deepwater Horizon (DH) drilling platform was one of the largest in history discharging more than 189 million gallons of oil and subject to widespread application of oil dispersants. This event impacted a wide range of ecological habitats with a complex mix of pollutants whose biological impact is still not yet fully understood. To better understand the effects on a vertebrate genome, we studied gene expression in the salt marsh minnow Fundulus grandis, which is local to the northern coast of the Gulf of Mexico and is a sister species of the ecotoxicological model Fundulus heteroclitus. To assess genomic changes, we quantified mRNA expression using high throughput sequencing technologies (RNA-Seq) in F. grandis populations in the marshes and estuaries impacted by DH oil release. This application of RNA-Seq to a non-model, wild, and ecologically significant organism is an important evaluation of the technology to quickly assess similar events in the future. Our de novo assembly of RNA-Seq data produced a large set of sequences which included many duplicates and fragments. In many cases several of these could be associated with a common reference sequence using blast to query a reference database. This reduced the set of significant genes to 1,070 down-regulated and 1,251 up-regulated genes. These genes indicate a broad and complex genomic response to DH oil exposure including the expected AHR-mediated response and CYP genes. In addition a response to hypoxic conditions and an immune response are also indicated. Several genes in the choriogenin family were down-regulated in the exposed group; a response that is consistent with AH exposure. These analyses are in agreement with oligonucleotide-based microarray analyses, and describe only a subset of significant genes with aberrant regulation in the exposed set. RNA-Seq may be successfully applied to feral and extremely polymorphic organisms that do not have an underlying genome sequence assembly to address timely environmental problems. Additionally, the observed changes in a large set of transcript expression levels are indicative of a complex response to the varied petroleum components to which the fish were exposed.

Marjorie F Oleksiak - One of the best experts on this subject based on the ideXlab platform.

  • measuring complex phenotypes a flexible high throughput design for micro respirometry
    bioRxiv, 2020
    Co-Authors: Amanda N Deliberto, Marjorie F Oleksiak, Melissa K Drown, Douglas L Crawford
    Abstract:

    Variation in tissue-specific metabolism between species and among individuals is thought to be adaptively important; however, understanding this evolutionary relationship requires reliably measuring this trait in many individuals. In most higher organisms, tissue specificity is important because different organs (heart, brain, liver, muscle) have unique ecologically adaptive roles. Current technology and methodology for measuring tissue-specific metabolism is costly and limited by throughput capacity and efficiency. Presented here is the design for a flexible and cost-effective high-throughput micro-respirometer (HTMR) optimized to measure small biological samples. To verify precision and accuracy, substrate specific metabolism was measured in heart ventricles isolated from a small teleost, Fundulus heteroclitus, and in yeast ( Saccharomyces cerevisiae ) . Within the system, results were reproducible between chambers and over time with both teleost hearts and yeast. Additionally, metabolic rates and allometric scaling relationships in Fundulus agree with previously published data measured with lower-throughput equipment. This design reduces cost, but still provides an accurate measure of metabolism in small biological samples. This will allow for high-throughput measurement of tissue metabolism that can enhance understanding of the adaptive importance of complex metabolic traits.

  • evolutionary physiology and genomics in the highly adaptable killifish Fundulus heteroclitus
    Comprehensive Physiology, 2020
    Co-Authors: Douglas L Crawford, Andrew Whitehead, Patricia M Schulte, Marjorie F Oleksiak
    Abstract:

    By investigating evolutionary adaptations that change physiological functions, we can enhance our understanding of how organisms work, the importance of physiological traits, and the genes that influence these traits. This approach of investigating the evolution of physiological adaptation has been used with the teleost fish Fundulus heteroclitus and has produced insights into (i) how protein polymorphisms enhance swimming and development; (ii) the role of equilibrium enzymes in modulating metabolic flux; (iii) how variation in DNA sequences and mRNA expression patterns mitigate changes in temperature, pollution, and salinity; and (iv) the importance of nuclear-mitochondrial genome interactions for energy metabolism. Fundulus heteroclitus provides so many examples of adaptive evolution because their local population sizes are large, they have significant standing genetic variation, and they experience large ranges of environmental conditions that enhance the likelihood that adaptive evolution will occur. Thus, F. heteroclitus research takes advantage of evolutionary changes associated with exposure to diverse environments, both across the North American Atlantic coast and within local habitats, to contrast neutral versus adaptive divergence. Based on evolutionary analyses contrasting neutral and adaptive evolution in F. heteroclitus populations, we conclude that adaptive evolution can occur readily and rapidly, at least in part because it depends on large amounts of standing genetic variation among many genes that can alter physiological traits. These observations of polygenic adaptation enhance our understanding of how evolution and physiological adaptation progresses, thus informing both biological and medical scientists about genotype-phenotype relationships. © 2020 American Physiological Society. Compr Physiol 10:637-671, 2020.

  • phenotypic plasticity in gene expression contributes to divergence of locally adapted populations of Fundulus heteroclitus
    Molecular Ecology, 2015
    Co-Authors: David I Dayan, Douglas L Crawford, Marjorie F Oleksiak
    Abstract:

    We examine the interaction between phenotypic plasticity and evolutionary adaptation using muscle gene expression levels among populations of the fish Fundulus heteroclitus acclimated to three temperatures. Our analysis reveals shared patterns of phenotypic plasticity due to thermal acclimation as well as non-neutral patterns of variation among populations adapted to different thermal environments. For the majority of significant differences in gene expression levels, phenotypic plasticity and adaptation operate on different suites of genes. The subset of genes that demonstrate both adaptive differences and phenotypic plasticity, however, exhibit countergradient variation of expression. Thus, expression differences among populations counteract environmental effects, reducing the phenotypic differentiation between populations. Finally, gene-by-environment interactions among genes with non-neutral patterns of expression suggest that the penetrance of adaptive variation depends on the environmental conditions experienced by the individual.

  • rna seq reveals complex genetic response to deepwater horizon oil release in Fundulus grandis
    BMC Genomics, 2012
    Co-Authors: Tzintzuni Garcia, Andrew Whitehead, Marjorie F Oleksiak, Douglas L Crawford, Yingjia Shen, Ronald B Walter
    Abstract:

    The release of oil resulting from the blowout of the Deepwater Horizon (DH) drilling platform was one of the largest in history discharging more than 189 million gallons of oil and subject to widespread application of oil dispersants. This event impacted a wide range of ecological habitats with a complex mix of pollutants whose biological impact is still not yet fully understood. To better understand the effects on a vertebrate genome, we studied gene expression in the salt marsh minnow Fundulus grandis, which is local to the northern coast of the Gulf of Mexico and is a sister species of the ecotoxicological model Fundulus heteroclitus. To assess genomic changes, we quantified mRNA expression using high throughput sequencing technologies (RNA-Seq) in F. grandis populations in the marshes and estuaries impacted by DH oil release. This application of RNA-Seq to a non-model, wild, and ecologically significant organism is an important evaluation of the technology to quickly assess similar events in the future. Our de novo assembly of RNA-Seq data produced a large set of sequences which included many duplicates and fragments. In many cases several of these could be associated with a common reference sequence using blast to query a reference database. This reduced the set of significant genes to 1,070 down-regulated and 1,251 up-regulated genes. These genes indicate a broad and complex genomic response to DH oil exposure including the expected AHR-mediated response and CYP genes. In addition a response to hypoxic conditions and an immune response are also indicated. Several genes in the choriogenin family were down-regulated in the exposed group; a response that is consistent with AH exposure. These analyses are in agreement with oligonucleotide-based microarray analyses, and describe only a subset of significant genes with aberrant regulation in the exposed set. RNA-Seq may be successfully applied to feral and extremely polymorphic organisms that do not have an underlying genome sequence assembly to address timely environmental problems. Additionally, the observed changes in a large set of transcript expression levels are indicative of a complex response to the varied petroleum components to which the fish were exposed.

  • transcriptomic assessment of resistance to effects of an aryl hydrocarbon receptor ahr agonist in embryos of atlantic killifish Fundulus heteroclitus from a marine superfund site
    BMC Genomics, 2011
    Co-Authors: Marjorie F Oleksiak, Matthew J. Jenny, Sibel I Karchner, Diana G Franks, David Mark B Welch, Mark E Hahn
    Abstract:

    Background Populations of Atlantic killifish (Fundulus heteroclitus) have evolved resistance to the embryotoxic effects of polychlorinated biphenyls (PCBs) and other halogenated and nonhalogenated aromatic hydrocarbons that act through an aryl hydrocarbon receptor (AHR)-dependent signaling pathway. The resistance is accompanied by reduced sensitivity to induction of cytochrome P450 1A (CYP1A), a widely used biomarker of aromatic hydrocarbon exposure and effect, but whether the reduced sensitivity is specific to CYP1A or reflects a genome-wide reduction in responsiveness to all AHR-mediated changes in gene expression is unknown. We compared gene expression profiles and the response to 3,3',4,4',5-pentachlorobiphenyl (PCB-126) exposure in embryos (5 and 10 dpf) and larvae (15 dpf) from F. heteroclitus populations inhabiting the New Bedford Harbor, Massachusetts (NBH) Superfund site (PCB-resistant) and a reference site, Scorton Creek, Massachusetts (SC; PCB-sensitive).

Cole W. Matson - One of the best experts on this subject based on the ideXlab platform.

  • Silver toxicity across salinity gradients: the role of dissolved silver chloride species (AgCl x ) in Atlantic killifish (Fundulus heteroclitus) and medaka (Oryzias latipes) early life-stage toxicity
    Ecotoxicology, 2016
    Co-Authors: Cole W. Matson, Audrey J. Bone, Mélanie Auffan, T. Ty Lindberg, Mariah C. Arnold, Heileen Hsu-kim, Mark R. Wiesner, Richard T. Di Giulio
    Abstract:

    The influence of salinity on Ag toxicity was investigated in Atlantic killifish (Fundulus heteroclitus) early life-stages. Embryo mortality was significantly reduced as salinity increased and Ag+ was converted to AgCl(solid). However, as salinity continued to rise (>5 ‰), toxicity increased to a level at least as high as observed for Ag+ in deionized water. Rather than correlating with Ag+, Fundulus embryo toxicity was better explained (R2 = 0.96) by total dissolved Ag (Ag+, AgCl2 −, AgCl3 2−, AgCl4 3−). Complementary experiments were conducted with medaka (Oryzias latipes) embryos to determine if this pattern was consistent among evolutionarily divergent euryhaline species. Contrary to Fundulus data, medaka toxicity data were best explained by Ag+ concentrations (R2 = 0.94), suggesting that differing ionoregulatory physiology may drive observed differences. Fundulus larvae were also tested, and toxicity did increase at higher salinities, but did not track predicted silver speciation. Alternatively, toxicity began to increase only at salinities above the isosmotic point, suggesting that shifts in osmoregulatory strategy at higher salinities might be an important factor. Na+ dysregulation was confirmed as the mechanism of toxicity in Ag-exposed Fundulus larvae at both low and high salinities. While Ag uptake was highest at low salinities for both Fundulus embryos and larvae, uptake was not predictive of toxicity.

  • evolved resistance to pcb and pah induced cardiac teratogenesis and reduced cyp1a activity in gulf killifish Fundulus grandis populations from the houston ship channel texas
    Aquatic Toxicology, 2014
    Co-Authors: Elias M Oziolor, Emilie Bigorgne, Lissette Aguilar, Sascha Usenko, Cole W. Matson
    Abstract:

    The Houston Ship Channel (HSC), connecting Houston, Texas to Galveston Bay and ultimately the Gulf of Mexico, is heavily industrialized and includes several areas that have historically been identified as containing significant levels of mercury, dioxins, furans, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). Gulf killifish, Fundulus grandis, inhabit this entire estuarine system, including the most contaminated areas. F. grandis is the sister species of the well-established estuarine model organism Fundulus heteroclitus, for which heritable resistance to both PCB and PAH toxicity has been documented in several populations. F. grandis collected from two Superfund sites on the HSC and from a reference population were used to establish breeding colonies. F1 embryos from HSC populations were approximately 1000-fold more resistant to PCB126- and 2–5-fold more resistant to coal tar-induced cardiovascular teratogenesis, relative to embryos from the reference population. Reciprocal crosses between reference and contaminated populations exhibit an intermediate level of resistance, confirming that observed protection is genetic and biparentally inherited. Ethoxyresorufin-O-deethylase (EROD) data confirm a reduction in basal and induced cytochrome P4501A (CYP1A) activity in resistant populations of F. grandis. This result is consistent with responses previously described for resistant populations of F. heteroclitus, specifically a recalcitrant aryl hydrocarbon receptor (AHR) pathway. The decreased levels of cardiovascular teratogenesis, and decrease in CYP1A inducibility in response to PCB126 and a PAH mixture, suggest that HSC F. grandis populations have adapted to chronic contaminants exposures via a mechanism similar to that previously described for F. heteroclitus. To the best of our knowledge, this is the first documentation of evolved pollution resistance in F. grandis. Additionally, the mechanistic similarities between the population adaptation observed in this study and previous work in F. heteroclitus suggest that genetic variation predating the evolutionary divergence of these two species may best explain the apparent rapid parallel evolution of pollution resistance in genetically and geographically distinct species and populations.

  • ahr2 mediates cardiac teratogenesis of polycyclic aromatic hydrocarbons and pcb 126 in atlantic killifish Fundulus heteroclitus
    Aquatic Toxicology, 2010
    Co-Authors: Bryan W. Clark, Dawoon Jung, Cole W. Matson, Richard T. Di Giulio
    Abstract:

    Exposure of developing fish to polycyclic aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons (HAHs) results in a suite of defects including cardiac malformation, pericardial and yolk sac edema, craniofacial defects, and hemorrhaging. Several populations of Atlantic killifish or mummichog (Fundulus heteroclitus) on the Atlantic coast of the United States are resistant to the developmental and acute toxicity caused by PAHs and HAHs; this has made Fundulus a valuable model for studying aryl hydrocarbon sensitivity and adaptation. In order to further increase the utility of Fundulus, better understanding of the components of the molecular pathways governing aryl hydrocarbon response in Fundulus is required. The aryl hydrocarbon receptor (AHR) is known to mediate many of the toxic responses to PAHs and HAHs. A single AHR has been identified in mammals, but Fundulus has two AHRs and their relative roles are not clear. In the current study, translation-blocking and splice-junction morpholino gene knockdown was used to determine the roles of AHR1 and AHR2 in mediating cardiac teratogenesis induced by β-naphthoflavone (BNF), benzo[k]fluoranthene (BkF), and 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126). Here we report that AHR2 and not AHR1 knockdown resulted in rescue of teratogenicity induced by BNF, BkF, and PCB-126. These data demonstrate that AHR2 is the primary mediator of cardiac teratogenesis caused by multiple aryl hydrocarbons in Fundulus and suggest that suppression of the AHR pathway through modulation of AHR2 is a plausible mechanism for PAH resistance in adapted fish. Additionally, this is the first reported use of splice-junction morpholinos in Fundulus.

  • Development of the morpholino gene knockdown technique in Fundulus heteroclitus: a tool for studying molecular mechanisms in an established environmental model.
    Aquatic Toxicology, 2008
    Co-Authors: Cole W. Matson, Bryan W. Clark, Matthew J. Jenny, Carrie R. Fleming, Mark E Hahn, Richard T. Di Giulio
    Abstract:

    A significant challenge in environmental toxicology is that many genetic and genomic tools available in laboratory models are not developed for commonly used environmental models. The Atlantic killifish (Fundulus heteroclitus) is one of the most studied teleost environmental models, yet few genetic or genomic tools have been developed for use in this species. The advancement of genetic and evolutionary toxicology will require that many of the tools developed in laboratory models be transferred into species more applicable to environmental toxicology. Antisense morpholino oligonucleotide (MO) gene knockdown technology has been widely utilized to study development in zebrafish and has been proven to be a powerful tool in toxicological investigations through direct manipulation of molecular pathways. To expand the utility of killifish as an environmental model, MO gene knockdown technology was adapted for use in Fundulus. Morpholino microinjection methods were altered to overcome the significant differences between these two species. Morpholino efficacy and functional duration were evaluated with molecular and phenotypic methods. A cytochrome P450-1A (CYP1A) MO was used to confirm effectiveness of the methodology. For CYP1A MO-injected embryos, a 70% reduction in CYP1A activity, a 86% reduction in total CYP1A protein, a significant increase in β-naphthoflavone-induced teratogenicity, and estimates of functional duration (50% reduction in activity 10 dpf, and 86% reduction in total protein 12 dpf) conclusively demonstrated that MO technologies can be used effectively in killifish and will likely be just as informative as they have been in zebrafish.

Mark E Hahn - One of the best experts on this subject based on the ideXlab platform.

  • transcriptomic assessment of resistance to effects of an aryl hydrocarbon receptor ahr agonist in embryos of atlantic killifish Fundulus heteroclitus from a marine superfund site
    BMC Genomics, 2011
    Co-Authors: Marjorie F Oleksiak, Matthew J. Jenny, Sibel I Karchner, Diana G Franks, David Mark B Welch, Mark E Hahn
    Abstract:

    Background Populations of Atlantic killifish (Fundulus heteroclitus) have evolved resistance to the embryotoxic effects of polychlorinated biphenyls (PCBs) and other halogenated and nonhalogenated aromatic hydrocarbons that act through an aryl hydrocarbon receptor (AHR)-dependent signaling pathway. The resistance is accompanied by reduced sensitivity to induction of cytochrome P450 1A (CYP1A), a widely used biomarker of aromatic hydrocarbon exposure and effect, but whether the reduced sensitivity is specific to CYP1A or reflects a genome-wide reduction in responsiveness to all AHR-mediated changes in gene expression is unknown. We compared gene expression profiles and the response to 3,3',4,4',5-pentachlorobiphenyl (PCB-126) exposure in embryos (5 and 10 dpf) and larvae (15 dpf) from F. heteroclitus populations inhabiting the New Bedford Harbor, Massachusetts (NBH) Superfund site (PCB-resistant) and a reference site, Scorton Creek, Massachusetts (SC; PCB-sensitive).

  • Development of the morpholino gene knockdown technique in Fundulus heteroclitus: a tool for studying molecular mechanisms in an established environmental model.
    Aquatic Toxicology, 2008
    Co-Authors: Cole W. Matson, Bryan W. Clark, Matthew J. Jenny, Carrie R. Fleming, Mark E Hahn, Richard T. Di Giulio
    Abstract:

    A significant challenge in environmental toxicology is that many genetic and genomic tools available in laboratory models are not developed for commonly used environmental models. The Atlantic killifish (Fundulus heteroclitus) is one of the most studied teleost environmental models, yet few genetic or genomic tools have been developed for use in this species. The advancement of genetic and evolutionary toxicology will require that many of the tools developed in laboratory models be transferred into species more applicable to environmental toxicology. Antisense morpholino oligonucleotide (MO) gene knockdown technology has been widely utilized to study development in zebrafish and has been proven to be a powerful tool in toxicological investigations through direct manipulation of molecular pathways. To expand the utility of killifish as an environmental model, MO gene knockdown technology was adapted for use in Fundulus. Morpholino microinjection methods were altered to overcome the significant differences between these two species. Morpholino efficacy and functional duration were evaluated with molecular and phenotypic methods. A cytochrome P450-1A (CYP1A) MO was used to confirm effectiveness of the methodology. For CYP1A MO-injected embryos, a 70% reduction in CYP1A activity, a 86% reduction in total CYP1A protein, a significant increase in β-naphthoflavone-induced teratogenicity, and estimates of functional duration (50% reduction in activity 10 dpf, and 86% reduction in total protein 12 dpf) conclusively demonstrated that MO technologies can be used effectively in killifish and will likely be just as informative as they have been in zebrafish.

  • Fundulus as the premier teleost model in environmental biology opportunities for new insights using genomics
    Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2007
    Co-Authors: Karen G Burnett, Mark E Hahn, Richard T. Di Giulio, Lisa J Bain, William S Baldwin, Gloria V Callard, Sarah Cohen, David H Evans, Marta Gomezchiarri, Cindi A Hoover
    Abstract:

    A strong foundation of basic and applied research documents that the estuarine fish Fundulus heteroclitus and related species are unique laboratory and field models for understanding how individuals and populations interact with their environment. In this paper we summarize an extensive body of work examining the adaptive responses of Fundulus species to environmental conditions, and describe how this research has contributed importantly to our understanding of physiology, gene regulation, toxicology, and ecological and evolutionary genetics of teleosts and other vertebrates. These explorations have reached a critical juncture at which advancement is hindered by the lack of genomic resources for these species. We suggest that a more complete genomics toolbox for F. heteroclitus and related species will permit researchers to exploit the power of this model organism to rapidly advance our understanding of fundamental biological and pathological mechanisms among vertebrates, as well as ecological strategies and evolutionary processes common to all living organisms.

  • identification and functional characterization of hypoxia inducible factor 2α from the estuarine teleost Fundulus heteroclitus interaction of hif 2α with two arnt2 splice variants
    Journal of Experimental Zoology, 2002
    Co-Authors: Wade H. Powell, Mark E Hahn
    Abstract:

    The hypoxia-inducible factors (HIFs) are dimeric transcription factors that mediate changes in gene expression during adaptation of animals to oxygen stress. Both alpha (HIFα) and beta (ARNT) subunits are members of the basic helix-loop-helix/Per-ARNT-Sim family of proteins. Mammals have at least three different HIF-α subunits, paralogous proteins expressed in tissue-specific fashion (HIF-1α, HIF-2α, and HIF-3α). However, the diversity and functional properties of teleost HIFs are poorly understood. In efforts to characterize mechanisms of hypoxia adaptation in estuarine fish, we have isolated cDNAs encoding HIF subunits from Fundulus heteroclitus (Atlantic killifish or mummichog), including a HIF-2α homolog and ARNT2alt, a splice variant of ARNT2 that contains an additional exon encoding 16 amino acids near the amino terminus. HIF-2α protein synthesized in vitro binds cognate DNA elements in concert with either Fundulus ARNT2 splice variant or murine ARNT1. HIF-2α, ARNT2, and ARNT2alt mRNAs are expressed in all organs examined. The HIF-2α cDNA encodes a protein of 96.4 kDa, sharing 53–54% identity with mammalian and avian orthologs. The oxygen-dependent degradation domain, however, exhibits substantial divergence from well-conserved mammalian sequences, suggesting the possibility of important functional differences, perhaps in the sensitivity to induction of activity by hypoxia. Hypoxia-tolerant fishes such as F. heteroclitus represent a unique opportunity for the study of functional and evolutionary aspects of adaptation to hypoxia at the molecular, cellular, and organismal levels. This study extends the understanding of hypoxia signaling in fish, the evolution and diversity of HIF function, and the evolution of the PAS family of proteins. J. Exp. Zool. (Mol. Dev. Evol.) 294:17–29, 2002. © 2002 Wiley-Liss, Inc.

  • 2 3 7 8 tetrachlorodibenzo p dioxin induces apoptotic cell death and cytochrome p4501a expression in developing Fundulus heteroclitus embryos
    Aquatic Toxicology, 2001
    Co-Authors: Barbara Holland Toomey, Mark E Hahn, Susan M Bello, Susannah M Cantrell, Peggy Wright, Donald E Tillitt, Richard T. Di Giulio
    Abstract:

    Fundulus heteroclitus embryos were exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during early development using nanoinjection or water bath exposure. TCDD caused developmental abnormalities that included hemorrhaging, loss of vascular integrity, edema, stunted development and death. The LC50 and LD50 of TCDD for Fundulus embryos were ∼19.7±9.5 pg TCDD/μl (water bath) and 0.25±0.09 ng TCDD/g embryo (nanoinjection). To identify a possible cause for these developmental abnormalities we analyzed the effects of TCDD on apoptotic cell death and cytochrome P4501A (CYP1A) expression in the embryos. TCDD exposure increased apoptotic cell death in several tissues including brain, eye, gill, kidney, tail, intestine, heart, and vascular tissue. CYP1A expression was also increased in the TCDD-exposed embryos predominantly in liver, kidney, gill, heart, intestine, and in vascular tissues throughout the embryo. There was co-occurrence of TCDD-induced apoptosis and CYP1A expression in some, but not all, cell types. In addition the dose response relationships for apoptosis and mortality were similar, while CYP1A expression appeared more sensitive to TCDD induction.