Furanose

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 2256 Experts worldwide ranked by ideXlab platform

Thomas K Wood - One of the best experts on this subject based on the ideXlab platform.

  • the natural furanone 5z 4 bromo 5 bromomethylene 3 butyl 2 5h furanone disrupts quorum sensing regulated gene expression in vibrio harveyi by decreasing the dna binding activity of the transcriptional regulator protein luxr
    Environmental Microbiology, 2007
    Co-Authors: Carol M Miyamoto, Tom Defoirdt, Patrick Sorgeloos, Thomas K Wood, Edward A Meighen, Willy Verstraete
    Abstract:

    This study aimed at getting a deeper insight in the molecular mechanism by which the natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing in Vibrio harveyi. Bioluminescence experiments with signal molecule receptor double mutants revealed that the furanone blocks all three channels of the V. harveyi quorum sensing system. In further experiments using mutants with mutations in the quorum sensing signal transduction pathway, the compound was found to block quorum sensing-regulated bioluminescence by interacting with a component located downstream of the Hfq protein. Furthermore, reverse transcriptase real-time polymerase chain reaction with specific primers showed that there was no effect of the furanone on luxR(Vh) mRNA levels in wild-type V. harveyi cells. In contrast, mobility shift assays showed that in the presence of the furanone, significantly lower levels of the LuxR(Vh) response regulator protein were able to bind to its target promoter sequences in wild-type V. harveyi. Finally, tests with purified LuxR(Vh) protein also showed less shifts with furanone-treated LuxR(Vh), whereas the LuxR(Vh) concentration was found not to be altered by the furanone (as determined by SDS-PAGE). Therefore, our data indicate that the furanone blocks quorum sensing in V. harveyi by rendering the quorum sensing master regulator protein LuxR(Vh) unable to bind to the promoter sequences of quorum sensing-regulated genes.

  • Differential gene expression shows natural brominated furanones interfere with the autoinducer-2 bacterial signaling system of Escherichia coli.
    Biotechnology and Bioengineering, 2004
    Co-Authors: Dacheng Ren, Laura A. Bedzyk, Stuart M. Thomas, Thomas K Wood
    Abstract:

    The quorum sensing disrupter (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone (furanone) of the alga Delisea pulchra was previously found by us (Environ Microbiol 3:731-736, 2001) to inhibit quorum sensing in Escherichia coli via autoinducer-2 (AI-2, produced by LuxS). In this study, DNA microarrays were used to study the genetic basis of this natural furanone inhibition of AI-2 signaling (significant values with p < 0.05 are reported). Using DNA microarrays, the AI-2 mutant Escherichia coli DH5alpha was compared with the AI-2 wild-type strain, E. coli K12, to determine how AI-2 influenced gene expression. Escherichia coli K12 was also grown with 0 and 60 microg/mL furanone to study the inhibition of quorum sensing gene expression. It was found that 166 genes were differentially expressed by AI-2 (67 were induced and 99 were repressed) and 90 genes were differentially expressed by furanone (34 were induced and 56 were repressed). Importantly, 79% (44 out of 56) of the genes repressed by furanone were induced by AI-2, which indicated that furanone inhibited AI-2 signaling and influenced the same suite of genes as a regulon. Most of these genes have functions of chemotaxis, motility, and flagellar synthesis. Interestingly, the aerotaxis genes aer and tsr were discovered to be induced by AI-2 and repressed by furanone. Representative microarray results were confirmed by RNA dot blotting. Furthermore, the E. coli air-liquid interface biofilm formation was repressed by furanone, supporting the results that taxis and flagellar genes were repressed by furanone. The autoinducer bioassay indicated that 100 microg/mL furanone decreased the extracellular concentration of AI-2 2-fold, yet luxS and pfs transcription were not significantly altered. Hence, furanone appeared to alter AI-2 signaling post-transcriptionally.

  • Differential Gene Expression To Investigate the Effect of (5Z)-4-Bromo- 5-(Bromomethylene)-3-Butyl-2(5H)-Furanone on Bacillus subtilis
    2004
    Co-Authors: Stuart M. Thomas, Thomas K Wood
    Abstract:

    (5Z)-4-Bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone (furanone) from the red marine alga Delisea pulchra was found previously to inhibit the growth, swarming, and biofilm formation of gram-positive bacteria. Using the gram-positive bacterium Bacillus subtilis as a test organism, we observed cell killing by 20 g of furanone per ml, while 5 g of furanone per ml inhibited growth approximately twofold without killing the cells. To discover the mechanism of this inhibition on a genetic level and to investigate furanone as a novel antibiotic, full-genome DNA microarrays were used to analyze the gene expression profiles of B. subtilis grown with and without 5 g of furanone per ml. This agent induced 92 genes more than fivefold (P < 0.05) and repressed 15 genes more than fivefold (P < 0.05). The induced genes include genes involved in stress responses (such as the class III heat shock genes clpC, clpE, and ctsR and the class I heat shock genes groES, but no class II or IV heat shock genes), fatty acid biosynthesis, lichenan degradation, transport, and metabolism, as well as 59 genes with unknown functions. The microarray results for four genes were confirmed by RNA dot blotting. Mutation of a stress response gene, clpC, caused B. subtilis to be much more sensitive to 5 g of furanone per ml (there was no growth in 8 h, while the wild-type strain grew to the stationary phase in 8 h) and confirme

Willy Verstraete - One of the best experts on this subject based on the ideXlab platform.

  • the natural furanone 5z 4 bromo 5 bromomethylene 3 butyl 2 5h furanone disrupts quorum sensing regulated gene expression in vibrio harveyi by decreasing the dna binding activity of the transcriptional regulator protein luxr
    Environmental Microbiology, 2007
    Co-Authors: Carol M Miyamoto, Tom Defoirdt, Patrick Sorgeloos, Thomas K Wood, Edward A Meighen, Willy Verstraete
    Abstract:

    This study aimed at getting a deeper insight in the molecular mechanism by which the natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing in Vibrio harveyi. Bioluminescence experiments with signal molecule receptor double mutants revealed that the furanone blocks all three channels of the V. harveyi quorum sensing system. In further experiments using mutants with mutations in the quorum sensing signal transduction pathway, the compound was found to block quorum sensing-regulated bioluminescence by interacting with a component located downstream of the Hfq protein. Furthermore, reverse transcriptase real-time polymerase chain reaction with specific primers showed that there was no effect of the furanone on luxR(Vh) mRNA levels in wild-type V. harveyi cells. In contrast, mobility shift assays showed that in the presence of the furanone, significantly lower levels of the LuxR(Vh) response regulator protein were able to bind to its target promoter sequences in wild-type V. harveyi. Finally, tests with purified LuxR(Vh) protein also showed less shifts with furanone-treated LuxR(Vh), whereas the LuxR(Vh) concentration was found not to be altered by the furanone (as determined by SDS-PAGE). Therefore, our data indicate that the furanone blocks quorum sensing in V. harveyi by rendering the quorum sensing master regulator protein LuxR(Vh) unable to bind to the promoter sequences of quorum sensing-regulated genes.

D Marzin - One of the best experts on this subject based on the ideXlab platform.

  • genotoxic activity of chlorohydroxyfuranones in the microscale micronucleus test on mouse lymphoma cells and the unscheduled dna synthesis assay in rat hepatocytes
    Mutagenesis, 1999
    Co-Authors: Frank Le Curieux, Leif Kronberg, Fabrice Nesslany, Tony Munter, D Marzin
    Abstract:

    Chlorohydroxyfuranones (CHFs) are mutagenic disinfection by-products found in chlorine-treated drinking water. In the current study, the genotoxicity of four CHFs, 3,4-dichloro-5-hydroxy-2(5H)-furanone (MCA), 3-chloro-4-methyl-5-hydroxy-2(5H)-furanone (MCF), 3-chloro-4-(chloromethyl)-5-hydroxy-2(5H)-furanone (CMCF) and 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), was determined. Two in vitro assays, the microscale micronucleus assay on L5178Y mouse lymphoma cells and the unscheduled DNA synthesis assay on a hepatocyte primary culture from Fisher F344 rats, were carried out. All four CHFs demonstrated genotoxic effects in both assays. In the two systems used, CMCF was the most genotoxic compound, followed by MCA, MX and MCF, respectively. This work was the first study of the DNA damaging properties of all four CHFs in two in vitro genotoxicity tests. These new data expand the range of genetic damages induced by this group of compounds.

Stuart M. Thomas - One of the best experts on this subject based on the ideXlab platform.

  • Differential gene expression shows natural brominated furanones interfere with the autoinducer-2 bacterial signaling system of Escherichia coli.
    Biotechnology and Bioengineering, 2004
    Co-Authors: Dacheng Ren, Laura A. Bedzyk, Stuart M. Thomas, Thomas K Wood
    Abstract:

    The quorum sensing disrupter (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone (furanone) of the alga Delisea pulchra was previously found by us (Environ Microbiol 3:731-736, 2001) to inhibit quorum sensing in Escherichia coli via autoinducer-2 (AI-2, produced by LuxS). In this study, DNA microarrays were used to study the genetic basis of this natural furanone inhibition of AI-2 signaling (significant values with p < 0.05 are reported). Using DNA microarrays, the AI-2 mutant Escherichia coli DH5alpha was compared with the AI-2 wild-type strain, E. coli K12, to determine how AI-2 influenced gene expression. Escherichia coli K12 was also grown with 0 and 60 microg/mL furanone to study the inhibition of quorum sensing gene expression. It was found that 166 genes were differentially expressed by AI-2 (67 were induced and 99 were repressed) and 90 genes were differentially expressed by furanone (34 were induced and 56 were repressed). Importantly, 79% (44 out of 56) of the genes repressed by furanone were induced by AI-2, which indicated that furanone inhibited AI-2 signaling and influenced the same suite of genes as a regulon. Most of these genes have functions of chemotaxis, motility, and flagellar synthesis. Interestingly, the aerotaxis genes aer and tsr were discovered to be induced by AI-2 and repressed by furanone. Representative microarray results were confirmed by RNA dot blotting. Furthermore, the E. coli air-liquid interface biofilm formation was repressed by furanone, supporting the results that taxis and flagellar genes were repressed by furanone. The autoinducer bioassay indicated that 100 microg/mL furanone decreased the extracellular concentration of AI-2 2-fold, yet luxS and pfs transcription were not significantly altered. Hence, furanone appeared to alter AI-2 signaling post-transcriptionally.

  • Differential Gene Expression To Investigate the Effect of (5Z)-4-Bromo- 5-(Bromomethylene)-3-Butyl-2(5H)-Furanone on Bacillus subtilis
    2004
    Co-Authors: Stuart M. Thomas, Thomas K Wood
    Abstract:

    (5Z)-4-Bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone (furanone) from the red marine alga Delisea pulchra was found previously to inhibit the growth, swarming, and biofilm formation of gram-positive bacteria. Using the gram-positive bacterium Bacillus subtilis as a test organism, we observed cell killing by 20 g of furanone per ml, while 5 g of furanone per ml inhibited growth approximately twofold without killing the cells. To discover the mechanism of this inhibition on a genetic level and to investigate furanone as a novel antibiotic, full-genome DNA microarrays were used to analyze the gene expression profiles of B. subtilis grown with and without 5 g of furanone per ml. This agent induced 92 genes more than fivefold (P < 0.05) and repressed 15 genes more than fivefold (P < 0.05). The induced genes include genes involved in stress responses (such as the class III heat shock genes clpC, clpE, and ctsR and the class I heat shock genes groES, but no class II or IV heat shock genes), fatty acid biosynthesis, lichenan degradation, transport, and metabolism, as well as 59 genes with unknown functions. The microarray results for four genes were confirmed by RNA dot blotting. Mutation of a stress response gene, clpC, caused B. subtilis to be much more sensitive to 5 g of furanone per ml (there was no growth in 8 h, while the wild-type strain grew to the stationary phase in 8 h) and confirme

Carol M Miyamoto - One of the best experts on this subject based on the ideXlab platform.

  • the natural furanone 5z 4 bromo 5 bromomethylene 3 butyl 2 5h furanone disrupts quorum sensing regulated gene expression in vibrio harveyi by decreasing the dna binding activity of the transcriptional regulator protein luxr
    Environmental Microbiology, 2007
    Co-Authors: Carol M Miyamoto, Tom Defoirdt, Patrick Sorgeloos, Thomas K Wood, Edward A Meighen, Willy Verstraete
    Abstract:

    This study aimed at getting a deeper insight in the molecular mechanism by which the natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing in Vibrio harveyi. Bioluminescence experiments with signal molecule receptor double mutants revealed that the furanone blocks all three channels of the V. harveyi quorum sensing system. In further experiments using mutants with mutations in the quorum sensing signal transduction pathway, the compound was found to block quorum sensing-regulated bioluminescence by interacting with a component located downstream of the Hfq protein. Furthermore, reverse transcriptase real-time polymerase chain reaction with specific primers showed that there was no effect of the furanone on luxR(Vh) mRNA levels in wild-type V. harveyi cells. In contrast, mobility shift assays showed that in the presence of the furanone, significantly lower levels of the LuxR(Vh) response regulator protein were able to bind to its target promoter sequences in wild-type V. harveyi. Finally, tests with purified LuxR(Vh) protein also showed less shifts with furanone-treated LuxR(Vh), whereas the LuxR(Vh) concentration was found not to be altered by the furanone (as determined by SDS-PAGE). Therefore, our data indicate that the furanone blocks quorum sensing in V. harveyi by rendering the quorum sensing master regulator protein LuxR(Vh) unable to bind to the promoter sequences of quorum sensing-regulated genes.