Fusarium fujikuroi

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 1653 Experts worldwide ranked by ideXlab platform

Bettina Tudzynski - One of the best experts on this subject based on the ideXlab platform.

  • Secondary metabolism in Fusarium fujikuroi: strategies to unravel the function of biosynthetic pathways
    Applied Microbiology and Biotechnology, 2017
    Co-Authors: Slavica Janevska, Bettina Tudzynski
    Abstract:

    The fungus Fusarium fujikuroi causes bakanae disease of rice due to its ability to produce the plant hormones, the gibberellins. The fungus is also known for producing harmful mycotoxins (e.g., fusaric acid and fusarins) and pigments (e.g., bikaverin and fusarubins). However, for a long time, most of these well-known products could not be linked to biosynthetic gene clusters. Recent genome sequencing has revealed altogether 47 putative gene clusters. Most of them were orphan clusters for which the encoded natural product(s) were unknown. In this review, we describe the current status of our research on identification and functional characterizations of novel secondary metabolite gene clusters. We present several examples where linking known metabolites to the respective biosynthetic genes has been achieved and describe recent strategies and methods to access new natural products, e.g., by genetic manipulation of pathway-specific or global transcritption factors. In addition, we demonstrate that deletion and over-expression of histone-modifying genes is a powerful tool to activate silent gene clusters and to discover their products.

  • A Fungal N-Dimethylallyltryptophan Metabolite from Fusarium fujikuroi.
    Chembiochem : a European journal of chemical biology, 2017
    Co-Authors: Birgit Arndt, Slavica Janevska, Bettina Tudzynski, Robin Schmid, Florian Hübner, Hans-ulrich Humpf
    Abstract:

    The range of secondary metabolites (SMs) produced by the rice pathogen Fusarium fujikuroi is quite broad. Several polyketides, nonribosomal peptides and terpenes have been identified. However, no products of dimethylallyltryptophan synthases (DMATSs) have been elucidated, although two putative DMATS genes are present in the F. fujikuroi genome. In this study, the in vivo product derived from one of the DMATSs (DMATS1, FFUJ_09179) was identified with the help of the software MZmine 2. Detailed structure elucidation showed that this metabolite is a reversely N-prenylated tryptophan with a rare form of prenylation. Further identified products probably resulted from side reactions of DMATS1. The genes adjacent to DMATS1 were analyzed; this showed no influence on the biosynthesis of the product.

  • Nitrate Assimilation in Fusarium fujikuroi Is Controlled by Multiple Levels of Regulation.
    Frontiers in microbiology, 2017
    Co-Authors: Andreas Pfannmüller, Jana M. Boysen, Bettina Tudzynski
    Abstract:

    Secondary metabolite production of the phytopathogenic ascomycete fungus Fusarium fujikuroi is greatly influenced by the availability of nitrogen. While favored nitrogen sources such as glutamine and ammonium are used preferentially, the uptake and utilization of nitrate is subject to a regulatory mechanism called nitrogen metabolite repression (NMR). In Aspergillus nidulans, the transcriptional control of the nitrate assimilatory system is carried out by the synergistic action of the nitrate-specific transcription factor NirA and the major nitrogen-responsive regulator AreA. In this study, we identified the main components of the nitrate assimilation system in F. fujikuroi and studied the role of each of them regarding the regulation of the remaining components. We analyzed mutants with deletions of the nitrate-specific activator NirA, the nitrate reductase (NR), the nitrite reductase (NiR) and the nitrate transporter NrtA. We show that NirA controls the transcription of the nitrate assimilatory genes NIAD, NIIA and NRTA in the presence of nitrate, and that the global nitrogen regulator AreA is obligatory for expression of most, but not all NirA target genes (NIAD). By transforming a NirA-GFP fusion construct into the ΔNIAD, ΔNRTA and ΔAREA mutant backgrounds we revealed that NirA was dispersed in the cytosol when grown in the presence of glutamine, but rapidly sorted to the nucleus when nitrate was added. Interestingly, the rapid and nitrate-induced nuclear translocation of NirA was observed also in the ΔAREA and ΔNRTA mutants, but not in ΔNIAD, suggesting that the fungus is able to directly sense nitrate in an AreA- and NrtA-independent, but NR-dependent manner.

  • The SAGA complex in the rice pathogen Fusarium fujikuroi: structure and functional characterization
    Molecular microbiology, 2016
    Co-Authors: Sarah M Rosler, Hans-ulrich Humpf, Katharina Kramer, Iris Finkemeier, Bettina Tudzynski
    Abstract:

    Post-translational modification of histones is a crucial mode of transcriptional regulation in eukaryotes. A well-described acetylation modifier of certain lysine residues is the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex assembled around the histone acetyltransferase Gcn5 in Saccharomyces cerevisiae. We identified and characterized the SAGA complex in the rice pathogen Fusarium fujikuroi, well-known for producing a large variety of secondary metabolites (SMs). By using a co-immunoprecipitation approach, almost all of the S. cerevisiae SAGA complex components have been identified, except for the ubiquitinating DUBm module and the chromodomain containing Chd1. Deletion of GCN5 led to impaired growth, loss of conidiation and alteration of SM biosynthesis. Furthermore, we show that Gcn5 is essential for the acetylation of several histone 3 lysines in F. fujikuroi, i.e. H3K4, H3K9, H3K18 and H3K27. A genome-wide microarray analysis revealed differential expression of about 30% of the genome with an enrichment of genes involved in primary and secondary metabolism, transport and histone modification. HPLC-based analysis of known SMs revealed significant alterations in the Δgcn5 mutant. While most SM genes were activated by Gcn5 activity, the biosynthesis of the pigment bikaverin was strongly increased upon GCN5 deletion underlining the diverse roles of the SAGA complex in F. fujikuroi. This article is protected by copyright. All rights reserved.

  • mechanistische charakterisierung von zwei sesquiterpen cyclasen aus dem phytopathogenen pilz Fusarium fujikuroi
    Angewandte Chemie, 2016
    Co-Authors: Immo Burkhardt, Bettina Tudzynski, Thomas Siemon, Matthias Henrot, Lena Studt, Sarah M Rosler, Mathias Christmann, Jeroen S. Dickschat
    Abstract:

    Zwei Sesquiterpencyclasen aus Fusarium fujikuroi wurden in Escherichia coli exprimiert und gereinigt. Das erste Enzym war wegen einer kritischen Mutation inaktiv, die Aktivitat konnte aber durch Sequenzkorrektur per ortsgerichteter Mutagenese wiederhergestellt werden. Das mutierte Enzym und zwei naturlicherweise funktionale Homologe aus anderen Fusarien konvertierten Farnesyldiphosphat zu Guaia-6,10(14)-dien. Das zweite Enzym produzierte Eremophilen. Die absolute Konfiguration von Guaia-6,10(14)-dien wurde durch enantioselektive Synthese aufgeklart, wahrend die des Eremophilens aus dem Vorzeichen der optischen Drehung ableitbar war und derjenigen aus Pflanzen entgegengesetzt ist, aber mit der aus Sorangium cellulosum ubereinstimmt. Die Mechanismen beider Terpencyclasen wurden mithilfe diverser 13C- und 2H-markierter FPP-Isotopomere studiert.

Javier Avalos - One of the best experts on this subject based on the ideXlab platform.

  • Neurosporaxanthin Overproduction by Fusarium fujikuroi and Evaluation of Its Antioxidant Properties.
    Antioxidants (Basel Switzerland), 2020
    Co-Authors: Obdulia Parra-rivero, M. Carmen Limón, Marcelo Paes De Barros, Maria Del Mar Prado, José-vicente Gil, Dámaso Hornero-méndez, Lorenzo Zacarías, María Jesús Rodrigo, Javier Avalos
    Abstract:

    Neurosporaxanthin (NX) is a carboxylic carotenoid produced by some filamentous fungi, including species of the genera Neurospora and Fusarium. NX biosynthetic genes and their regulation have been thoroughly investigated in Fusarium fujikuroi, an industrial fungus used for gibberellin production. In this species, carotenoid-overproducing mutants, affected in the regulatory gene carS, exhibit an upregulated expression of the NX pathway. Based on former data on a stimulatory effect of nitrogen starvation on carotenoid biosynthesis, we developed culture conditions with carS mutants allowing the production of deep-pigmented mycelia. With this method, we obtained samples with ca. 8 mg NX/g dry mass, in turn the highest concentration for this carotenoid described so far. NX-rich extracts obtained from these samples were used in parallel with carS-complemented NX-poor extracts obtained under the same conditions, to check the antioxidant properties of this carotenoid in in vitro assays. NX-rich extracts exhibited higher antioxidant capacity than NX-poor extracts, either when considering their quenching activity against [O2(1g)] in organic solvent (singlet oxygen absorption capacity (SOAC) assays) or their scavenging activity against different free radicals in aqueous solution and in liposomes. These results make NX a promising carotenoid as a possible feed or food additive, and encourage further studies on its chemical properties.

  • Protein Activity of the Fusarium fujikuroi Rhodopsins CarO and OpsA and Their Relation to Fungus–Plant Interaction
    International journal of molecular sciences, 2018
    Co-Authors: Alexander Adam, Javier Avalos, Jorge García-martínez, Stephan Deimel, Javier Pardo-medina, Tilen Konte, María Carmen Limón, Ulrich Terpitz
    Abstract:

    Fungi possess diverse photosensory proteins that allow them to perceive different light wavelengths and to adapt to changing light conditions in their environment. The biological and physiological roles of the green light-sensing rhodopsins in fungi are not yet resolved. The rice plant pathogen Fusarium fujikuroi exhibits two different rhodopsins, CarO and OpsA. CarO was previously characterized as a light-driven proton pump. We further analyzed the pumping behavior of CarO by patch-clamp experiments. Our data show that CarO pumping activity is strongly augmented in the presence of the plant hormone indole-3-acetic acid and in sodium acetate, in a dose-dependent manner under slightly acidic conditions. By contrast, under these and other tested conditions, the Neurospora rhodopsin (NR)-like rhodopsin OpsA did not exhibit any pump activity. Basic local alignment search tool (BLAST) searches in the genomes of ascomycetes revealed the occurrence of rhodopsin-encoding genes mainly in phyto-associated or phytopathogenic fungi, suggesting a possible correlation of the presence of rhodopsins with fungal ecology. In accordance, rice plants infected with a CarO-deficient F. fujikuroi strain showed more severe bakanae symptoms than the reference strain, indicating a potential role of the CarO rhodopsin in the regulation of plant infection by this fungus.

  • protein activity of the Fusarium fujikuroi rhodopsins caro and opsa and their relation to fungus plant interaction
    International Journal of Molecular Sciences, 2018
    Co-Authors: Alexander Adam, Javier Avalos, Stephan Deimel, Tilen Konte, María Carmen Limón, Javier Pardomedina, Jorge Garciamartinez, Ulrich Terpitz
    Abstract:

    Fungi possess diverse photosensory proteins that allow them to perceive different light wavelengths and to adapt to changing light conditions in their environment. The biological and physiological roles of the green light-sensing rhodopsins in fungi are not yet resolved. The rice plant pathogen Fusarium fujikuroi exhibits two different rhodopsins, CarO and OpsA. CarO was previously characterized as a light-driven proton pump. We further analyzed the pumping behavior of CarO by patch-clamp experiments. Our data show that CarO pumping activity is strongly augmented in the presence of the plant hormone indole-3-acetic acid and in sodium acetate, in a dose-dependent manner under slightly acidic conditions. By contrast, under these and other tested conditions, the Neurospora rhodopsin (NR)-like rhodopsin OpsA did not exhibit any pump activity. Basic local alignment search tool (BLAST) searches in the genomes of ascomycetes revealed the occurrence of rhodopsin-encoding genes mainly in phyto-associated or phytopathogenic fungi, suggesting a possible correlation of the presence of rhodopsins with fungal ecology. In accordance, rice plants infected with a CarO-deficient F. fujikuroi strain showed more severe bakanae symptoms than the reference strain, indicating a potential role of the CarO rhodopsin in the regulation of plant infection by this fungus.

  • Biochemical Characterization of the DASH‐Type Cryptochrome CryD From Fusarium fujikuroi
    Photochemistry and photobiology, 2015
    Co-Authors: Marta Castrillo, Javier Avalos, Adrian Bernhardt, Alfred Batschauer, Richard Pokorny
    Abstract:

    Proteins from the cryptochrome/photolyase family utilize UV-A, blue or even red light to achieve such diverse functions as repair of DNA lesions by photolyases and signaling by cryptochromes. DASH-type cryptochromes retained the ability to repair cyclobutane pyrimidine dimers (CPDs) in single-stranded DNA regions in vitro. However, most organisms possess conventional CPD photolyases responsible for repair of these lesions in vivo. Recent work showed that the DASH-type cryptochrome CryD plays a regulatory role in diverse light-dependent processes in Fusarium fujikuroi. Here, we report our in vitro studies on heterologously expressed FfCryD. The purified protein contains N(5) ,N(10) -methenyltetrahydrofolate and flavin adenine dinucleotide as cofactors. Photoreduction and DNA photorepair experiments confirmed that FfCryD is active in light-driven electron transfer processes. However, the protein showed comparable affinities for CPD-comprising and undamaged DNA probes. Surprisingly, after purification, full-length FfCryD as well as a truncated version containing only the PHR domain bound RNA which influenced their behavior in vitro. Moreover, binding of FfCryD to RNA indicates a putative role in RNA metabolism or in posttranscriptional control of gene expression.

  • The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination
    Scientific reports, 2015
    Co-Authors: Jorge García-martínez, Javier Avalos, Michael G. K. Brunk, Ulrich Terpitz
    Abstract:

    Rhodopsins are membrane-embedded photoreceptors found in all major taxonomic kingdoms using retinal as their chromophore. They play well-known functions in different biological systems, but their roles in fungi remain unknown. The filamentous fungus Fusarium fujikuroi contains two putative rhodopsins, CarO and OpsA. The gene carO is light-regulated, and the predicted polypeptide contains all conserved residues required for proton pumping. We aimed to elucidate the expression and cellular location of the fungal rhodopsin CarO, its presumed proton-pumping activity and the possible effect of such function on F. fujikuroi growth. In electrophysiology experiments we confirmed that CarO is a green-light driven proton pump. Visualization of fluorescent CarO-YFP expressed in F. fujikuroi under control of its native promoter revealed higher accumulation in spores (conidia) produced by light-exposed mycelia. Germination analyses of conidia from carO− mutant and carO+ control strains showed a faster development of light-exposed carO− germlings. In conclusion, CarO is an active proton pump, abundant in light-formed conidia, whose activity slows down early hyphal development under light. Interestingly, CarO-related rhodopsins are typically found in plant-associated fungi, where green light dominates the phyllosphere. Our data provide the first reliable clue on a possible biological role of a fungal rhodopsin.

Hans-ulrich Humpf - One of the best experts on this subject based on the ideXlab platform.

  • A Fungal N-Dimethylallyltryptophan Metabolite from Fusarium fujikuroi.
    Chembiochem : a European journal of chemical biology, 2017
    Co-Authors: Birgit Arndt, Slavica Janevska, Bettina Tudzynski, Robin Schmid, Florian Hübner, Hans-ulrich Humpf
    Abstract:

    The range of secondary metabolites (SMs) produced by the rice pathogen Fusarium fujikuroi is quite broad. Several polyketides, nonribosomal peptides and terpenes have been identified. However, no products of dimethylallyltryptophan synthases (DMATSs) have been elucidated, although two putative DMATS genes are present in the F. fujikuroi genome. In this study, the in vivo product derived from one of the DMATSs (DMATS1, FFUJ_09179) was identified with the help of the software MZmine 2. Detailed structure elucidation showed that this metabolite is a reversely N-prenylated tryptophan with a rare form of prenylation. Further identified products probably resulted from side reactions of DMATS1. The genes adjacent to DMATS1 were analyzed; this showed no influence on the biosynthesis of the product.

  • The SAGA complex in the rice pathogen Fusarium fujikuroi: structure and functional characterization
    Molecular microbiology, 2016
    Co-Authors: Sarah M Rosler, Hans-ulrich Humpf, Katharina Kramer, Iris Finkemeier, Bettina Tudzynski
    Abstract:

    Post-translational modification of histones is a crucial mode of transcriptional regulation in eukaryotes. A well-described acetylation modifier of certain lysine residues is the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex assembled around the histone acetyltransferase Gcn5 in Saccharomyces cerevisiae. We identified and characterized the SAGA complex in the rice pathogen Fusarium fujikuroi, well-known for producing a large variety of secondary metabolites (SMs). By using a co-immunoprecipitation approach, almost all of the S. cerevisiae SAGA complex components have been identified, except for the ubiquitinating DUBm module and the chromodomain containing Chd1. Deletion of GCN5 led to impaired growth, loss of conidiation and alteration of SM biosynthesis. Furthermore, we show that Gcn5 is essential for the acetylation of several histone 3 lysines in F. fujikuroi, i.e. H3K4, H3K9, H3K18 and H3K27. A genome-wide microarray analysis revealed differential expression of about 30% of the genome with an enrichment of genes involved in primary and secondary metabolism, transport and histone modification. HPLC-based analysis of known SMs revealed significant alterations in the Δgcn5 mutant. While most SM genes were activated by Gcn5 activity, the biosynthesis of the pigment bikaverin was strongly increased upon GCN5 deletion underlining the diverse roles of the SAGA complex in F. fujikuroi. This article is protected by copyright. All rights reserved.

  • genetic engineering high resolution mass spectrometry and nuclear magnetic resonance spectroscopy elucidate the bikaverin biosynthetic pathway in Fusarium fujikuroi
    Fungal Genetics and Biology, 2015
    Co-Authors: Birgit Arndt, Bettina Tudzynski, Lena Studt, Philipp Wiemann, Karin Kleigrewe, Isabel Krug, Helena Osmanov, Jens Kohler, Hans-ulrich Humpf
    Abstract:

    Secondary metabolites of filamentous fungi can be highly bioactive, ranging from antibiotic to cancerogenic properties. In this study we were able to identify a new, yet unknown metabolite produced by Fusarium fujikuroi, an ascomycetous rice pathogen. With the help of genomic engineering and high-performance liquid chromatography (HPLC) coupled to high resolution mass spectrometry (HRMS) followed by isolation and detailed structure elucidation, the new substance could be designated as an unknown bikaverin precursor, missing two methyl- and one hydroxy group, hence named oxo-pre-bikaverin. Though the bikaverin gene cluster has been extensively studied in the past, elucidation of the biosynthetic pathway remained elusive due to a negative feedback loop that regulates the genes within the cluster. To decipher the bikaverin biosynthetic pathway and to overcome these negative regulation circuits, the structural cluster genes BIK2 and BIK3 were overexpressed independently in the ΔΔBIK2/BIK3+OE::BIK1 mutant background by using strong constitutive promoters. Using the software tool MZmine 2, the metabolite profile of the generated mutants obtained by HPLC-HRMS was compared, revealing further intermediates.

  • Isolation and Structure Elucidation of Fujikurins A–D: Products of the PKS19 Gene Cluster in Fusarium fujikuroi
    Journal of natural products, 2015
    Co-Authors: Katharina Walburga Von Bargen, Bettina Tudzynski, Eva-maria Niehaus, Isabel Krug, Klaus Bergander, Ernst-ulrich Würthwein, Hans-ulrich Humpf
    Abstract:

    Fusarium fujikuroi is a member of the Gibberella fujikuroi species complex and well known for the production of gibberellins and mycotoxins including fusarins and fusaric acid. A recent genome sequencing study revealed that the fungus has the genetic potential to produce many more secondary metabolites than have been reported. This paper describes the structure elucidation of the products of the cryptic and silent PKS19 gene cluster that were recently identified (fujikurins A-D). We present the complete NMR data for the structure elucidation of the main compound fujikurin D, which shows tautomeric 1,3-diketo elements. The different tautomeric structures could be confirmed using quantum chemical calculations. Additionally, the structures of the minor compounds fujikurins A-C were elucidated by high-resolution mass spectrometric fragmentation experiments. It emerged that fujikurin A was identical to the bioactive compound CR377 of the taxonomically unclassified Fusarium strain CR377, while fujikurins B-D have not been reported from other fungi.

  • isolation and structure elucidation of fujikurins a d products of the pks19 gene cluster in Fusarium fujikuroi
    Journal of Natural Products, 2015
    Co-Authors: Katharina Walburga Von Bargen, Bettina Tudzynski, Eva-maria Niehaus, Isabel Krug, Klaus Bergander, Ernst-ulrich Würthwein, Hans-ulrich Humpf
    Abstract:

    Fusarium fujikuroi is a member of the Gibberella fujikuroi species complex and well known for the production of gibberellins and mycotoxins including fusarins and fusaric acid. A recent genome sequencing study revealed that the fungus has the genetic potential to produce many more secondary metabolites than have been reported. This paper describes the structure elucidation of the products of the cryptic and silent PKS19 gene cluster that were recently identified (fujikurins A-D). We present the complete NMR data for the structure elucidation of the main compound fujikurin D, which shows tautomeric 1,3-diketo elements. The different tautomeric structures could be confirmed using quantum chemical calculations. Additionally, the structures of the minor compounds fujikurins A-C were elucidated by high-resolution mass spectrometric fragmentation experiments. It emerged that fujikurin A was identical to the bioactive compound CR377 of the taxonomically unclassified Fusarium strain CR377, while fujikurins B-D have not been reported from other fungi.

Ulrich Terpitz - One of the best experts on this subject based on the ideXlab platform.

  • Protein Activity of the Fusarium fujikuroi Rhodopsins CarO and OpsA and Their Relation to Fungus–Plant Interaction
    International journal of molecular sciences, 2018
    Co-Authors: Alexander Adam, Javier Avalos, Jorge García-martínez, Stephan Deimel, Javier Pardo-medina, Tilen Konte, María Carmen Limón, Ulrich Terpitz
    Abstract:

    Fungi possess diverse photosensory proteins that allow them to perceive different light wavelengths and to adapt to changing light conditions in their environment. The biological and physiological roles of the green light-sensing rhodopsins in fungi are not yet resolved. The rice plant pathogen Fusarium fujikuroi exhibits two different rhodopsins, CarO and OpsA. CarO was previously characterized as a light-driven proton pump. We further analyzed the pumping behavior of CarO by patch-clamp experiments. Our data show that CarO pumping activity is strongly augmented in the presence of the plant hormone indole-3-acetic acid and in sodium acetate, in a dose-dependent manner under slightly acidic conditions. By contrast, under these and other tested conditions, the Neurospora rhodopsin (NR)-like rhodopsin OpsA did not exhibit any pump activity. Basic local alignment search tool (BLAST) searches in the genomes of ascomycetes revealed the occurrence of rhodopsin-encoding genes mainly in phyto-associated or phytopathogenic fungi, suggesting a possible correlation of the presence of rhodopsins with fungal ecology. In accordance, rice plants infected with a CarO-deficient F. fujikuroi strain showed more severe bakanae symptoms than the reference strain, indicating a potential role of the CarO rhodopsin in the regulation of plant infection by this fungus.

  • protein activity of the Fusarium fujikuroi rhodopsins caro and opsa and their relation to fungus plant interaction
    International Journal of Molecular Sciences, 2018
    Co-Authors: Alexander Adam, Javier Avalos, Stephan Deimel, Tilen Konte, María Carmen Limón, Javier Pardomedina, Jorge Garciamartinez, Ulrich Terpitz
    Abstract:

    Fungi possess diverse photosensory proteins that allow them to perceive different light wavelengths and to adapt to changing light conditions in their environment. The biological and physiological roles of the green light-sensing rhodopsins in fungi are not yet resolved. The rice plant pathogen Fusarium fujikuroi exhibits two different rhodopsins, CarO and OpsA. CarO was previously characterized as a light-driven proton pump. We further analyzed the pumping behavior of CarO by patch-clamp experiments. Our data show that CarO pumping activity is strongly augmented in the presence of the plant hormone indole-3-acetic acid and in sodium acetate, in a dose-dependent manner under slightly acidic conditions. By contrast, under these and other tested conditions, the Neurospora rhodopsin (NR)-like rhodopsin OpsA did not exhibit any pump activity. Basic local alignment search tool (BLAST) searches in the genomes of ascomycetes revealed the occurrence of rhodopsin-encoding genes mainly in phyto-associated or phytopathogenic fungi, suggesting a possible correlation of the presence of rhodopsins with fungal ecology. In accordance, rice plants infected with a CarO-deficient F. fujikuroi strain showed more severe bakanae symptoms than the reference strain, indicating a potential role of the CarO rhodopsin in the regulation of plant infection by this fungus.

  • The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination
    Scientific reports, 2015
    Co-Authors: Jorge García-martínez, Javier Avalos, Michael G. K. Brunk, Ulrich Terpitz
    Abstract:

    Rhodopsins are membrane-embedded photoreceptors found in all major taxonomic kingdoms using retinal as their chromophore. They play well-known functions in different biological systems, but their roles in fungi remain unknown. The filamentous fungus Fusarium fujikuroi contains two putative rhodopsins, CarO and OpsA. The gene carO is light-regulated, and the predicted polypeptide contains all conserved residues required for proton pumping. We aimed to elucidate the expression and cellular location of the fungal rhodopsin CarO, its presumed proton-pumping activity and the possible effect of such function on F. fujikuroi growth. In electrophysiology experiments we confirmed that CarO is a green-light driven proton pump. Visualization of fluorescent CarO-YFP expressed in F. fujikuroi under control of its native promoter revealed higher accumulation in spores (conidia) produced by light-exposed mycelia. Germination analyses of conidia from carO− mutant and carO+ control strains showed a faster development of light-exposed carO− germlings. In conclusion, CarO is an active proton pump, abundant in light-formed conidia, whose activity slows down early hyphal development under light. Interestingly, CarO-related rhodopsins are typically found in plant-associated fungi, where green light dominates the phyllosphere. Our data provide the first reliable clue on a possible biological role of a fungal rhodopsin.

Jorge García-martínez - One of the best experts on this subject based on the ideXlab platform.

  • Protein Activity of the Fusarium fujikuroi Rhodopsins CarO and OpsA and Their Relation to Fungus–Plant Interaction
    International journal of molecular sciences, 2018
    Co-Authors: Alexander Adam, Javier Avalos, Jorge García-martínez, Stephan Deimel, Javier Pardo-medina, Tilen Konte, María Carmen Limón, Ulrich Terpitz
    Abstract:

    Fungi possess diverse photosensory proteins that allow them to perceive different light wavelengths and to adapt to changing light conditions in their environment. The biological and physiological roles of the green light-sensing rhodopsins in fungi are not yet resolved. The rice plant pathogen Fusarium fujikuroi exhibits two different rhodopsins, CarO and OpsA. CarO was previously characterized as a light-driven proton pump. We further analyzed the pumping behavior of CarO by patch-clamp experiments. Our data show that CarO pumping activity is strongly augmented in the presence of the plant hormone indole-3-acetic acid and in sodium acetate, in a dose-dependent manner under slightly acidic conditions. By contrast, under these and other tested conditions, the Neurospora rhodopsin (NR)-like rhodopsin OpsA did not exhibit any pump activity. Basic local alignment search tool (BLAST) searches in the genomes of ascomycetes revealed the occurrence of rhodopsin-encoding genes mainly in phyto-associated or phytopathogenic fungi, suggesting a possible correlation of the presence of rhodopsins with fungal ecology. In accordance, rice plants infected with a CarO-deficient F. fujikuroi strain showed more severe bakanae symptoms than the reference strain, indicating a potential role of the CarO rhodopsin in the regulation of plant infection by this fungus.

  • The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination
    Scientific reports, 2015
    Co-Authors: Jorge García-martínez, Javier Avalos, Michael G. K. Brunk, Ulrich Terpitz
    Abstract:

    Rhodopsins are membrane-embedded photoreceptors found in all major taxonomic kingdoms using retinal as their chromophore. They play well-known functions in different biological systems, but their roles in fungi remain unknown. The filamentous fungus Fusarium fujikuroi contains two putative rhodopsins, CarO and OpsA. The gene carO is light-regulated, and the predicted polypeptide contains all conserved residues required for proton pumping. We aimed to elucidate the expression and cellular location of the fungal rhodopsin CarO, its presumed proton-pumping activity and the possible effect of such function on F. fujikuroi growth. In electrophysiology experiments we confirmed that CarO is a green-light driven proton pump. Visualization of fluorescent CarO-YFP expressed in F. fujikuroi under control of its native promoter revealed higher accumulation in spores (conidia) produced by light-exposed mycelia. Germination analyses of conidia from carO− mutant and carO+ control strains showed a faster development of light-exposed carO− germlings. In conclusion, CarO is an active proton pump, abundant in light-formed conidia, whose activity slows down early hyphal development under light. Interestingly, CarO-related rhodopsins are typically found in plant-associated fungi, where green light dominates the phyllosphere. Our data provide the first reliable clue on a possible biological role of a fungal rhodopsin.

  • Adenylyl cyclase plays a regulatory role in development, stress resistance and secondary metabolism in Fusarium fujikuroi.
    PloS one, 2012
    Co-Authors: Jorge García-martínez, Attila L. Ádám, Javier Avalos
    Abstract:

    The ascomycete fungus Fusarium fujikuroi (Gibberella fujikuroi MP-C) produces secondary metabolites of biotechnological interest, such as gibberellins, bikaverin, and carotenoids. Production of these metabolites is regulated by nitrogen availability and, in a specific manner, by other environmental signals, such as light in the case of the carotenoid pathway. A complex regulatory network controlling these processes is recently emerging from the alterations of metabolite production found through the mutation of different regulatory genes. Here we show the effect of the targeted mutation of the acyA gene of F. fujikuroi, coding for adenylyl cyclase. Mutants lacking the catalytic domain of the AcyA protein showed different phenotypic alterations, including reduced growth, enhanced production of unidentified red pigments, reduced production of gibberellins and partially derepressed carotenoid biosynthesis in the dark. The phenotype differs in some aspects from that of similar mutants of the close relatives F. proliferatum and F. verticillioides: contrary to what was observed in these species, ΔacyA mutants of F. fujikuroi showed enhanced sensitivity to oxidative stress (H2O2), but no change in heavy metal resistance or in the ability to colonize tomato tissue, indicating a high versatility in the regulatory roles played by cAMP in this fungal group.