GDF5

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 16215 Experts worldwide ranked by ideXlab platform

John Loughlin - One of the best experts on this subject based on the ideXlab platform.

  • a consistent and potentially exploitable response during chondrogenesis of mesenchymal stem cells from osteoarthritis patients to the protein encoded by the susceptibility gene GDF5
    PLOS ONE, 2017
    Co-Authors: Madhushika Ratnayake, Louise N Reynard, Frank Plöger, M Tselepi, Robert Bloxham, John Loughlin
    Abstract:

    Osteoarthritis (OA) is a common joint disease characterised by the focal loss of the protective cartilage layer at the ends of the bones. It is painful, disabling, multifactorial and polygenic. The growth differentiation factor 5 gene GDF5 was one of the first reported OA susceptibility signals that showed consistent association to OA, with the transcript single nucleotide polymorphism (SNP) rs143383 demonstrating association in Asians and Europeans. The functional effect of the signal is reduced expression of the gene. The GDF5 protein is an extracellular matrix signalling molecule that is active during chondrogenesis and in mature chondrocytes. Due to the functional impact of the susceptibility, we previously assessed the effect of supplementing chondrocytes from OA patients with exogenous GDF5. Their response was highly discordant, precluding the application of GDF5 as a simple means of attenuating the genetic deficit. Since GDF5 is also active during development, we have now assessed the effect of exogenous GDF5 on bone marrow derived mesenchymal stem cells (MSCs) that are undergoing chondrogenesis during cartilage disc formation. MSCs from healthy donors and OA patients were studied and the effect of GDF5 was assessed by measuring the wet mass of the discs, by histological staining, and by monitoring the change in expression of anabolic, catabolic and hypertrophic protein-coding genes. The MSCs expressed the three principal GDF5 receptor genes and responded in a significantly anabolic manner (increase in wet mass, p = 0.0022; Bonferroni corrected p = 0.018) to a variant form of GDF5 that targets the most abundantly expressed receptor, BMPR-IA. GDF5 elicited significant (p < 0.05) changes in the expression of anabolic, catabolic and hypertrophic genes with several consistent effects in healthy donors and in OA patients. Our data implies that, unlike OA chondrocytes, OA MSCs do respond in a predictable, anabolic manner to GDF5, which could therefore provide a route to modulate the genetic deficit mediated by the rs143383 association signal.

  • cpg methylation regulates allelic expression of GDF5 by modulating binding of sp1 and sp3 repressor proteins to the osteoarthritis susceptibility snp rs143383
    Human Genetics, 2014
    Co-Authors: Louise N Reynard, Catherine M Syddall, John Loughlin
    Abstract:

    GDF5 encodes an extracellular signalling molecule that is essential for normal skeletal development. The rs144383 C to T SNP located in the 5ʹUTR of this gene is functional and has a pleiotropic effect on the musculoskeletal system, being a risk factor for knee-osteoarthritis (OA), congenital hip dysplasia, lumbar disc degeneration and Achilles tendon pathology. rs143383 exerts a joint-wide effect on GDF5 expression, with expression of the OA-associated T allele being significantly reduced relative to the C allele, termed allelic expression imbalance. We have previously reported that the GDF5 locus is subject to DNA methylation and that allelic imbalance of rs143383 is mediated by SP1, SP3 and DEAF1 transcriptional repressors. In this study, we have assayed GDF5 methylation in normal and osteoarthritic cartilage, and investigated the effect of methylation on the allelic imbalance of rs143383. We observed demethylation of the GDF5 5ʹUTR in OA knee cartilage relative to both OA (p = 0.009) and non-OA (p = 0.001) hip cartilage, with the most significant demethylation observed at the highly conserved +37 CpG site located 4 bp upstream of rs143383. Methylation modulates the level and direction of allelic imbalance of rs143383, with methylation of the +37 CpG dinucleotide within the SP1/SP3 binding site having an allele-specific effect on SP1 and SP3 binding. Furthermore, methylation attenuated the repressive effects of SP1, SP3 and DEAF1 on GDF5 promoter activity. This data suggest that the differential methylation of the +37 CpG site between osteoarthritic hip and knee cartilage may be responsible for the knee-specific effect of rs143383 on OA susceptibility.

  • cpg methylation regulates allelic expression of GDF5 by modulating binding of sp1 and sp3 repressor proteins to the osteoarthritis susceptibility snp rs143383
    Human Genetics, 2014
    Co-Authors: Louise N Reynard, Catherine M Syddall, Catherine Bui, John Loughlin
    Abstract:

    GDF5 encodes an extracellular signalling molecule that is essential for normal skeletal development. The rs144383 C to T SNP located in the 5ʹUTR of this gene is functional and has a pleiotropic effect on the musculoskeletal system, being a risk factor for knee-osteoarthritis (OA), congenital hip dysplasia, lumbar disc degeneration and Achilles tendon pathology. rs143383 exerts a joint-wide effect on GDF5 expression, with expression of the OA-associated T allele being significantly reduced relative to the C allele, termed allelic expression imbalance. We have previously reported that the GDF5 locus is subject to DNA methylation and that allelic imbalance of rs143383 is mediated by SP1, SP3 and DEAF1 transcriptional repressors. In this study, we have assayed GDF5 methylation in normal and osteoarthritic cartilage, and investigated the effect of methylation on the allelic imbalance of rs143383. We observed demethylation of the GDF5 5ʹUTR in OA knee cartilage relative to both OA (p = 0.009) and non-OA (p = 0.001) hip cartilage, with the most significant demethylation observed at the highly conserved +37 CpG site located 4 bp upstream of rs143383. Methylation modulates the level and direction of allelic imbalance of rs143383, with methylation of the +37 CpG dinucleotide within the SP1/SP3 binding site having an allele-specific effect on SP1 and SP3 binding. Furthermore, methylation attenuated the repressive effects of SP1, SP3 and DEAF1 on GDF5 promoter activity. This data suggest that the differential methylation of the +37 CpG site between osteoarthritic hip and knee cartilage may be responsible for the knee-specific effect of rs143383 on OA susceptibility. Electronic supplementary material The online version of this article (doi:10.1007/s00439-014-1447-z) contains supplementary material, which is available to authorized users.

  • human chondrocytes respond discordantly to the protein encoded by the osteoarthritis susceptibility gene GDF5
    PLOS ONE, 2014
    Co-Authors: Madhushika Ratnayake, Frank Plöger, Mauro Santibanezkoref, John Loughlin
    Abstract:

    A genetic deficit mediated by SNP rs143383 that leads to reduced expression of GDF5 is strongly associated with large-joint osteoarthritis. We speculated that this deficit could be attenuated by the application of exogenous GDF5 protein and as a first step we have assessed what effect such application has on primary osteoarthritis chondrocyte gene expression. Chondrocytes harvested from cartilage of osteoarthritic patients who had undergone joint replacement were cultured with wildtype recombinant mouse and human GDF5 protein. We also studied variants of GDF5, one that has a higher affinity for the receptor BMPR-IA and one that is insensitive to the GDF5 antagonist noggin. As a positive control, chondrocytes were treated with TGF-β1. Chondrocytes were cultured in monolayer and micromass and the expression of genes coding for catabolic and anabolic proteins of cartilage were measured by quantitative PCR. The expression of the GDF5 receptor genes and the presence of their protein products was confirmed and the ability of GDF5 signal to translocate to the nucleus was demonstrated by the activation of a luciferase reporter construct. The capacity of GDF5 to elicit an intracellular signal in chondrocytes was demonstrated by the phosphorylation of intracellular Smads. Chondrocytes cultured with TGF-β1 demonstrated a consistent down regulation of MMP1, MMP13 and a consistent upregulation of TIMP1 and COL2A1 with both culture techniques. In contrast, chondrocytes cultured with wildtype GDF5, or its variants, did not show any consistent response, irrespective of the culture technique used. Our results show that osteoarthritis chondrocytes do not respond in a predictable manner to culture with exogenous GDF5. This may be a cause or a consequence of the osteoarthritis disease process and will need to be surmounted if treatment with exogenous GDF5 is to be advanced as a potential means to overcome the genetic deficit conferring osteoarthritis susceptibility at this gene.

  • The identification of trans-acting factors that regulate the expression of GDF5 via the osteoarthritis susceptibility SNP rs143383.
    PLoS Genetics, 2013
    Co-Authors: Catherine M Syddall, Louise N Reynard, David Young, John Loughlin
    Abstract:

    rs143383 is a C to T transition SNP located in the 5′untranslated region (5′UTR) of the growth differentiation factor 5 gene GDF5. The T allele of the SNP is associated with increased risk of osteoarthritis (OA) in Europeans and in Asians. This susceptibility is mediated by the T allele producing less GDF5 transcript relative to the C allele, a phenomenon known as differential allelic expression (DAE). The aim of this study was to identify trans-acting factors that bind to rs143383 and which regulate this GDF5 DAE. Protein binding to the gene was investigated by two experimental approaches: 1) competition and supershift electrophoretic mobility shift assays (EMSAs) and 2) an oligonucleotide pull down assay followed by quantitative mass spectrometry. Binding was then confirmed in vivo by chromatin immunoprecipitation (ChIP), and the functional effects of candidate proteins investigated by RNA interference (RNAi) and over expression. Using these approaches the trans-acting factors Sp1, Sp3, P15, and DEAF-1 were identified as interacting with the GDF5 5′UTR. Knockdown and over expression of the factors demonstrated that Sp1, Sp3, and DEAF-1 are repressors of GDF5 expression. Depletion of DEAF-1 modulated the DAE of GDF5 and this differential allelic effect was confirmed following over expression, with the rs143383 T allele being repressed to a significantly greater extent than the rs143383 C allele. In combination, Sp1 and DEAF-1 had the greatest repressive activity. In conclusion, we have identified four trans-acting factors that are binding to GDF5, three of which are modulating GDF5 expression via the OA susceptibility locus rs143383.

Terence D Capellini - One of the best experts on this subject based on the ideXlab platform.

  • regulation of GDF5 expression in joint remodelling repair and osteoarthritis
    Scientific Reports, 2020
    Co-Authors: Karolina Kania, Terence D Capellini, Fabio Colella, Anna H K Riemen, H Wang, Kenneth A Howard, Thomas Aigner, Francesco Dellaccio, Anke J Roelofs
    Abstract:

    Growth and Differentiation Factor 5 (GDF5) is a key risk locus for osteoarthritis (OA). However, little is known regarding regulation of GDF5 expression following joint tissue damage. Here, we employed GDF5-LacZ reporter mouse lines to assess the spatiotemporal activity of GDF5 regulatory sequences in experimental OA following destabilisation of the medial meniscus (DMM) and after acute cartilage injury and repair. GDF5 expression was upregulated in articular cartilage post-DMM, and was increased in human OA cartilage as determined by immunohistochemistry and microarray analysis. GDF5 expression was also upregulated during cartilage repair in mice and was switched on in injured synovium in prospective areas of cartilage formation, where it inversely correlated with expression of the transcriptional co-factor Yes-associated protein (Yap). Indeed, overexpression of Yap suppressed GDF5 expression in chondroprogenitors in vitro. GDF5 expression in both mouse injury models required regulatory sequence downstream of GDF5 coding exons. Our findings suggest that GDF5 upregulation in articular cartilage and synovium is a generic response to knee injury that is dependent on downstream regulatory sequence and in progenitors is associated with chondrogenic specification. We propose a role for GDF5 in tissue remodelling and repair after injury, which may partly underpin its association with OA risk.

  • the role of GDF5 regulatory regions in development of hip morphology
    PLOS ONE, 2018
    Co-Authors: Ata M Kiapour, Terence D Capellini, Jiaxue Cao, Mariel Young
    Abstract:

    Given GDF5 involvement in hip development, and osteoarthritis (OA) and developmental hip dysplasia (DDH) risk, here we sought to assess the role(s) of GDF5 and its regulatory sequence on the development of hip morphology linked to injury risk. The brachypodism (bp) mouse, which harbors a GDF5 inactivating mutation, was used to survey how GDF5 loss of function impacts the development of hip morphology. Two transgenic GDF5 reporter BAC lines were used to assess the spatiotemporal expression of GDF5 regulatory sequences. Each BAC line was also used to assess the functional roles of upstream and downstream sequence on hip morphology. bp/bp mice had shorter femora with smaller femoral heads and necks as well as larger alpha angles, smaller anterior offsets, and smaller acetabula, compared to bp/+ mice (p<0.04). Regulatory sequences downstream of GDF5 drove strong prenatal (E17) expression and low postnatal (6 months) expression across regions of femoral head and acetabulum. Conversely, upstream regulatory sequences drove very low expression at E17 and no detectable expression at 6 months. Importantly, downstream, but not upstream GDF5 regulatory sequences fully restored all the key morphologic features disrupted in bp/bp mice. Hip morphology is profoundly affected by GDF5 absence, and downstream regulatory sequences mediate its effects by controlling GDF5 expression during development. This downstream region contains numerous enhancers harboring risk variants related to hip OA, DDH, and dislocation. We posit that subtle alterations to morphology driven by changes in downstream regulatory sequence underlie this locus' role in hip injury risk.

  • the role of GDF5 regulatory regions on development of hip morphology and susceptibility to osteoarthritis and dislocation
    bioRxiv, 2018
    Co-Authors: Terence D Capellini, Ata M Kiapour, Jiaxue Cao, Mariel Young
    Abstract:

    Given GDF5 involvement in hip development, and osteoarthritis (OA) and developmental hip dysplasia (DDH) risk, here we sought to assess the role(s) of GDF5 and its regulatory sequence on the development of hip morphology linked to injury risk. The brachypodism (bp) mouse, which harbors a GDF5 inactivating mutation, was used to survey how GDF5 loss of function impacts the development of hip morphology. Two transgenic GDF5 reporter BAC lines were used to assess the spatiotemporal expression of GDF5 regulatory sequences. Each BAC line was also used to assess the functional roles of upstream and downstream sequence on hip morphology. bp/bp mice had shorter femora with smaller femoral heads and necks as well as larger alpha angles, smaller anterior offsets, and smaller acetabula, compared to bp/+ mice (p<0.04). Regulatory sequences downstream of GDF5 drove strong prenatal (E17) expression and low postnatal (6 months) expression across regions of femoral head and acetabulum. Conversely, upstream regulatory sequences drove very low expression at E17 and no detectable expression at 6 months. Importantly, downstream, but not upstream GDF5 regulatory sequences fully restored all the key morphologic features disrupted in bp/bp mice. Hip morphology is profoundly affected by GDF5 absence, and downstream regulatory sequences mediate its effects by controlling GDF5 expression during development. This downstream region contains numerous enhancers harboring risk variants related to hip OA, DDH, and dislocation. We posit that subtle alterations to morphology driven by changes in downstream regulatory sequence underlie this locus role in hip injury risk.

  • impact of broad regulatory regions on GDF5 expression and function in knee development and susceptibility to osteoarthritis
    Annals of the Rheumatic Diseases, 2018
    Co-Authors: Steven Pregizer, Ata M Kiapour, Jiaxue Cao, Mariel Young, Hao Chen, Michael Schoor, Zun Liu, Vicki Rosen, Terence D Capellini
    Abstract:

    Objectives Given the role of growth and differentiation factor 5 ( GDF5 ) in knee development and osteoarthritis risk, we sought to characterise knee defects resulting from GDF5 loss of function and how its regulatory regions control knee formation and morphology. Methods The brachypodism ( bp ) mouse line, which harbours an inactivating mutation in GDF5 , was used to survey how GDF5 loss of function impacts knee morphology, while two transgenic GDF5 reporter bacterial artificial chromosome mouse lines were used to assess the spatiotemporal activity and function of GDF5 regulatory sequences in the context of clinically relevant knee anatomical features. Results Knees from homozygous bp mice ( bp/bp ) exhibit underdeveloped femoral condyles and tibial plateaus, no cruciate ligaments, and poorly developed menisci. Secondary ossification is also delayed in the distal femur and proximal tibia. bp/bp mice have significantly narrower femoral condyles, femoral notches and tibial plateaus, and curvier medial femoral condyles, shallower trochlea, steeper lateral tibial slopes and smaller tibial spines. Regulatory sequences upstream from GDF5 were weakly active in the prenatal knee, while downstream regulatory sequences were active throughout life. Importantly, downstream but not upstream GDF5 regulatory sequences fully restored all the key morphological features disrupted in the bp/bp mice. Conclusions Knee morphology is profoundly affected by GDF5 absence, and downstream regulatory sequences mediate its effects by controlling GDF5 expression in knee tissues. This downstream region contains numerous enhancers harbouring human variants that span the osteoarthritis association interval. We posit that subtle alterations to morphology driven by changes in downstream regulatory sequence underlie this locus’ role in osteoarthritis risk.

  • ancient selection for derived alleles at a GDF5 enhancer influencing human growth and osteoarthritis risk
    Nature Genetics, 2017
    Co-Authors: Terence D Capellini, David M. Kingsley, Ata M Kiapour, Jiaxue Cao, Hao Chen, Michael Schoor, Andrew C Doxey
    Abstract:

    Variants in GDF5 are associated with human arthritis and decreased height, but the causal mutations are still unknown. We surveyed the GDF5 locus for regulatory regions in transgenic mice and fine-mapped separate enhancers controlling expression in joints versus growing ends of long bones. A large downstream regulatory region contains a novel growth enhancer (GROW1), which is required for normal GDF5 expression at ends of developing bones and for normal bone lengths in vivo. Human GROW1 contains a common base-pair change that decreases enhancer activity and colocalizes with peaks of positive selection in humans. The derived allele is rare in Africa but common in Eurasia and is found in Neandertals and Denisovans. Our results suggest that an ancient regulatory variant in GROW1 has been repeatedly selected in northern environments and that past selection on growth phenotypes explains the high frequency of a GDF5 haplotype that also increases arthritis susceptibility in many human populations.

Louise N Reynard - One of the best experts on this subject based on the ideXlab platform.

  • a consistent and potentially exploitable response during chondrogenesis of mesenchymal stem cells from osteoarthritis patients to the protein encoded by the susceptibility gene GDF5
    PLOS ONE, 2017
    Co-Authors: Madhushika Ratnayake, Louise N Reynard, Frank Plöger, M Tselepi, Robert Bloxham, John Loughlin
    Abstract:

    Osteoarthritis (OA) is a common joint disease characterised by the focal loss of the protective cartilage layer at the ends of the bones. It is painful, disabling, multifactorial and polygenic. The growth differentiation factor 5 gene GDF5 was one of the first reported OA susceptibility signals that showed consistent association to OA, with the transcript single nucleotide polymorphism (SNP) rs143383 demonstrating association in Asians and Europeans. The functional effect of the signal is reduced expression of the gene. The GDF5 protein is an extracellular matrix signalling molecule that is active during chondrogenesis and in mature chondrocytes. Due to the functional impact of the susceptibility, we previously assessed the effect of supplementing chondrocytes from OA patients with exogenous GDF5. Their response was highly discordant, precluding the application of GDF5 as a simple means of attenuating the genetic deficit. Since GDF5 is also active during development, we have now assessed the effect of exogenous GDF5 on bone marrow derived mesenchymal stem cells (MSCs) that are undergoing chondrogenesis during cartilage disc formation. MSCs from healthy donors and OA patients were studied and the effect of GDF5 was assessed by measuring the wet mass of the discs, by histological staining, and by monitoring the change in expression of anabolic, catabolic and hypertrophic protein-coding genes. The MSCs expressed the three principal GDF5 receptor genes and responded in a significantly anabolic manner (increase in wet mass, p = 0.0022; Bonferroni corrected p = 0.018) to a variant form of GDF5 that targets the most abundantly expressed receptor, BMPR-IA. GDF5 elicited significant (p < 0.05) changes in the expression of anabolic, catabolic and hypertrophic genes with several consistent effects in healthy donors and in OA patients. Our data implies that, unlike OA chondrocytes, OA MSCs do respond in a predictable, anabolic manner to GDF5, which could therefore provide a route to modulate the genetic deficit mediated by the rs143383 association signal.

  • cpg methylation regulates allelic expression of GDF5 by modulating binding of sp1 and sp3 repressor proteins to the osteoarthritis susceptibility snp rs143383
    Human Genetics, 2014
    Co-Authors: Louise N Reynard, Catherine M Syddall, John Loughlin
    Abstract:

    GDF5 encodes an extracellular signalling molecule that is essential for normal skeletal development. The rs144383 C to T SNP located in the 5ʹUTR of this gene is functional and has a pleiotropic effect on the musculoskeletal system, being a risk factor for knee-osteoarthritis (OA), congenital hip dysplasia, lumbar disc degeneration and Achilles tendon pathology. rs143383 exerts a joint-wide effect on GDF5 expression, with expression of the OA-associated T allele being significantly reduced relative to the C allele, termed allelic expression imbalance. We have previously reported that the GDF5 locus is subject to DNA methylation and that allelic imbalance of rs143383 is mediated by SP1, SP3 and DEAF1 transcriptional repressors. In this study, we have assayed GDF5 methylation in normal and osteoarthritic cartilage, and investigated the effect of methylation on the allelic imbalance of rs143383. We observed demethylation of the GDF5 5ʹUTR in OA knee cartilage relative to both OA (p = 0.009) and non-OA (p = 0.001) hip cartilage, with the most significant demethylation observed at the highly conserved +37 CpG site located 4 bp upstream of rs143383. Methylation modulates the level and direction of allelic imbalance of rs143383, with methylation of the +37 CpG dinucleotide within the SP1/SP3 binding site having an allele-specific effect on SP1 and SP3 binding. Furthermore, methylation attenuated the repressive effects of SP1, SP3 and DEAF1 on GDF5 promoter activity. This data suggest that the differential methylation of the +37 CpG site between osteoarthritic hip and knee cartilage may be responsible for the knee-specific effect of rs143383 on OA susceptibility.

  • cpg methylation regulates allelic expression of GDF5 by modulating binding of sp1 and sp3 repressor proteins to the osteoarthritis susceptibility snp rs143383
    Human Genetics, 2014
    Co-Authors: Louise N Reynard, Catherine M Syddall, Catherine Bui, John Loughlin
    Abstract:

    GDF5 encodes an extracellular signalling molecule that is essential for normal skeletal development. The rs144383 C to T SNP located in the 5ʹUTR of this gene is functional and has a pleiotropic effect on the musculoskeletal system, being a risk factor for knee-osteoarthritis (OA), congenital hip dysplasia, lumbar disc degeneration and Achilles tendon pathology. rs143383 exerts a joint-wide effect on GDF5 expression, with expression of the OA-associated T allele being significantly reduced relative to the C allele, termed allelic expression imbalance. We have previously reported that the GDF5 locus is subject to DNA methylation and that allelic imbalance of rs143383 is mediated by SP1, SP3 and DEAF1 transcriptional repressors. In this study, we have assayed GDF5 methylation in normal and osteoarthritic cartilage, and investigated the effect of methylation on the allelic imbalance of rs143383. We observed demethylation of the GDF5 5ʹUTR in OA knee cartilage relative to both OA (p = 0.009) and non-OA (p = 0.001) hip cartilage, with the most significant demethylation observed at the highly conserved +37 CpG site located 4 bp upstream of rs143383. Methylation modulates the level and direction of allelic imbalance of rs143383, with methylation of the +37 CpG dinucleotide within the SP1/SP3 binding site having an allele-specific effect on SP1 and SP3 binding. Furthermore, methylation attenuated the repressive effects of SP1, SP3 and DEAF1 on GDF5 promoter activity. This data suggest that the differential methylation of the +37 CpG site between osteoarthritic hip and knee cartilage may be responsible for the knee-specific effect of rs143383 on OA susceptibility. Electronic supplementary material The online version of this article (doi:10.1007/s00439-014-1447-z) contains supplementary material, which is available to authorized users.

  • The identification of trans-acting factors that regulate the expression of GDF5 via the osteoarthritis susceptibility SNP rs143383.
    PLoS Genetics, 2013
    Co-Authors: Catherine M Syddall, Louise N Reynard, David Young, John Loughlin
    Abstract:

    rs143383 is a C to T transition SNP located in the 5′untranslated region (5′UTR) of the growth differentiation factor 5 gene GDF5. The T allele of the SNP is associated with increased risk of osteoarthritis (OA) in Europeans and in Asians. This susceptibility is mediated by the T allele producing less GDF5 transcript relative to the C allele, a phenomenon known as differential allelic expression (DAE). The aim of this study was to identify trans-acting factors that bind to rs143383 and which regulate this GDF5 DAE. Protein binding to the gene was investigated by two experimental approaches: 1) competition and supershift electrophoretic mobility shift assays (EMSAs) and 2) an oligonucleotide pull down assay followed by quantitative mass spectrometry. Binding was then confirmed in vivo by chromatin immunoprecipitation (ChIP), and the functional effects of candidate proteins investigated by RNA interference (RNAi) and over expression. Using these approaches the trans-acting factors Sp1, Sp3, P15, and DEAF-1 were identified as interacting with the GDF5 5′UTR. Knockdown and over expression of the factors demonstrated that Sp1, Sp3, and DEAF-1 are repressors of GDF5 expression. Depletion of DEAF-1 modulated the DAE of GDF5 and this differential allelic effect was confirmed following over expression, with the rs143383 T allele being repressed to a significantly greater extent than the rs143383 C allele. In combination, Sp1 and DEAF-1 had the greatest repressive activity. In conclusion, we have identified four trans-acting factors that are binding to GDF5, three of which are modulating GDF5 expression via the OA susceptibility locus rs143383.

  • expression of the osteoarthritis associated gene GDF5 is modulated epigenetically by dna methylation
    Human Molecular Genetics, 2011
    Co-Authors: Louise N Reynard, David Young, Catherine Bui, E G Cantylaird, John Loughlin
    Abstract:

    GDF5 is involved in synovial joint development, maintenance and repair, and the rs143383 C/T single nucleotide polymorphism (SNP) located in the 5'UTR of GDF5 is associated, at the genome-wide significance level, with osteoarthritis susceptibility, and with other musculoskeletal phenotypes including height, congenital hip dysplasia and Achilles tendinopathy. There is a significant reduction in the expression of the disease-associated T allele relative to the C allele in synovial joint tissues, an effect influenced by a second SNP (rs143384, C/T) also within the 5'UTR. The differential allelic expression (DAE) imbalance of the C and T alleles of rs143383 varies intra- and inter-individually, suggesting that DAE may be modulated epigenetically. The C alleles of both SNPs form CpG dinucleotides that are potentially amenable to regulation by methylation. Here, we have examined whether DNA methylation regulates GDF5 expression and the allelic imbalance caused by rs143383. We observed methylation of the GDF5 promoter and 5'UTR in cell lines and joint tissues, with demethylation correlating with increased GDF5 expression. The CpG sites created by the C alleles at rs143383 and rs143384 were variably methylated, and treatment of a heterozygous cell line with a demethylating agent further increased the allelic expression imbalance between the C and T alleles. This demonstrates that the genetic effect of the rs143383 SNP on GDF5 expression is modulated epigenetically by DNA methylation. The variability in DAE of rs143383 is therefore partly accounted for by differences in DNA methylation that could influence the penetrance of this allele in susceptibility to common musculoskeletal diseases.

David M. Kingsley - One of the best experts on this subject based on the ideXlab platform.

  • ancient selection for derived alleles at a GDF5 enhancer influencing human growth and osteoarthritis risk
    Nature Genetics, 2017
    Co-Authors: Terence D Capellini, David M. Kingsley, Ata M Kiapour, Jiaxue Cao, Hao Chen, Michael Schoor, Andrew C Doxey
    Abstract:

    Variants in GDF5 are associated with human arthritis and decreased height, but the causal mutations are still unknown. We surveyed the GDF5 locus for regulatory regions in transgenic mice and fine-mapped separate enhancers controlling expression in joints versus growing ends of long bones. A large downstream regulatory region contains a novel growth enhancer (GROW1), which is required for normal GDF5 expression at ends of developing bones and for normal bone lengths in vivo. Human GROW1 contains a common base-pair change that decreases enhancer activity and colocalizes with peaks of positive selection in humans. The derived allele is rare in Africa but common in Eurasia and is found in Neandertals and Denisovans. Our results suggest that an ancient regulatory variant in GROW1 has been repeatedly selected in northern environments and that past selection on growth phenotypes explains the high frequency of a GDF5 haplotype that also increases arthritis susceptibility in many human populations.

  • heads shoulders elbows knees and toes modular GDF5 enhancers control different joints in the vertebrate skeleton
    PLOS Genetics, 2016
    Co-Authors: Hao Chen, David M. Kingsley, Terence D Capellini, Michael Schoor, Doug P Mortlock, Hari A Reddi
    Abstract:

    Synovial joints are crucial for support and locomotion in vertebrates, and are the frequent site of serious skeletal defects and degenerative diseases in humans. Growth and differentiation factor 5 (GDF5) is one of the earliest markers of joint formation, is required for normal joint development in both mice and humans, and has been genetically linked to risk of common osteoarthritis in Eurasian populations. Here, we systematically survey the mouse GDF5 gene for regulatory elements controlling expression in synovial joints. We identify separate regions of the locus that control expression in axial tissues, in proximal versus distal joints in the limbs, and in remarkably specific sub-sets of composite joints like the elbow. Predicted transcription factor binding sites within GDF5 regulatory enhancers are required for expression in particular joints. The multiple enhancers that control GDF5 expression in different joints are distributed over a hundred kilobases of DNA, including regions both upstream and downstream of GDF5 coding exons. Functional rescue tests in mice confirm that the large flanking regions are required to restore normal joint formation and patterning. Orthologs of these enhancers are located throughout the large genomic region previously associated with common osteoarthritis risk in humans. The large array of modular enhancers for GDF5 provide a new foundation for studying the spatial specificity of joint patterning in vertebrates, as well as new candidates for regulatory regions that may also influence osteoarthritis risk in human populations.

  • multiple joint and skeletal patterning defects caused by single and double mutations in the mouse gdf6 and GDF5 genes
    Developmental Biology, 2003
    Co-Authors: Stephen Holloway Settle, Ryan B Rountree, Abhishek Sinha, Abigail Thacker, Kay M Higgins, David M. Kingsley
    Abstract:

    Growth/differentiation factors 5, 6, and 7 (GDF5/6/7) represent a distinct subgroup within the bone morphogenetic protein (BMP) family of secreted signaling molecules. Previous studies have shown that the GDF5 gene is expressed in transverse stripes across developing skeletal elements and is one of the earliest known markers of joint formation during embryonic development. Although null mutations in this gene disrupt formation of some bones and joints in the skeleton, many sites are unaffected. Here, we show that the closely related family members Gdf6 and Gdf7 are expressed in different subsets of developing joints. Inactivation of the Gdf6 gene causes defects in joint, ligament, and cartilage formation at sites distinct from those seen in GDF5 mutants, including the wrist and ankle, the middle ear, and the coronal suture between bones in the skull. Mice lacking both GDF5 and Gdf6 show additional defects, including severe reduction or loss of some skeletal elements in the limb, additional fusions between skeletal structures, scoliosis, and altered cartilage in the intervertebral joints of the spinal column. These results show that members of the GDF5/6/7 subgroup are required for normal formation of bones and joints in the limbs, skull, and axial skeleton. The diverse effects on joint development and the different types of joints affected in the mutants suggest that members of the GDF family play a key role in establishing boundaries between many different skeletal elements during normal development. Some of the skeletal defects seen in single or double mutant mice resemble defects seen in human skeletal diseases, which suggests that these genes may be candidates that underlie some forms of carpal/tarsal coalition, conductive deafness, scoliosis, and craniosynostosis.

  • GDF5 coordinates bone and joint formation during digit development
    Developmental Biology, 1999
    Co-Authors: Elaine E Storm, David M. Kingsley
    Abstract:

    A functional skeletal system requires the coordinated development of many different tissue types, including cartilage, bones, joints, and tendons. Members of the Bone morphogenetic protein (BMP) family of secreted signaling molecules have been implicated as endogenous regulators of skeletal development. This is based on their expression during bone and joint formation, their ability to induce ectopic bone and cartilage, and the skeletal abnormalities present in animals with mutations in BMP family members. One member of this family, Growth/differentiation factor 5 (GDF5), is encoded by the mouse brachypodism locus. Mice with mutations in this gene show reductions in the length of bones in the limbs, altered formation of bones and joints in the sternum, and a reduction in the number of bones in the digits. The expression pattern of GDF5 during normal development and the phenotypes seen in mice with single or double mutations in GDF5 and Bmp5 suggested that GDF5 has multiple functions in skeletogenesis, including roles in joint and cartilage development. To further understand the function of GDF5 in skeletal development, we assayed the response of developing chick and mouse limbs to recombinant GDF5 protein. The results from these assays, coupled with an analysis of the development of brachypodism digits, indicate that GDF5 is necessary and sufficient for both cartilage development and the restriction of joint formation to the appropriate location. Thus, GDF5 function in the digits demonstrates a link between cartilage development and joint development and is an important determinant of the pattern of bones and articulations in the digits.

Jia Liu - One of the best experts on this subject based on the ideXlab platform.

  • mutant GDF5 enhances ameloblast differentiation via accelerated bmp2 induced smad1 5 8 phosphorylation
    Scientific Reports, 2016
    Co-Authors: Jia Liu, Kan Saito, Yuriko Maruya, Takashi Nakamura, Aya Yamada, Emiko Fukumoto, Momoko Ishikawa
    Abstract:

    Bone morphogenetic proteins (BMPs) regulate hard tissue formation, including bone and tooth. Growth differentiation factor 5 (GDF5), a known BMP, is expressed in cartilage and regulates chondrogenesis, and mutations have been shown to cause osteoarthritis. Notably, GDF5 is also expressed in periodontal ligament tissue; however, its role during tooth development is unclear. Here, we used cell culture and in vivo analyses to determine the role of GDF5 during tooth development. GDF5 and its associated BMP receptors are expressed at the protein and mRNA levels during postnatal tooth development, particularly at a stage associated with enamel formation. Furthermore, whereas BMP2 was observed to induce evidently the differentiation of enamel-forming ameloblasts, excess GDF5 induce mildly this differentiation. A mouse model harbouring a mutation in GDF5 (W408R) showed enhanced enamel formation in both the incisors and molars, but not in the tooth roots. Overexpression of the W408R GDF5 mutant protein was shown to induce BMP2-mediated mRNA expression of enamel matrix proteins and downstream phosphorylation of Smad1/5/8. These results suggest that mutant GDF5 enhances ameloblast differentiation via accelerated BMP2-signalling.