GP5

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 270879 Experts worldwide ranked by ideXlab platform

Daniëlle A.m. Heideman - One of the best experts on this subject based on the ideXlab platform.

  • comparison of two widely used human papillomavirus detection and genotyping methods GP5 6 based pcr followed by reverse line blot hybridization and multiplex type specific e7 based pcr
    Journal of Clinical Microbiology, 2016
    Co-Authors: Gary M. Clifford, Salvatore Vaccarella, Silvia Franceschi, Vanessa Tenet, Ugyen Tshomo, Bolormaa Dondog, Alex Vorsters, Massimo Tommasino, Chantal M Umulisa, Daniëlle A.m. Heideman
    Abstract:

    GP5+/6+-based PCR followed by reverse line blot hybridization (GP5+/6+RLB) and multiplex type-specific PCR (E7-MPG) are two human papillomavirus (HPV) genotyping methodologies widely applied in epidemiological research. We investigated their relative analytical performance in 4,662 samples derived from five studies in Bhutan, Rwanda, and Mongolia coordinated by the International Agency for Research on Cancer (IARC). A total of 630 samples were positive by E7-MPG only (13.5%), 24 were positive by GP5+/6+RLB only (0.5%), and 1,014 were positive (21.8%) by both methods. Ratios of HPV type-specific positivity of the two tests (E7-MPG:GP5+/6+RLB ratio) were calculated among 1,668 samples that were HPV positive by one or both tests. E7-MPG:GP5+/6+RLB ratios were >1 for all types and highly reproducible across populations and sample types. E7-MPG:GP5+/6+RLB ratios were highest for HPV53 (7.5) and HPV68 (7.1). HPV16 (1.6) and HPV18 (1.7) had lower than average E7-MPG:GP5+/6+RLB ratios. Among E7-MPG positive infections, median mean fluorescence intensity (MFI; a semiquantitative measure of viral load) tended to be higher among samples positive for the same virus type by GP5+/6+RLB than for those negative for the same type by GP5+/6+RLB. Exceptions, however, included HPV53, -59, and -82, for which the chances of being undetected by GP5+/6+RLB appeared to be MFI independent. Furthermore, the probability of detecting an additional type by E7-MPG was higher when another type was already detected by GP5+/6+RLB, suggesting the existence of masking effects due to competition for GP5+/6+ PCR primers. In conclusion, this analysis is not an evaluation of clinical performance but may inform choices for HPV genotyping methods in epidemiological studies, when the relative merits and dangers of sensitivity versus specificity for individual types should be considered, as well as the potential to unmask nonvaccine types following HPV vaccination.

  • Comparison of Two Widely Used Human Papillomavirus Detection and Genotyping Methods, GP5+/6+-Based PCR Followed by Reverse Line Blot Hybridization and Multiplex Type-Specific E7-Based PCR.
    Journal of clinical microbiology, 2016
    Co-Authors: Gary M. Clifford, Salvatore Vaccarella, Silvia Franceschi, Vanessa Tenet, M. Chantal Umulisa, Ugyen Tshomo, Bolormaa Dondog, Alex Vorsters, Massimo Tommasino, Daniëlle A.m. Heideman
    Abstract:

    GP5+/6+-based PCR followed by reverse line blot hybridization (GP5+/6+RLB) and multiplex type-specific PCR (E7-MPG) are two human papillomavirus (HPV) genotyping methodologies widely applied in epidemiological research. We investigated their relative analytical performance in 4,662 samples derived from five studies in Bhutan, Rwanda, and Mongolia coordinated by the International Agency for Research on Cancer (IARC). A total of 630 samples were positive by E7-MPG only (13.5%), 24 were positive by GP5+/6+RLB only (0.5%), and 1,014 were positive (21.8%) by both methods. Ratios of HPV type-specific positivity of the two tests (E7-MPG:GP5+/6+RLB ratio) were calculated among 1,668 samples that were HPV positive by one or both tests. E7-MPG:GP5+/6+RLB ratios were >1 for all types and highly reproducible across populations and sample types. E7-MPG:GP5+/6+RLB ratios were highest for HPV53 (7.5) and HPV68 (7.1). HPV16 (1.6) and HPV18 (1.7) had lower than average E7-MPG:GP5+/6+RLB ratios. Among E7-MPG positive infections, median mean fluorescence intensity (MFI; a semiquantitative measure of viral load) tended to be higher among samples positive for the same virus type by GP5+/6+RLB than for those negative for the same type by GP5+/6+RLB. Exceptions, however, included HPV53, -59, and -82, for which the chances of being undetected by GP5+/6+RLB appeared to be MFI independent. Furthermore, the probability of detecting an additional type by E7-MPG was higher when another type was already detected by GP5+/6+RLB, suggesting the existence of masking effects due to competition for GP5+/6+ PCR primers. In conclusion, this analysis is not an evaluation of clinical performance but may inform choices for HPV genotyping methods in epidemiological studies, when the relative merits and dangers of sensitivity versus specificity for individual types should be considered, as well as the potential to unmask nonvaccine types following HPV vaccination.

Gary M. Clifford - One of the best experts on this subject based on the ideXlab platform.

  • comparison of two widely used human papillomavirus detection and genotyping methods GP5 6 based pcr followed by reverse line blot hybridization and multiplex type specific e7 based pcr
    Journal of Clinical Microbiology, 2016
    Co-Authors: Gary M. Clifford, Salvatore Vaccarella, Silvia Franceschi, Vanessa Tenet, Ugyen Tshomo, Bolormaa Dondog, Alex Vorsters, Massimo Tommasino, Chantal M Umulisa, Daniëlle A.m. Heideman
    Abstract:

    GP5+/6+-based PCR followed by reverse line blot hybridization (GP5+/6+RLB) and multiplex type-specific PCR (E7-MPG) are two human papillomavirus (HPV) genotyping methodologies widely applied in epidemiological research. We investigated their relative analytical performance in 4,662 samples derived from five studies in Bhutan, Rwanda, and Mongolia coordinated by the International Agency for Research on Cancer (IARC). A total of 630 samples were positive by E7-MPG only (13.5%), 24 were positive by GP5+/6+RLB only (0.5%), and 1,014 were positive (21.8%) by both methods. Ratios of HPV type-specific positivity of the two tests (E7-MPG:GP5+/6+RLB ratio) were calculated among 1,668 samples that were HPV positive by one or both tests. E7-MPG:GP5+/6+RLB ratios were >1 for all types and highly reproducible across populations and sample types. E7-MPG:GP5+/6+RLB ratios were highest for HPV53 (7.5) and HPV68 (7.1). HPV16 (1.6) and HPV18 (1.7) had lower than average E7-MPG:GP5+/6+RLB ratios. Among E7-MPG positive infections, median mean fluorescence intensity (MFI; a semiquantitative measure of viral load) tended to be higher among samples positive for the same virus type by GP5+/6+RLB than for those negative for the same type by GP5+/6+RLB. Exceptions, however, included HPV53, -59, and -82, for which the chances of being undetected by GP5+/6+RLB appeared to be MFI independent. Furthermore, the probability of detecting an additional type by E7-MPG was higher when another type was already detected by GP5+/6+RLB, suggesting the existence of masking effects due to competition for GP5+/6+ PCR primers. In conclusion, this analysis is not an evaluation of clinical performance but may inform choices for HPV genotyping methods in epidemiological studies, when the relative merits and dangers of sensitivity versus specificity for individual types should be considered, as well as the potential to unmask nonvaccine types following HPV vaccination.

  • Comparison of Two Widely Used Human Papillomavirus Detection and Genotyping Methods, GP5+/6+-Based PCR Followed by Reverse Line Blot Hybridization and Multiplex Type-Specific E7-Based PCR.
    Journal of clinical microbiology, 2016
    Co-Authors: Gary M. Clifford, Salvatore Vaccarella, Silvia Franceschi, Vanessa Tenet, M. Chantal Umulisa, Ugyen Tshomo, Bolormaa Dondog, Alex Vorsters, Massimo Tommasino, Daniëlle A.m. Heideman
    Abstract:

    GP5+/6+-based PCR followed by reverse line blot hybridization (GP5+/6+RLB) and multiplex type-specific PCR (E7-MPG) are two human papillomavirus (HPV) genotyping methodologies widely applied in epidemiological research. We investigated their relative analytical performance in 4,662 samples derived from five studies in Bhutan, Rwanda, and Mongolia coordinated by the International Agency for Research on Cancer (IARC). A total of 630 samples were positive by E7-MPG only (13.5%), 24 were positive by GP5+/6+RLB only (0.5%), and 1,014 were positive (21.8%) by both methods. Ratios of HPV type-specific positivity of the two tests (E7-MPG:GP5+/6+RLB ratio) were calculated among 1,668 samples that were HPV positive by one or both tests. E7-MPG:GP5+/6+RLB ratios were >1 for all types and highly reproducible across populations and sample types. E7-MPG:GP5+/6+RLB ratios were highest for HPV53 (7.5) and HPV68 (7.1). HPV16 (1.6) and HPV18 (1.7) had lower than average E7-MPG:GP5+/6+RLB ratios. Among E7-MPG positive infections, median mean fluorescence intensity (MFI; a semiquantitative measure of viral load) tended to be higher among samples positive for the same virus type by GP5+/6+RLB than for those negative for the same type by GP5+/6+RLB. Exceptions, however, included HPV53, -59, and -82, for which the chances of being undetected by GP5+/6+RLB appeared to be MFI independent. Furthermore, the probability of detecting an additional type by E7-MPG was higher when another type was already detected by GP5+/6+RLB, suggesting the existence of masking effects due to competition for GP5+/6+ PCR primers. In conclusion, this analysis is not an evaluation of clinical performance but may inform choices for HPV genotyping methods in epidemiological studies, when the relative merits and dangers of sensitivity versus specificity for individual types should be considered, as well as the potential to unmask nonvaccine types following HPV vaccination.

Bolormaa Dondog - One of the best experts on this subject based on the ideXlab platform.

  • comparison of two widely used human papillomavirus detection and genotyping methods GP5 6 based pcr followed by reverse line blot hybridization and multiplex type specific e7 based pcr
    Journal of Clinical Microbiology, 2016
    Co-Authors: Gary M. Clifford, Salvatore Vaccarella, Silvia Franceschi, Vanessa Tenet, Ugyen Tshomo, Bolormaa Dondog, Alex Vorsters, Massimo Tommasino, Chantal M Umulisa, Daniëlle A.m. Heideman
    Abstract:

    GP5+/6+-based PCR followed by reverse line blot hybridization (GP5+/6+RLB) and multiplex type-specific PCR (E7-MPG) are two human papillomavirus (HPV) genotyping methodologies widely applied in epidemiological research. We investigated their relative analytical performance in 4,662 samples derived from five studies in Bhutan, Rwanda, and Mongolia coordinated by the International Agency for Research on Cancer (IARC). A total of 630 samples were positive by E7-MPG only (13.5%), 24 were positive by GP5+/6+RLB only (0.5%), and 1,014 were positive (21.8%) by both methods. Ratios of HPV type-specific positivity of the two tests (E7-MPG:GP5+/6+RLB ratio) were calculated among 1,668 samples that were HPV positive by one or both tests. E7-MPG:GP5+/6+RLB ratios were >1 for all types and highly reproducible across populations and sample types. E7-MPG:GP5+/6+RLB ratios were highest for HPV53 (7.5) and HPV68 (7.1). HPV16 (1.6) and HPV18 (1.7) had lower than average E7-MPG:GP5+/6+RLB ratios. Among E7-MPG positive infections, median mean fluorescence intensity (MFI; a semiquantitative measure of viral load) tended to be higher among samples positive for the same virus type by GP5+/6+RLB than for those negative for the same type by GP5+/6+RLB. Exceptions, however, included HPV53, -59, and -82, for which the chances of being undetected by GP5+/6+RLB appeared to be MFI independent. Furthermore, the probability of detecting an additional type by E7-MPG was higher when another type was already detected by GP5+/6+RLB, suggesting the existence of masking effects due to competition for GP5+/6+ PCR primers. In conclusion, this analysis is not an evaluation of clinical performance but may inform choices for HPV genotyping methods in epidemiological studies, when the relative merits and dangers of sensitivity versus specificity for individual types should be considered, as well as the potential to unmask nonvaccine types following HPV vaccination.

  • Comparison of Two Widely Used Human Papillomavirus Detection and Genotyping Methods, GP5+/6+-Based PCR Followed by Reverse Line Blot Hybridization and Multiplex Type-Specific E7-Based PCR.
    Journal of clinical microbiology, 2016
    Co-Authors: Gary M. Clifford, Salvatore Vaccarella, Silvia Franceschi, Vanessa Tenet, M. Chantal Umulisa, Ugyen Tshomo, Bolormaa Dondog, Alex Vorsters, Massimo Tommasino, Daniëlle A.m. Heideman
    Abstract:

    GP5+/6+-based PCR followed by reverse line blot hybridization (GP5+/6+RLB) and multiplex type-specific PCR (E7-MPG) are two human papillomavirus (HPV) genotyping methodologies widely applied in epidemiological research. We investigated their relative analytical performance in 4,662 samples derived from five studies in Bhutan, Rwanda, and Mongolia coordinated by the International Agency for Research on Cancer (IARC). A total of 630 samples were positive by E7-MPG only (13.5%), 24 were positive by GP5+/6+RLB only (0.5%), and 1,014 were positive (21.8%) by both methods. Ratios of HPV type-specific positivity of the two tests (E7-MPG:GP5+/6+RLB ratio) were calculated among 1,668 samples that were HPV positive by one or both tests. E7-MPG:GP5+/6+RLB ratios were >1 for all types and highly reproducible across populations and sample types. E7-MPG:GP5+/6+RLB ratios were highest for HPV53 (7.5) and HPV68 (7.1). HPV16 (1.6) and HPV18 (1.7) had lower than average E7-MPG:GP5+/6+RLB ratios. Among E7-MPG positive infections, median mean fluorescence intensity (MFI; a semiquantitative measure of viral load) tended to be higher among samples positive for the same virus type by GP5+/6+RLB than for those negative for the same type by GP5+/6+RLB. Exceptions, however, included HPV53, -59, and -82, for which the chances of being undetected by GP5+/6+RLB appeared to be MFI independent. Furthermore, the probability of detecting an additional type by E7-MPG was higher when another type was already detected by GP5+/6+RLB, suggesting the existence of masking effects due to competition for GP5+/6+ PCR primers. In conclusion, this analysis is not an evaluation of clinical performance but may inform choices for HPV genotyping methods in epidemiological studies, when the relative merits and dangers of sensitivity versus specificity for individual types should be considered, as well as the potential to unmask nonvaccine types following HPV vaccination.

  • Homogeneous Amplification of Genital Human Alpha Papillomaviruses by PCR Using Novel Broad-Spectrum GP5+ and GP6+ Primers
    Journal of clinical microbiology, 2008
    Co-Authors: Markus Schmitt, Bolormaa Dondog, Tim Waterboer, Michael Pawlita
    Abstract:

    Human papillomavirus (HPV) DNA detection and typing are important for diagnosis and management of HPV-associated diseases. One of the most commonly used PCR methods, GP5+/6+, shows weaknesses in amplifying certain types. To circumvent this limitation, we developed and validated broad-spectrum primers targeting the GP5+/6+ region. The addition of eight upstream and two downstream BSGP5+/6+ (BS) primers improved amplification of plasmids of 14 genital HPV types 10- to 1,000-fold versus GP5+/6+ PCR without altering sensitivity for the 10 others. For these 24 types, an analytic sensitivity of ≤1,000 plasmid copies in the presence of 100 ng cellular DNA was obtained. Additionally, we integrated an internal β-globin PCR into both HPV PCR systems, allowing simultaneous DNA quality control without affecting the sensitivity of HPV detection. Furthermore, we describe five additional low-risk HPV probes used in multiplex HPV genotyping (MPG) for simultaneous identification of all 15 high-risk, 3 putative high-risk, and 9 low-risk HPV genotypes. The performance of BSGP5+/6+ multiplexed with β-globin primers was compared to that of standard GP5+/6+ with DNA from 1,112 cervical scrapings. There was 79% overall agreement (kappa = 0.816). BSGP5+/6+ was significantly more sensitive than GP5+/6+ for detection of HPV 30, 39, 42, 44, 51, 52, 53, 68, 73, and 82, detecting 212 additional HPV infections and increasing the proportion of multiple infections from 17.2 to 26.9% in cancer patients. In conclusion, BSGP5+/6+ multiplexed with β-globin PCR provides an improvement in type-specific amplification sensitivity and homogeneity compared to GP5+/6+ and offers simultaneous internal control of DNA quality. BSGP5+/6+-MPG, therefore, is suitable for epidemiologic and also diagnostic applications.

Ping Jiang - One of the best experts on this subject based on the ideXlab platform.

  • The amino acid residues at 102 and 104 in GP5 of porcine reproductive and respiratory syndrome virus regulate viral neutralization susceptibility to the porcine serum neutralizing antibody
    Virus research, 2015
    Co-Authors: Baochao Fan, Xing Liu, Juan Bai, Tingjie Zhang, Qiaoya Zhang, Ping Jiang
    Abstract:

    Porcine reproductive and respiratory syndrome virus (PRRSV) is mainly responsible for the heavy economic losses in pig industry in the world. A number of neutralizing epitopes have been identified in the viral structural proteins GP3, GP4, GP5 and M. In this study, the important amino acid (aa) residues of HP-PRRSV strain BB affecting neutralization susceptibility of antibody were examined using resistant strains generated under neutralizing antibody (NAb) pressure in MARC-145 cells, reverse genetic technique and virus neutralization assay. HP-PRRSV strain BB was passaged under the pressure of porcine NAb serum in vitro. A resistant strain BB34s with 102 and 104 aa substitutions in GP5, which have been predicted to be the positive sites for pressure selection (Delisle et al., 2012), was cloned and identified. To determine the effect of the two aa residues on neutralization, eight recombinant PRRSV strains were generated, and neutralization assay results confirmed that the aa residues 102 and 104 in GP5 played an important role in NAbs against HP-PRRSV in MARC-145 cells and porcine alveolar macrophages. Alignment of GP5 sequences revealed that the variant aa residues at 102 and 104 were frequent among type 2 PRRSV strains. It may be helpful for understanding the mechanism regulating the neutralization susceptibility of PRRSV to the NAbs and monitoring the antigen variant strains in the field.

  • CD40 ligand expressed in adenovirus can improve the immunogenicity of the GP3 and GP5 of porcine reproductive and respiratory syndrome virus in swine
    Vaccine, 2010
    Co-Authors: Jun Cao, Xinglong Wang, Xianwei Wang, Ping Jiang
    Abstract:

    Porcine reproductive and respiratory syndrome virus (PRRSV) has recently caused heavy economic losses in swine industry worldwide. Current vaccination strategies only provide a limited protective efficacy, thus immune modulators are being considered to enhance the effectiveness of PRRSV vaccines. In this study, the recombinant adenoviruses expressing porcine CD40 ligand (CD40L) and GP3/GP5 of PRRSV were constructed and the immune responses were examined in pigs. The results showed that rAd-CD40L-GP35 (co-expressing CD40L and GP3-GP5) or rAd-GP35 (expressing GP3-GP5) plus rAd-CD40L (expressing CD40L) could provide significant higher specific anti-PRRSV ELISA antibody and neutralizing antibody. And the levels of proliferative responses of peripheral blood mononuclear cells (PBMC), IFN-γ and IL-4 were markedly increased in rAd-CD40L-GP35 and rAd-CD40L plus rAd-GP35 groups than those in rAd-GP35 group. Following homologous challenge with Chinese isolate of the North-American genotype of PRRSV, pigs inoculated with recombinant rAd-CD40L-GP35 and rAd-CD40L plus rAd-GP35 showed lighter clinical signs and lower viremia, as compared to those in rAd-GP35 group. It indicated that porcine CD40L could effectively increase humoral and cell-mediated immune responses of GP3 and GP5 of PRRSV. Porcine CD40L might be used as an attractive adjuvant or immunotargeting strategies to enhance the PRRSV subunit vaccine responses in swine.

  • Construction and immunogenicity of recombinant adenoviruses expressing Cap protein of PCV2 and GP5 protein of PRRSV in mice
    Sheng wu gong cheng xue bao = Chinese journal of biotechnology, 2009
    Co-Authors: Xianwei Wang, Ping Jiang
    Abstract:

    Porcine circovirus 2 (PCV2) has been implicated as the etiological agent of postweaning multisystemic wasting syndrome (PMWS). Co-infection of PCV2 and porcine reproductive and respiratory syndrome virus (PRRSV) can result in severe economic losses to the swine industry. In this study, we constructed the recombinant adenovirus rAd-Cap-GP5 expressing Cap of PCV2 and GP5 of PRRSV. And the expression of Cap and GP5 protein in the HEK-293 cells inoculated with rAd-Cap-GP5 were confirmed by immunoperoxidase monolayer assay (IPMA), indirect immunofluorescence assay (IFA) and Western blotting, respectively. The immunogenicity of recombinant adenoviruses rAd-Cap-GP5 was examined in mice by vaccination with the recombinant adenovirus. The results showed that the mice could produce anti-PCV2 and PRRSV antibodies detected by indirect ELISA and virus neutralization assay. It indicated that rAd-Cap-GP5 could provide humoral immunity responses in mice. The recombinant adenovirus rAd-Cap-GP5 might be an attractive candidate vaccine for preventing the disease associated with PCV2 and PRRSV infection.

  • HSP70 fused with GP3 and GP5 of porcine reproductive and respiratory syndrome virus enhanced the immune responses and protective efficacy against virulent PRRSV challenge in pigs.
    Vaccine, 2008
    Co-Authors: Ping Jiang, Xianwei Wang, Xinglong Wang, Jun Cao, Basit Zeshan
    Abstract:

    Porcine reproductive and respiratory syndrome virus (PRRSV) has been mainly responsible for the heavy economic losses in pig industry all over the world. Current vaccination strategies provide only a limited protection. In this study recombinant adenoviruses expressing GP3/GP5 of highly pathogenic PRRSV and heat shock protein 70 (HSP70) gene of Heamophilus parasuis were constructed, and the immune responses and protective efficacy against homologous challenge were examined in pigs. The results showed that all animals vaccinated with rAd-GP35 (co-expressing GP3-GP5), rAd-HS35 and rAd-HSA35 (co-expressing GP3-GP5 fused with HSP70 using different linkers), developed specific anti-PRRSV ELISA antibody and neutralizing antibody. The humoral immune responses of rAd-HS35, especially rAd-HSA35 containing 2A of FMDV between HSP70 and GP3 gene, were significantly higher than that of rAd-GP35. Moreover, the fusion of HSP70 markedly induced both IFN-gamma and IL-4 in pigs' sera. Following challenge with PRRSV, pigs inoculated with recombinant rAd-HS35 and rAd-HSA35 showed lighter clinical signs, lower viremia and less pathological lesion of lungs, as compared to those in rAd-GP35 group. Moreover, the protective efficiency induced by rAd-HSA35 was higher than that of rAd-HS35. It indicated that HSP70 fused with GP3 and GP5 of PRRSV could induce enhanced immune responses and provide protection against virulent PRRSV challenge in pigs. The recombinant adenovirus rAd-HSA35 might be an attractive candidate vaccine for the prevention and control of highly pathogenic PRRSV infections.

  • enhanced immune responses of mice inoculated recombinant adenoviruses expressing GP5 by fusion with gp3 and or gp4 of prrs virus
    Virus Research, 2008
    Co-Authors: Wenming Jiang, Ping Jiang, Xianwei Wang, Xinglong Wang
    Abstract:

    Abstract Porcine reproductive and respiratory syndrome (PRRS) is one of the most important causes of economic losses of the swine industry. PRRS virus (PRRSV) infection poses a challenge to current vaccination strategies. In this study, three replication-defective adenovirus recombinants expressing fusion protein GP3–GP5, GP4–GP5, or GP3–GP4–GP5 were developed as potential vaccine against PRRSV in a mouse model. Six groups of BALB/c mice (24 mice per group) were inoculated subcutaneously twice at 2-week intervals with above mentioned recombinants and other adenoviruses expressing single GP3, GP4, or GP5 protein. The results showed that the mice inoculated with recombinant adenoviruses developed PRRSV-specific antibodies, cellular immune response by 2 weeks post-boost-immunization. However, mice immunized with recombinant adenoviruses rAd-GP3–GP5, rAd-GP4–GP5, and rAd-GP3–GP4–GP5 developed significantly higher titers of neutralizing antibodies to PRRSV and produced stronger lymphocyte proliferation responses compared to mice immunized with rAd-GP3, rAd-GP4 or rAd-GP5 alone. It was also found that mice immunized with rAd-GP3–GP5 and rAd-GP3–GP4–GP5 were primed for significant higher levels of anti-PRRSV CTL responses than mice immunized with rAd-GP3 and rAd-GP5. These findings suggested that the recombinant adenoviruses expressing fusion proteins GP3–GP5 or GP3–GP4–GP5 might be an attractive candidate vaccine for preventing PRRSV infection.

Ugyen Tshomo - One of the best experts on this subject based on the ideXlab platform.

  • comparison of two widely used human papillomavirus detection and genotyping methods GP5 6 based pcr followed by reverse line blot hybridization and multiplex type specific e7 based pcr
    Journal of Clinical Microbiology, 2016
    Co-Authors: Gary M. Clifford, Salvatore Vaccarella, Silvia Franceschi, Vanessa Tenet, Ugyen Tshomo, Bolormaa Dondog, Alex Vorsters, Massimo Tommasino, Chantal M Umulisa, Daniëlle A.m. Heideman
    Abstract:

    GP5+/6+-based PCR followed by reverse line blot hybridization (GP5+/6+RLB) and multiplex type-specific PCR (E7-MPG) are two human papillomavirus (HPV) genotyping methodologies widely applied in epidemiological research. We investigated their relative analytical performance in 4,662 samples derived from five studies in Bhutan, Rwanda, and Mongolia coordinated by the International Agency for Research on Cancer (IARC). A total of 630 samples were positive by E7-MPG only (13.5%), 24 were positive by GP5+/6+RLB only (0.5%), and 1,014 were positive (21.8%) by both methods. Ratios of HPV type-specific positivity of the two tests (E7-MPG:GP5+/6+RLB ratio) were calculated among 1,668 samples that were HPV positive by one or both tests. E7-MPG:GP5+/6+RLB ratios were >1 for all types and highly reproducible across populations and sample types. E7-MPG:GP5+/6+RLB ratios were highest for HPV53 (7.5) and HPV68 (7.1). HPV16 (1.6) and HPV18 (1.7) had lower than average E7-MPG:GP5+/6+RLB ratios. Among E7-MPG positive infections, median mean fluorescence intensity (MFI; a semiquantitative measure of viral load) tended to be higher among samples positive for the same virus type by GP5+/6+RLB than for those negative for the same type by GP5+/6+RLB. Exceptions, however, included HPV53, -59, and -82, for which the chances of being undetected by GP5+/6+RLB appeared to be MFI independent. Furthermore, the probability of detecting an additional type by E7-MPG was higher when another type was already detected by GP5+/6+RLB, suggesting the existence of masking effects due to competition for GP5+/6+ PCR primers. In conclusion, this analysis is not an evaluation of clinical performance but may inform choices for HPV genotyping methods in epidemiological studies, when the relative merits and dangers of sensitivity versus specificity for individual types should be considered, as well as the potential to unmask nonvaccine types following HPV vaccination.

  • Comparison of Two Widely Used Human Papillomavirus Detection and Genotyping Methods, GP5+/6+-Based PCR Followed by Reverse Line Blot Hybridization and Multiplex Type-Specific E7-Based PCR.
    Journal of clinical microbiology, 2016
    Co-Authors: Gary M. Clifford, Salvatore Vaccarella, Silvia Franceschi, Vanessa Tenet, M. Chantal Umulisa, Ugyen Tshomo, Bolormaa Dondog, Alex Vorsters, Massimo Tommasino, Daniëlle A.m. Heideman
    Abstract:

    GP5+/6+-based PCR followed by reverse line blot hybridization (GP5+/6+RLB) and multiplex type-specific PCR (E7-MPG) are two human papillomavirus (HPV) genotyping methodologies widely applied in epidemiological research. We investigated their relative analytical performance in 4,662 samples derived from five studies in Bhutan, Rwanda, and Mongolia coordinated by the International Agency for Research on Cancer (IARC). A total of 630 samples were positive by E7-MPG only (13.5%), 24 were positive by GP5+/6+RLB only (0.5%), and 1,014 were positive (21.8%) by both methods. Ratios of HPV type-specific positivity of the two tests (E7-MPG:GP5+/6+RLB ratio) were calculated among 1,668 samples that were HPV positive by one or both tests. E7-MPG:GP5+/6+RLB ratios were >1 for all types and highly reproducible across populations and sample types. E7-MPG:GP5+/6+RLB ratios were highest for HPV53 (7.5) and HPV68 (7.1). HPV16 (1.6) and HPV18 (1.7) had lower than average E7-MPG:GP5+/6+RLB ratios. Among E7-MPG positive infections, median mean fluorescence intensity (MFI; a semiquantitative measure of viral load) tended to be higher among samples positive for the same virus type by GP5+/6+RLB than for those negative for the same type by GP5+/6+RLB. Exceptions, however, included HPV53, -59, and -82, for which the chances of being undetected by GP5+/6+RLB appeared to be MFI independent. Furthermore, the probability of detecting an additional type by E7-MPG was higher when another type was already detected by GP5+/6+RLB, suggesting the existence of masking effects due to competition for GP5+/6+ PCR primers. In conclusion, this analysis is not an evaluation of clinical performance but may inform choices for HPV genotyping methods in epidemiological studies, when the relative merits and dangers of sensitivity versus specificity for individual types should be considered, as well as the potential to unmask nonvaccine types following HPV vaccination.