GPR119

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 48987 Experts worldwide ranked by ideXlab platform

Timothy J Kowalski - One of the best experts on this subject based on the ideXlab platform.

  • GPR119 agonism increases glucagon secretion during insulin induced hypoglycemia
    Diabetes, 2018
    Co-Authors: Stacey N Brown, Timothy J Kowalski, Liming Yang, Ge Dai, Aleksandr Petrov, Yuyan Ding, Tamara Dlugos, Harold B Wood, Liangsu Wang, Mark D Erion
    Abstract:

    Insulin-induced hypoglycemia in diabetes is associated with impaired glucagon secretion. In this study, we tested whether stimulation of GPR119, a G-protein-coupled receptor expressed in pancreatic islet as well as enteroendocrine cells and previously shown to stimulate insulin and incretin secretion, might enhance glucagon secretion during hypoglycemia. In the study, GPR119 agonists were applied to isolated islets or perfused pancreata to assess insulin and glucagon secretion during hypoglycemic or hyperglycemic conditions. Insulin infusion hypoglycemic clamps were performed with or without GPR119 agonist pretreatment to assess glucagon counterregulation in healthy and streptozotocin (STZ)-induced diabetic rats, including those exposed to recurrent bouts of insulin-induced hypoglycemia that leads to suppression of hypoglycemia-induced glucagon release. Hypoglycemic clamp studies were also conducted in GPR119 knockout (KO) mice to evaluate whether the pharmacological stimulatory actions of GPR119 agonists on glucagon secretion during hypoglycemia were an on-target effect. The results revealed that GPR119 agonist-treated pancreata or cultured islets had increased glucagon secretion during low glucose perfusion. In vivo, GPR119 agonists also significantly increased glucagon secretion during hypoglycemia in healthy and STZ-diabetic rats, a response that was absent in GPR119 KO mice. In addition, impaired glucagon counterregulatory responses were restored by a GPR119 agonist in STZ-diabetic rats that were exposed to antecedent bouts of hypoglycemia. Thus, GPR119 agonists have the ability to pharmacologically augment glucagon secretion, specifically in response to hypoglycemia in diabetic rodents. Whether this effect might serve to diminish the occurrence and severity of iatrogenic hypoglycemia during intensive insulin therapy in patients with diabetes remains to be established.

  • GPR119, a Major Enteroendocrine Sensor of Dietary Triglyceride Metabolites Coacting in Synergy With FFA1 (GPR40)
    Endocrinology, 2016
    Co-Authors: Jeppe H. Ekberg, Maja S. Engelstoft, Maria Hauge, Line Vildbrad Kristensen, Andreas N. Madsen, Anna-sofie Husted, Rasmus M. Sichlau, Kristoffer L. Egerod, Pascal Timshel, Timothy J Kowalski
    Abstract:

    Triglycerides (TGs) are among the most efficacious stimulators of incretin secretion; however, the relative importance of FFA1 (G Protein-coupled Receptor [GPR] 40), FFA4 (GPR120), and GPR119, which all recognize TG metabolites, ie, long-chain fatty acid and 2-monoacylglycerol, respectively, is still unclear. Here, we find all 3 receptors to be highly expressed and highly enriched in fluorescence-activated cell sorting-purified GLP-1 and GIP cells isolated from transgenic reporter mice. In vivo, the TG-induced increase in plasma GIP was significantly reduced in FFA1-deficient mice (to 34%, mean of 4 experiments each with 8-10 animals), in GPR119-deficient mice (to 24%) and in FFA1/FFA4 double deficient mice (to 15%) but not in FFA4-deficient mice. The TG-induced increase in plasma GLP-1 was only significantly reduced in the GPR119-deficient and the FFA1/FFA4 double deficient mice, but not in the FFA1, and FFA4-deficient mice. In mouse colonic crypt cultures the synthetic FFA1 agonists, TAK-875 stimulated GLP-1 secretion to a similar extent as the prototype GLP-1 secretagogue neuromedin C; this, however, only corresponded to approximately half the maximal efficiency of the GPR119 agonist AR231453, whereas the GPR120 agonist Metabolex-209 had no effect. Importantly, when the FFA1 agonist was administered on top of appropriately low doses of the GPR119 agonist, a clear synergistic, ie, more than additive, effect was observed. It is concluded that the 2-monoacylglycerol receptor GPR119 is at least as important as the long-chain fatty acid receptor FFA1 in mediating the TG-induced secretion of incretins and that the 2 receptors act in synergy, whereas FFA4 plays a minor if any role.

  • Agonists at GPR119 mediate secretion of GLP-1 from mouse enteroendocrine cells through glucose-independent pathways.
    British journal of pharmacology, 2012
    Co-Authors: Hong Lan, Joseph A Hedrick, Hv Lin, Cf Wang, Mj Wright, Ling Kang, K Juhl, Timothy J Kowalski
    Abstract:

    BACKGROUND AND PURPOSE The G protein-coupled receptor 119 (GPR119) mediates insulin secretion from pancreatic β cells and glucagon-like peptide 1 (GLP-1) release from intestinal L cells. While GPR119-mediated insulin secretion is glucose dependent, it is not clear whether or not GPR119-mediated GLP-1 secretion similarly requires glucose. This study was designed to address the glucose-dependence of GPR119-mediated GLP-1 secretion, and to explore the cellular mechanisms of hormone secretion in L cells versus those in β cells. EXPERIMENTAL APPROACH GLP-1 secretion in response to GPR119 agonists and ion channel modulators, with and without glucose, was analysed in the intestinal L cell line GLUTag, in primary intestinal cell cultures and in vivo. Insulin secretion from Min6 cells, a pancreatic β cell line, was analysed for comparison. KEY RESULTS In GLUTag cells, GPR119 agonists stimulated GLP-1 secretion both in the presence and in the absence of glucose. In primary mouse colon cultures, GPR119 agonists stimulated GLP-1 secretion under glucose-free conditions. Moreover, a GPR119 agonist increased plasma GLP-1 in mice without a glucose load. However, in Min6 cells, GPR119-mediated insulin secretion was glucose-dependent. Among the pharmacological agents tested in this study, nitrendipine, an L-type voltage-dependent calcium channel blocker, dose-dependently reduced GLP-1 secretion from GLUTag cells, but had no effect in Min6 cells in the absence of glucose. CONCLUSIONS AND IMPLICATIONS Unlike that in pancreatic β cells, GPR119-mediated GLP-1 secretion from intestinal L cells was glucose-independent in vitro and in vivo, probably because of a higher basal calcium tone in the L cells.

  • GPR119 Agonists for the Potential Treatment of Type 2 Diabetes and Related Metabolic Disorders
    Vitamins and hormones, 2010
    Co-Authors: Shah Unmesh G, Timothy J Kowalski
    Abstract:

    Type 2 diabetes (T2D) has reached epidemic proportions, and there is an unmet medical need for orally effective agents that regulate glucose homeostasis. GPR119, a class-A (rhodopsin-like) G protein-coupled receptor expressed primarily in the pancreas and gastrointestinal tract, has attracted considerable interest as a T2D drug target in recent years. The activation of GPR119 increases the intracellular accumulation of cAMP, leading to enhanced glucose-dependent insulin secretion from pancreatic β-cells and increased release of the gut peptides GLP-1 (glucagon-like peptide 1), GIP (glucose-dependent insulinotropic peptide) and PYY (polypeptide YY). Oral administration of small molecule GPR119 agonists has been shown to improve glucose tolerance in both rodents and humans. This review summarizes the research leading to the identification of GPR119 as a potential drug target for T2D and related metabolic disorders, and provides an overview of the recent progress made in the discovery of orally active GPR119 agonists.

Shigeru Yoshida - One of the best experts on this subject based on the ideXlab platform.

  • Synthesis and structure–activity relationship of fused-pyrimidine derivatives as a series of novel GPR119 agonists
    Bioorganic & medicinal chemistry, 2012
    Co-Authors: Kenji Negoro, Shigeru Yoshida, Yasuhiro Yonetoku, Makoto Takeuchi, Ayako Moritomo, Masahiko Hayakawa, Kazuhiko Iikubo, Mitsuaki Ohta
    Abstract:

    A series of fused-pyrimidine derivatives have been discovered as potent and orally active GPR119 agonists. A combination of the fused-pyrimidine structure and 4-chloro-2,5-difluorophenyl group provided the 5,7-dihydrothieno[3,4-d]pyrimidine 6,6-dioxide derivative 14a as a highly potent GPR119 agonist. Further optimization of the amino group at the 4-position in the pyrimidine ring led to the identification of 2-{1-[2-(4-chloro-2,5-difluorophenyl)-6,6-dioxido-5,7-dihydrothieno[3,4-d]pyrimidin-4-yl]piperidin-4-yl}acetamide (16b) as an advanced analog. Compound 16b was found to have extremely potent agonistic activity and improved glucose tolerance at 0.1 mg/kg po in mice. We consider compound 16b and its analogs to have clear utility in exploring the practicality of GPR119 agonists as potential therapeutic agents for the treatment of type 2 diabetes mellitus.

  • Discovery and biological evaluation of novel 4-amino-2-phenylpyrimidine derivatives as potent and orally active GPR119 agonists.
    Bioorganic & medicinal chemistry, 2012
    Co-Authors: Kenji Negoro, Shigeru Yoshida, Yasuhiro Yonetoku, Hana Misawa-mukai, Wataru Hamaguchi, Tatsuya Maruyama, Makoto Takeuchi, Mitsuaki Ohta
    Abstract:

    Abstract Novel 4-amino-2-phenylpyrimidine derivatives were synthesized and evaluated as GPR119 agonists. Optimization of the substituents on the phenyl ring at the 2-position and the amino group at the 4-position led to the identification of 3,4-dihalogenated and 2,4,5-trihalogenated phenyl derivatives showing potent GPR119 agonistic activity. The advanced analog (2 R )-3-{[2-(4-chloro-2,5-difluorophenyl)-6-ethylpyrimidin-4-yl]amino}propane-1,2-diol ( 24g ) was found to improve glucose tolerance at 1 mg/kg po in mice and to show excellent pharmacokinetic profiles in mice and monkeys. Compound 24g also showed an excellent antidiabetic effect in diabetic kk/Ay mice after one week of single daily treatment. These results demonstrate that novel GPR119 agonist 24g improves glucose tolerance not only by enhancing glucose-dependent insulin secretion but also by preserving pancreatic β-cell function.

  • The therapeutic potential of GPR119 agonists for type 2 diabetes.
    Expert opinion on investigational drugs, 2012
    Co-Authors: Takahide Ohishi, Shigeru Yoshida
    Abstract:

    Introduction: Patients with type 2 diabetes mellitus (T2DM) are reaching an explosive number. Pancreatic β cell dysfunction is the characteristic feature of the progression of T2DM and there is an increasing need for agents to improve its function. GPR119 is a G protein-coupled receptor (GPCR) expressed both in pancreatic β cells and enteroendocrine cells and has garnered significant interest as a promising target for the next generation of T2DM drug. In vitro studies indicate that GPR119 agonists increase intracellular cAMP levels leading to enhanced glucose-induced insulin release and enhanced incretin hormone glucagon-like peptide 1 (GLP-1) secretion. In T2DM rodent models, GPR119 agonists are shown to decrease blood glucose level and preserve pancreatic β cell function. Areas covered: This review summarizes the function of GPR119 and the progresses made in the discovery of GPR119 agonists reported since 2002 in literatures. The importance of GPR119 agonists in glycemic control is discussed. Expert opi...

  • novel GPR119 agonist as1535907 contributes to first phase insulin secretion in rat perfused pancreas and diabetic db db mice
    Biochemical and Biophysical Research Communications, 2010
    Co-Authors: Shigeru Yoshida, Takahide Ohishi, Tetsuo Matsui, Hirotsugu Tanaka, Hiroyuki Oshima, Yasuhiro Yonetoku, Masayuki Shibasaki
    Abstract:

    G protein-coupled receptor (GPR) 119 is highly expressed in pancreatic β-cells and enhances the effect of glucose-stimulated insulin secretion (GSIS) on activation. The development of an oral GPR119 agonist that specifically targets the first phase of GSIS represents a promising strategy for the treatment of type 2 diabetes. In the present study, we evaluated the therapeutic potential of a novel small molecule GPR119 agonist, AS1535907, which was modified from the previously identified 2,4,6-tri-substituted pyrimidine core agonist AS1269574. AS1535907 displayed an EC50 value of 4.8 μM in HEK293 cells stably expressing human GPR119 and stimulated insulin secretion in rat islets only under high-glucose (16.8 mM) conditions. In isolated perfused pancreata from normal rats, AS1535907 enhanced the first phase of insulin secretion at 16.8 mM glucose, but had no effect at 2.8mM glucose. In contrast, the sulfonylurea glibenclamide predominantly induced insulin release in the second phase at 16.8 mM glucose and also markedly stimulated insulin secretion at 2.8 mM glucose. In in vivo studies, a single 10 μM administration of AS1535907 to diabetic db/db mice reduced blood glucose levels due to the rapid secretion of insulin secretion following oral glucose loading. These results demonstrate that GPR119 agonist AS1535907 has the ability to stimulate the first phase of GSIS, which is important for preventing the development of postprandial hypoglycemia. In conclusion, the GPR119 agonist AS1535907 induces a more rapid and physiological pattern of insulin release than glibenclamide, and represents a novel strategy for the treatment of type 2 diabetes.

  • Identification of a novel GPR119 agonist, AS1269574, with in vitro and in vivo glucose-stimulated insulin secretion.
    Biochemical and biophysical research communications, 2010
    Co-Authors: Shigeru Yoshida, Takahide Ohishi, Tetsuo Matsui, Masayuki Shibasaki
    Abstract:

    Abstract The G protein-coupled receptor 119 (GPR119) is highly expressed in pancreatic β-cells. On activation, this receptor enhances the effect of glucose-stimulated insulin secretion (GSIS) via the elevation of intracellular cAMP concentrations. Although GPR119 agonists represent promising oral antidiabetic agents for the treatment of type 2 diabetes therapy, they suffer from the inability to adequately directly preserve β-cell function. To identify a new structural class of small-molecule GPR119 agonists with both GSIS and the potential to preserve β-cell function, we screened a library of synthetic compounds and identified a candidate molecule, AS1269574, with a 2,4,6-tri-substituted pyrimidine core. Here, we examined the preliminary in vitro and in vivo effects of AS1269574 on insulin secretion and glucose tolerance. AS1269574 had an EC50 value of 2.5 μM in HEK293 cells transiently expressing human GPR119 and enhanced insulin secretion in the mouse pancreatic β-cell line MIN-6 only under high-glucose (16.8 mM) conditions. This contrasted with the action of the sulfonylurea glibenclamide, which also induced insulin secretion under low-glucose conditions (2.8 mM). In in vivo studies, a single administration of AS1269574 to normal mice reduced blood glucose levels after oral glucose loading based on the observed insulin secretion profiles. Significantly, AS1269574 did not affect fed and fasting plasma glucose levels in normal mice. Taken together, these results suggest that AS1269574 represents a novel structural class of small molecule, orally administrable GPR119 agonists with GSIS and promising potential for the treatment of type 2 diabetes.

Christine Reynet - One of the best experts on this subject based on the ideXlab platform.

  • GPR119 agonists as potential new oral agents for the treatment of type 2 diabetes and obesity
    Expert opinion on drug discovery, 2008
    Co-Authors: Matthew C. T. Fyfe, Hilary A. Overton, Martin James Procter, James G. Mccormack, Christine Reynet
    Abstract:

    Background: GPR119 is a Gαs-protein-coupled receptor expressed predominantly in pancreatic islets and gastrointestinal tract in humans. Objective/methods: To review the available literature on GPR119 agonists. Results: GPR119 de-orphanisation indicates two classes of possible endogenous agonists, phospholipids and fatty acid amides, with oleoylethanolamide and N-oleoyldopamine being the most potent. GPR119 agonists increase intracellular cAMP leading to increased glucose-dependent insulin secretion from pancreatic β-cells and incretin secretion from gut enteroendocrine cells. In various animal models of type 2 diabetes and obesity, orally available, potent, selective, synthetic GPR119 agonists: i) lower blood glucose without hypoglycaemia; ii) slow diabetes progression; and iii) reduce food intake and body weight. Conclusions: Oral GPR119 agonists may have the potential to achieve blood glucose control together with body weight loss in type 2 diabetics, an outcome only achievable currently with injectable...

  • GPR119 a novel g protein coupled receptor target for the treatment of type 2 diabetes and obesity
    British Journal of Pharmacology, 2008
    Co-Authors: H A Overton, M C T Fyfe, Christine Reynet
    Abstract:

    GPR119 is a G protein-coupled receptor expressed predominantly in the pancreas (β-cells) and gastrointestinal tract (enteroendocrine cells) in humans. De-orphanization of GPR119 has revealed two classes of possible endogenous ligands, viz., phospholipids and fatty acid amides. Of these, oleoylethanolamide (OEA) is one of the most active ligands tested so far. This fatty acid ethanolamide is of particular interest because of its known effects of reducing food intake and body weight gain when administered to rodents. Agonists at the GPR119 receptor cause an increase in intracellular cAMP levels via Gαs coupling to adenylate cyclase. In vitro studies have indicated a role for GPR119 in the modulation of insulin release by pancreatic β-cells and of GLP-1 secretion by gut enteroendocrine cells. The effects of GPR119 agonists in animal models of diabetes and obesity are reviewed, and the potential value of such compounds in future therapies for these conditions is discussed.

  • GPR119, a novel G protein‐coupled receptor target for the treatment of type 2 diabetes and obesity
    British Journal of Pharmacology, 2008
    Co-Authors: H A Overton, M C T Fyfe, Christine Reynet
    Abstract:

    GPR119 is a G protein-coupled receptor expressed predominantly in the pancreas (β-cells) and gastrointestinal tract (enteroendocrine cells) in humans. De-orphanization of GPR119 has revealed two classes of possible endogenous ligands, viz., phospholipids and fatty acid amides. Of these, oleoylethanolamide (OEA) is one of the most active ligands tested so far. This fatty acid ethanolamide is of particular interest because of its known effects of reducing food intake and body weight gain when administered to rodents. Agonists at the GPR119 receptor cause an increase in intracellular cAMP levels via Gαs coupling to adenylate cyclase. In vitro studies have indicated a role for GPR119 in the modulation of insulin release by pancreatic β-cells and of GLP-1 secretion by gut enteroendocrine cells. The effects of GPR119 agonists in animal models of diabetes and obesity are reviewed, and the potential value of such compounds in future therapies for these conditions is discussed.

  • GPR119, a novel G protein-coupled receptor target for the treatment of type 2 diabetes and obesity.
    British journal of pharmacology, 2007
    Co-Authors: H A Overton, M C T Fyfe, Christine Reynet
    Abstract:

    GPR119 is a G protein-coupled receptor expressed predominantly in the pancreas (beta-cells) and gastrointestinal tract (enteroendocrine cells) in humans. De-orphanization of GPR119 has revealed two classes of possible endogenous ligands, viz., phospholipids and fatty acid amides. Of these, oleoylethanolamide (OEA) is one of the most active ligands tested so far. This fatty acid ethanolamide is of particular interest because of its known effects of reducing food intake and body weight gain when administered to rodents. Agonists at the GPR119 receptor cause an increase in intracellular cAMP levels via G(alphas) coupling to adenylate cyclase. In vitro studies have indicated a role for GPR119 in the modulation of insulin release by pancreatic beta-cells and of GLP-1 secretion by gut enteroendocrine cells. The effects of GPR119 agonists in animal models of diabetes and obesity are reviewed, and the potential value of such compounds in future therapies for these conditions is discussed.

Shuyong Zhang - One of the best experts on this subject based on the ideXlab platform.

  • molecular matchmaking between the popular weight loss herb hoodia gordonii and GPR119 a potential drug target for metabolic disorder
    Proceedings of the National Academy of Sciences of the United States of America, 2014
    Co-Authors: Shuyong Zhang, Biao Yu
    Abstract:

    African cactiform Hoodia gordonii (Asclepiadaceae) has been used for thousands of years by Xhomani Bushmen as an anorexant during hunting trips and has been proposed as a new agent for the management of body weight. However, its in vivo targets and molecular mechanisms remain elusive. GPR119, a G protein-coupled receptor highly expressed in pancreatic β cells and intestinal L cells, has been demonstrated to facilitate glucose-stimulated insulin secretion (GSIS) and represents a novel and attractive target for the therapy of metabolic disorders. Here, we disclose that Gordonoside F (a steroid glycoside isolated from H. gordonii), but not the widely known P57, activates specifically GPR119. Successful synthesis of Gordonoside F facilitates further characterization of this compound. Gordonoside F promotes GSIS both in vitro and in vivo and reduces food intake in mice. These effects are mediated by GPR119 because GPR119 knockout prevents the therapeutic effects of Gordonoside F. Interestingly, the appetite-suppressing effect of Hoodia extract was also partially blocked by GPR119 knockout. Our results demonstrate for the first time, to our knowledge, that GPR119 is a direct target and one of the major mechanisms underlying the therapeutic effect of the popular “weight loss” herb H. gordonii. Given the long history of safe application of this herb in weight control, it is foreseeable that the novel scaffold of Gordonoside F provides a promising opportunity to develop new drugs in treating metabolic diseases.

Thue W. Schwartz - One of the best experts on this subject based on the ideXlab platform.

  • bidirectional GPR119 agonism requires peptide yy and glucose for activity in mouse and human colon mucosa
    Endocrinology, 2018
    Co-Authors: Iain R Tough, Robert M. Jones, Sarah Forbes, Herbert Herzog, Thue W. Schwartz
    Abstract:

    : The lipid sensor G protein-coupled receptor 119 (GPR119) is highly expressed by enteroendocrine L-cells and pancreatic β-cells that release the hormones, peptide YY (PYY) and glucagonlike peptide 1, and insulin, respectively. Endogenous oleoylethanolamide (OEA) and the dietary metabolite, 2-monoacylglycerol (2-OG), can each activate GPR119. Here, we compared mucosal responses with selective, synthetic GPR119 agonists (AR440006 and AR231453) and the lipids, OEA, 2-OG, and N-oleoyldopamine (OLDA), monitoring epithelial ion transport as a readout for L-cell activity in native mouse and human gastrointestinal (GI) mucosae. We also assessed GPR119 modulation of colonic motility in wild-type (WT), GPR119-deficient (GPR119-/-), and PYY-deficient (PYY-/-) mice. The water-soluble GPR119 agonist, AR440006 (that cannot traverse epithelial tight junctions), elicited responses, when added apically or basolaterally in mouse and human colonic mucosae. In both species, GPR119 responses were PYY, Y1 receptor mediated, and glucose dependent. AR440006 efficacy matched the GI distribution of L-cells in WT tissues but was absent from GPR119-/- tissue. OEA and 2-OG responses were significantly reduced in the GPR119-/- colon, but OLDA responses were unchanged. Alternative L-cell activation via free fatty acid receptors 1, 3, and 4 and the G protein-coupled bile acid receptor TGR5 or by the melanocortin 4 receptor, was unchanged in GPR119-/- tissues. The GPR119 agonist slowed transit in WT but not the PYY-/- colon in vitro. AR440006 (intraperitoneally) slowed WT colonic and upper-GI transit significantly in vivo. These data indicate that luminal or blood-borne GPR119 agonism can stimulate L-cell PYY release with paracrine consequences and slower motility. We suggest that this glucose-dependent L-cell response to a gut-restricted GPR119 stimulus has potential therapeutic advantage in modulating insulinotropic signaling with reduced risk of hypoglycemia.

  • oral 2 oleyl glyceryl ether improves glucose tolerance in mice through the GPR119 receptor
    Biofactors, 2016
    Co-Authors: Helle A Hassing, Robert M. Jones, Thue W. Schwartz, M S Engelstoft, R M Sichlau, Anna Madsen, Jens F Rehfeld, Jens Pedersen, Jens J Holst, Mette M Rosenkilde
    Abstract:

    The intestinal G protein-coupled receptor GPR119 is a novel metabolic target involving glucagon-like peptide-1 (GLP-1)-derived insulin-regulated glucose homeostasis. Endogenous and diet-derived lipids, including N-acylethanolamines and 2-monoacylglycerols (2-MAG) activate GPR119. The purpose of this work is to evaluate whether 2-oleoyl glycerol (2-OG) improves glucose tolerance through GPR119, using wild type (WT) and GPR 119 knock out (KO) mice. We here show that GPR119 is essential for 2-OG-mediated release of GLP-1 and CCK from GLUTag cells, since a GPR119 specific antagonist completely abolished the hormone release. Similarly, in isolated primary colonic crypt cultures from WT mice, GPR119 was required for 2-OG-stimulated GLP-1 release while there was no response in crypts from KO mice. In vivo, gavage with 2-oleyl glyceryl ether ((2-OG ether), a stable 2-OG analog with a potency of 5.3 µM for GPR119 with respect to cAMP formation as compared to 2.3 µM for 2-OG), significantly (P < 0.05) improved glucose clearance in WT littermates, but not in GPR119 KO mice. Finally, deletion of GPR119 in mice resulted in lower glucagon levels, whereas the levels of insulin and GIP were unchanged. In the present study we show that 2-OG stimulates GLP-1 secretion through GPR119 activation in vitro, and that fat-derived 2-MAGs are potent candidates for mediating fat-induced GLP-1 release through GPR119 in vivo. © 2016 BioFactors, 42(6):665-673, 2016.

  • Oral 2-oleyl glyceryl ether improves glucose tolerance in mice through the GPR119 receptor.
    BioFactors (Oxford England), 2016
    Co-Authors: Helle A Hassing, Robert M. Jones, Thue W. Schwartz, M S Engelstoft, R M Sichlau, Anna Madsen, Jens F Rehfeld, Jens Pedersen, Jens J Holst, Mette M Rosenkilde
    Abstract:

    The intestinal G protein-coupled receptor GPR119 is a novel metabolic target involving glucagon-like peptide-1 (GLP-1)-derived insulin-regulated glucose homeostasis. Endogenous and diet-derived lipids, including N-acylethanolamines and 2-monoacylglycerols (2-MAG) activate GPR119. The purpose of this work is to evaluate whether 2-oleoyl glycerol (2-OG) improves glucose tolerance through GPR119, using wild type (WT) and GPR 119 knock out (KO) mice. We here show that GPR119 is essential for 2-OG-mediated release of GLP-1 and CCK from GLUTag cells, since a GPR119 specific antagonist completely abolished the hormone release. Similarly, in isolated primary colonic crypt cultures from WT mice, GPR119 was required for 2-OG-stimulated GLP-1 release while there was no response in crypts from KO mice. In vivo, gavage with 2-oleyl glyceryl ether ((2-OG ether), a stable 2-OG analog with a potency of 5.3 µM for GPR119 with respect to cAMP formation as compared to 2.3 µM for 2-OG), significantly (P 

  • Structural basis for constitutive activity and agonist-induced activation of the enteroendocrine fat sensor GPR119.
    British journal of pharmacology, 2014
    Co-Authors: Maja S. Engelstoft, Christoffer Norn, Maria Hauge, Nicholas D. Holliday, L Elster, Juerg Lehmann, Robert M. Jones, Thomas M. Frimurer, Thue W. Schwartz
    Abstract:

    Background and Purpose GPR119 is a Gαs-coupled 7TM receptor activated by endogenous lipids such as oleoylethanolamide (OEA) and by the dietary triglyceride metabolite 2-monoacylglycerol. GPR119 stimulates enteroendocrine hormone and insulin secretion. But despite massive drug discovery efforts in the field, very little is known about the basic molecular pharmacology of GPR119. Experimental Approach GPR119 receptor signalling was studied in transfected cells. Mutational mapping (30 mutations in 23 positions) was performed on residues required for ligand-independent and agonist-induced GPR119 activation (AR231453 and OEA). Novel Rosetta-based receptor modelling was applied, using a composite template approach with segments from different X-ray structures and fully flexible ligand docking. Key Results The increased signalling induced by increasing the cell surface expression of GPR119 in the absence of agonist and the inhibitory effect of two synthetic inverse agonists demonstrated that GRP119 signals with a high degree of constitutive activity through the Gαs pathway. The mutational maps for AR231453 and OEA were very similar and, surprisingly, also similar to the mutational map for residues affecting the constitutive signalling – albeit with key differences. Surprisingly, almost all residues in extracellular loop-2b were important for the constitutive activity. The molecular modelling and docking demonstrated that AR231453 binds in a ‘vertical’ pocket in between mutational hits reaching from the centre of the receptor out to extracellular loop-2b. Conclusions and Implications The high constitutive activity of GPR119 should be taken into account in future drug discovery efforts, which can now be guided by the detailed knowledge of the physiochemical properties of the extended ligand-binding pocket.

  • GPR119 as a fat sensor
    Trends in pharmacological sciences, 2012
    Co-Authors: Harald S. Hansen, Mette M Rosenkilde, Jens J Holst, Thue W. Schwartz
    Abstract:

    The GPR119 receptor is expressed predominantly in pancreatic β cells and in enteroendocrine cells. It is a major target for the development of anti-diabetic drugs that through GPR119 activation may stimulate both insulin and GLP-1 release. GPR119 can be activated by oleoylethanolamide and several other endogenous lipids containing oleic acid: these include N-oleoyl-dopamine, 1-oleoyl-lysophosphatidylcholine, generated in the tissue, and 2-oleoyl glycerol generated in the gut lumen. Thus, the well-known stimulation of GLP-1 release by dietary fat is probably not only mediated by free fatty acids acting through, for example, GPR40, but is also probably mediated in large part through the luminal formation of 2-monoacylglycerol acting on the 'fat sensor' GPR119. In the pancreas GPR119 may also be stimulated by 2-monoacylglycerol generated from local turnover of pancreatic triacylglycerol. Knowledge about the endogenous physiological ligands and their mode of interaction with GPR119 will be crucial for the development of efficient second-generation modulators of this important drug target.