Haloferax

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 2907 Experts worldwide ranked by ideXlab platform

María José Bonete - One of the best experts on this subject based on the ideXlab platform.

  • analysis of Haloferax mediterranei lrp transcriptional regulator
    Genes, 2021
    Co-Authors: Laura Matarredona, Monica Camacho, J. Esclapez, Basilio Zafrilla, Mariajose Garciabonete, Belen Esquerra, María José Bonete
    Abstract:

    Haloferax mediterranei is an extremely halophilic archaeon, able to live in hypersaline environments with versatile nutritional requirements, whose study represents an excellent basis in the field of biotechnology. The transcriptional machinery in Archaea combines the eukaryotic basal apparatus and the bacterial regulation mechanisms. However, little is known about molecular mechanisms of gene expression regulation compared with Bacteria, particularly in Haloarchaea. The genome of Hfx. mediterranei contains a gene, lrp (HFX_RS01210), which encodes a transcriptional factor belonging to Lrp/AsnC family. It is located downstream of the glutamine synthetase gene (HFX_RS01205), an enzyme involved in ammonium assimilation and amino acid metabolism. To study this transcriptional factor more deeply, the lrp gene has been homologously overexpressed and purified under native conditions by two chromatographic steps, namely nickel affinity and gel filtration chromatography, showing that Lrp behaves asa tetrameric protein of approximately 67 kDa. Its promoter region has been characterized under different growth conditions using bgaH as a reporter gene. The amount of Lrp protein was also analyzed by Western blotting in different nitrogen sources and under various stress conditions. To sum up, regarding its involvement in the nitrogen cycle, it has been shown that its expression profile does not change in response to the nitrogen sources tested. Differences in its expression pattern have been observed under different stress conditions, such as in the presence of hydrogen peroxide or heavy metals. According to these results, the Lrp seems to be involved in a general response against stress factors, acting as a first-line transcriptional regulator.

  • functional analysis of lsm protein under multiple stress conditions in the extreme haloarchaeon Haloferax mediterranei
    Biochimie, 2021
    Co-Authors: Gloria Paya, María José Bonete, Monica Camacho, Vanesa Bautista, J. Esclapez
    Abstract:

    Abstract The Sm, like-Sm, and Hfq proteins belonging to the Sm superfamily of proteins are represented in all domains of life. These proteins are involved in several RNA metabolism pathways. The functions of bacterial Hfq and eukaryotic Sm proteins have been described, but knowledge about the in vivo functions of archaeal Sm proteins remains limited. This study aims to improve the understanding of Lsm proteins and their role using the haloarchaeon Haloferax mediterranei as a model microorganism. The Haloferax mediterranei genome contains one lsm gene that overlaps with the rpl37e gene. To determine the expression of lsm and rpl37e genes and the co-transcription of both, reverse transcription-polymerase chain reaction (RT-PCR) analyses were performed under different standard and stress conditions. The results suggest that the expression of lsm and rpl37e is constitutive. Co-transcription occurs at sub-optimal salt concentrations and temperatures, depending on the growth phase. The halophilic Lsm protein contains two Sm motifs, Sm1 and Sm2, and the sequence encoding the Sm2 motif also constitutes the promoter of the rpl37e gene. To investigate their biological functions, the lsm deletion mutant and the Sm1 motif deletion mutant, where the Sm2 motif remained intact, were generated and characterised. Comparison of the lsm deletion mutant, Sm1 deletion mutant, and the parental strain HM26 under standard and stress growth conditions revealed growth differences. Finally, swarming assays in complex and defined media showed greater swarming capacity in the deletion mutants.

  • New proposal of nitrogen metabolism regulation by small RNAs in the extreme halophilic archaeon Haloferax mediterranei
    Molecular Genetics and Genomics, 2020
    Co-Authors: Gloria Paya, María José Bonete, Monica Camacho, Vanesa Bautista, J. Esclapez
    Abstract:

    The regulatory networks involved in the uptake and metabolism of different nitrogen sources in response to their availability are crucial in all organisms. Nitrogen metabolism pathways have been studied in detail in archaea such as the extreme halophilic archaeon Haloferax mediterranei. However, knowledge about nitrogen metabolism regulation in haloarchaea is very scarce, and no transcriptional regulators involved in nitrogen metabolism have been identified to date. Advances in the molecular biology field have revealed that many small RNAs (sRNAs) are involved in the regulation of a diverse metabolic pathways. Surprisingly, no studies on regulation mediated by sRNAs have focused on the response to environmental fluctuations in nitrogen in haloarchaea. To identify sRNAs involved in the transcriptional regulation of nitrogen assimilation genes in Haloferax mediterranei and, thus, propose a novel regulatory mechanism, RNA-Seq was performed using cells grown in the presence of two different nitrogen sources. The differential transcriptional expression analysis of the RNA-Seq data revealed differences in the transcription patterns of 102 sRNAs according to the nitrogen source, and the molecular functions, cellular locations and biological processes with which the target genes were associated were predicted. These results enabled the identification of four sRNAs that could be directly related to the regulation of genes involved in nitrogen metabolism. This work provides the first proposed regulatory mechanism of nitrogen assimilation-related gene expression by sRNAs in haloarchaea as an alternative to transcriptional regulation mediated by proteins.

  • cu nirk from Haloferax mediterranei as an example of metalloprotein maturation and exportation via tat system
    Biochimica et Biophysica Acta, 2013
    Co-Authors: J. Esclapez, Rosa Maria Martinezespinosa, Basilio Zafrilla, María José Bonete
    Abstract:

    The green Cu-NirK from Haloferax mediterranei (Cu-NirK) has been expressed, refolded and retrieved as a trimeric enzyme using an expression method developed for halophilic Archaea. This method utilizes Haloferax volcanii as a halophilic host and an expression vector with a constitutive and strong promoter. The enzymatic activity of recombinant Cu-NirK was detected in both cellular fractions (cytoplasmic fraction and membranes) and in the culture media. The characterization of the enzyme isolated from the cytoplasmic fraction as well as the culture media revealed important differences in the primary structure of both forms indicating that Hfx. mediterranei could carry out a maturation and exportation process within the cell before the protein is exported to the S-layer. Several conserved signals found in Cu-NirK from Hfx. mediterranei sequence indicate that these processes are closely related to the Tat system. Furthermore, the N-terminal sequence of the two Cu-NirK subunits constituting different isoforms revealed that translation of this protein could begin at two different points, identifying two possible start codons. The hypothesis proposed in this work for halophilic Cu-NirK processing and exportation via the Tat system represents the first approximation of this mechanism in the Halobacteriaceae family and in Prokarya in general.

  • Haloferax mediterranei glnk proteins are post translationally modified by uridylylation
    Proteomics, 2013
    Co-Authors: Laia Pedroroig, Monica Camacho, María José Bonete
    Abstract:

    In this work we report for the first time a post-translational modification of PII homologues from the Archaea Domain. Haloferax mediterranei is the first haloarchaea whose PII proteins have been studied, it possesses two of them (GlnK1 and GlnK2 ), both encoded adjacent to a gene for the ammonia transporter Amt. An approach based on 2DE, anti-GlnK immunoblot and peptide mass fingerprint (MALDI-TOF-MS) of the reactive spots showed that GlnK proteins in H. mediterranei are post-translationally uridylylated. A third spot with lower pI suggests the existence of a non-descript post-translational modification in this protein family.

Monica Camacho - One of the best experts on this subject based on the ideXlab platform.

  • analysis of Haloferax mediterranei lrp transcriptional regulator
    Genes, 2021
    Co-Authors: Laura Matarredona, Monica Camacho, J. Esclapez, Basilio Zafrilla, Mariajose Garciabonete, Belen Esquerra, María José Bonete
    Abstract:

    Haloferax mediterranei is an extremely halophilic archaeon, able to live in hypersaline environments with versatile nutritional requirements, whose study represents an excellent basis in the field of biotechnology. The transcriptional machinery in Archaea combines the eukaryotic basal apparatus and the bacterial regulation mechanisms. However, little is known about molecular mechanisms of gene expression regulation compared with Bacteria, particularly in Haloarchaea. The genome of Hfx. mediterranei contains a gene, lrp (HFX_RS01210), which encodes a transcriptional factor belonging to Lrp/AsnC family. It is located downstream of the glutamine synthetase gene (HFX_RS01205), an enzyme involved in ammonium assimilation and amino acid metabolism. To study this transcriptional factor more deeply, the lrp gene has been homologously overexpressed and purified under native conditions by two chromatographic steps, namely nickel affinity and gel filtration chromatography, showing that Lrp behaves asa tetrameric protein of approximately 67 kDa. Its promoter region has been characterized under different growth conditions using bgaH as a reporter gene. The amount of Lrp protein was also analyzed by Western blotting in different nitrogen sources and under various stress conditions. To sum up, regarding its involvement in the nitrogen cycle, it has been shown that its expression profile does not change in response to the nitrogen sources tested. Differences in its expression pattern have been observed under different stress conditions, such as in the presence of hydrogen peroxide or heavy metals. According to these results, the Lrp seems to be involved in a general response against stress factors, acting as a first-line transcriptional regulator.

  • functional analysis of lsm protein under multiple stress conditions in the extreme haloarchaeon Haloferax mediterranei
    Biochimie, 2021
    Co-Authors: Gloria Paya, María José Bonete, Monica Camacho, Vanesa Bautista, J. Esclapez
    Abstract:

    Abstract The Sm, like-Sm, and Hfq proteins belonging to the Sm superfamily of proteins are represented in all domains of life. These proteins are involved in several RNA metabolism pathways. The functions of bacterial Hfq and eukaryotic Sm proteins have been described, but knowledge about the in vivo functions of archaeal Sm proteins remains limited. This study aims to improve the understanding of Lsm proteins and their role using the haloarchaeon Haloferax mediterranei as a model microorganism. The Haloferax mediterranei genome contains one lsm gene that overlaps with the rpl37e gene. To determine the expression of lsm and rpl37e genes and the co-transcription of both, reverse transcription-polymerase chain reaction (RT-PCR) analyses were performed under different standard and stress conditions. The results suggest that the expression of lsm and rpl37e is constitutive. Co-transcription occurs at sub-optimal salt concentrations and temperatures, depending on the growth phase. The halophilic Lsm protein contains two Sm motifs, Sm1 and Sm2, and the sequence encoding the Sm2 motif also constitutes the promoter of the rpl37e gene. To investigate their biological functions, the lsm deletion mutant and the Sm1 motif deletion mutant, where the Sm2 motif remained intact, were generated and characterised. Comparison of the lsm deletion mutant, Sm1 deletion mutant, and the parental strain HM26 under standard and stress growth conditions revealed growth differences. Finally, swarming assays in complex and defined media showed greater swarming capacity in the deletion mutants.

  • New proposal of nitrogen metabolism regulation by small RNAs in the extreme halophilic archaeon Haloferax mediterranei
    Molecular Genetics and Genomics, 2020
    Co-Authors: Gloria Paya, María José Bonete, Monica Camacho, Vanesa Bautista, J. Esclapez
    Abstract:

    The regulatory networks involved in the uptake and metabolism of different nitrogen sources in response to their availability are crucial in all organisms. Nitrogen metabolism pathways have been studied in detail in archaea such as the extreme halophilic archaeon Haloferax mediterranei. However, knowledge about nitrogen metabolism regulation in haloarchaea is very scarce, and no transcriptional regulators involved in nitrogen metabolism have been identified to date. Advances in the molecular biology field have revealed that many small RNAs (sRNAs) are involved in the regulation of a diverse metabolic pathways. Surprisingly, no studies on regulation mediated by sRNAs have focused on the response to environmental fluctuations in nitrogen in haloarchaea. To identify sRNAs involved in the transcriptional regulation of nitrogen assimilation genes in Haloferax mediterranei and, thus, propose a novel regulatory mechanism, RNA-Seq was performed using cells grown in the presence of two different nitrogen sources. The differential transcriptional expression analysis of the RNA-Seq data revealed differences in the transcription patterns of 102 sRNAs according to the nitrogen source, and the molecular functions, cellular locations and biological processes with which the target genes were associated were predicted. These results enabled the identification of four sRNAs that could be directly related to the regulation of genes involved in nitrogen metabolism. This work provides the first proposed regulatory mechanism of nitrogen assimilation-related gene expression by sRNAs in haloarchaea as an alternative to transcriptional regulation mediated by proteins.

  • anaerobic metabolism in Haloferax genus denitrification as case of study
    Advances in Microbial Physiology, 2016
    Co-Authors: Javie Torregrosacrespo, Carmen Pire, Rosa Maria Martinezespinosa, Julia Esclapez, Vanesa Autista, Monica Camacho, D J Richardso, Maria Jose Onete
    Abstract:

    A number of species of Haloferax genus (halophilic archaea) are able to grow microaerobically or even anaerobically using different alternative electron acceptors such as fumarate, nitrate, chlorate, dimethyl sulphoxide, sulphide and/or trimethylamine. This metabolic capability is also shown by other species of the Halobacteriaceae and Haloferacaceae families (Archaea domain) and it has been mainly tested by physiological studies where cell growth is observed under anaerobic conditions in the presence of the mentioned compounds. This work summarises the main reported features on anaerobic metabolism in the Haloferax, one of the better described haloarchaeal genus with significant potential uses in biotechnology and bioremediation. Special attention has been paid to denitrification, also called nitrate respiration. This pathway has been studied so far from Haloferax mediterranei and Haloferax denitrificans mainly from biochemical point of view (purification and characterisation of the enzymes catalysing the two first reactions). However, gene expression and gene regulation is far from known at the time of writing this chapter.

  • Haloferax mediterranei glnk proteins are post translationally modified by uridylylation
    Proteomics, 2013
    Co-Authors: Laia Pedroroig, Monica Camacho, María José Bonete
    Abstract:

    In this work we report for the first time a post-translational modification of PII homologues from the Archaea Domain. Haloferax mediterranei is the first haloarchaea whose PII proteins have been studied, it possesses two of them (GlnK1 and GlnK2 ), both encoded adjacent to a gene for the ammonia transporter Amt. An approach based on 2DE, anti-GlnK immunoblot and peptide mass fingerprint (MALDI-TOF-MS) of the reactive spots showed that GlnK proteins in H. mediterranei are post-translationally uridylylated. A third spot with lower pI suggests the existence of a non-descript post-translational modification in this protein family.

Ricardo Amils - One of the best experts on this subject based on the ideXlab platform.

  • purification and biological characterization of halocin h1 from Haloferax mediterranei m2a
    International Microbiology, 2002
    Co-Authors: Gonzalo Platas, Inmaculada Meseguer, Ricardo Amils
    Abstract:

    The production of halocins, bacteriocin-like proteins of ecological significance, is a frequent characteristic of species from the family Halobacteriaceae. Halocin H1, produced by Haloferax mediterranei strain M2a, is a single 31-kDa polypeptide. Its purification was achieved by combining two chromatographic systems: Sepharose 4B linked to bacitracin followed by hydroxylapatite Bio-gel HTP. Halocin H1 required concentrations of NaCl higher than 1.5 M to maintain its activity. Haoarchaeal strains showed a differential degree of sensitivity to the action of this halocin.

  • nucleotide sequence of the 23s rrna from Haloferax mediterranei and phylogenetic analysis of halophilic archaea based on lsu rrna
    Systematic and Applied Microbiology, 2000
    Co-Authors: Carlos Briones, Ricardo Amils
    Abstract:

    23S rRNA gene from the halophilic archaeon Haloferax mediterranei (strain ATCC 33500) was cloned and sequenced. Proceeding from the 2,912 nucleotides long sequence, the secondary structure of Haloferax genus large subunit rRNA was proposed. Haloferax mediterranei intergenic spacers 16S/23S and 23S/5S were also sequenced, and found to be 382 and 116 nucleotides long respectively. The 16S/23S spacer showed an Ala-tRNA intervening sequence, which is a common feature in Euryarchaeota. Sequence analysis of 23S rRNA and 16S rRNA was performed for the six organisms from the family Halobacteriaceae with both available gene sequences. Phylogenetic trees with completely different topology were obtained using both molecules.

  • optimization of the production of a bacteriocin from Haloferax mediterranei xia3
    Microbiologia (Madrid Spain), 1996
    Co-Authors: Gonzalo Platas, Inmaculada Meseguer, Ricardo Amils
    Abstract:

    The optimal conditions for the production of the halocin H1, a 31 kDa bacteriocin-like molecule produced by the extreme halophilic Archaea Haloferax mediterranei Xia3 active against Gram-negative haloarchaea, was characterized. The physico-chemical conditions required for the optimal production of halocin H1 are similar to those found in the habitat in which the microorganism was isolated: 20% salt concentration and temperature range between 37 and 42 degrees C. Optimal antimicrobial activity was obtained using 0.5% of N-Z amine E as nutrient.

  • Total reconstitution of active small ribosomal subunits of the extreme halophilic archaeon Haloferax mediterranei.
    Biochimica et biophysica acta, 1996
    Co-Authors: M. E. Sanchez, Paola Londei, Ricardo Amils
    Abstract:

    Abstract The small ribosomal subunit of the halophilic archaeon Haloferax mediterranei has been reconstituted from its dissociated rRNA and protein components. Efficient reconstitution of particles, fully active in poly(U)-dependent polyphenylalanine synthesis, occurs after 2 h of incubation at 36°C in the presence of l.5 M of (NH 4 ) 2 SO 4 100 mM of MgAc 2 , 20 mM Tris-HCI (pH 8.2) and 6 mM 2-mercaptoethanol. Important differences in the optimal ionic conditions for the reconstitution of the 30S and the 50S ribosomal subunits from Haloferax mediterranei have been found. K + and NH 4 + ions have differing abilities to promote the reconstitution of the particles. The assembly of 30S ribosomal subunits of H. mediterranei has a higher tolerance to ionic strength than the assembly of the 50S subunits and it is independent of the Mg 2+ concentration present in the system.

  • Genomic stability in the archaeae Haloferax volcanii and Haloferax mediterranei.
    Journal of bacteriology, 1995
    Co-Authors: Purificación López-garcía, Ricardo Amils, A St Jean, R L Charlebois
    Abstract:

    Through hybridization of available probes, we have added nine genes to the macrorestriction map of the Haloferax mediterranei chromosome and five genes to the contig map of Haloferax volcanii. Additionally, we hybridized 17 of the mapped cosmid clones from H. volcanii to the H. mediterranei genome. The resulting 35-point chromosomal comparison revealed only two inversions and a few translocations. Forces known to promote rearrangement, common in the haloarchaea, have been ineffective in changing global gene order throughout the nearly 10(7) years of these species' divergent evolution.

Anita Marchfelder - One of the best experts on this subject based on the ideXlab platform.

  • adaptation induced by self targeting in a type i b crispr cas system
    Journal of Biological Chemistry, 2020
    Co-Authors: Arisedda Stachler, Uri Gophna, Omer S. Alkhnbashi, Rolf Backofen, Thorsten Allers, Julia Wortz, Israela Turgemangrott, Rachel M Smith, Anita Marchfelder
    Abstract:

    Haloferax volcanii is to our knowledge the only prokaryote known to tolerate CRISPR-Cas mediated damage to its genome in the wild type background; the resulting cleavage of the genome is repaired by homologous recombination restoring the wild type version. In mutant Haloferax strains with enhanced self-targeting, cell fitness decreases and microhomology-mediated end joining becomes active, generating deletions in the targeted gene. Here we use self-targeting to investigate adaptation in H. volcanii CRISPR-Cas type I-B. We show that self-targeting and genome breakage events that are induced by self-targeting, such as those catalysed by active transposases, can generate DNA fragments that are used by the CRISPR-Cas adaptation machinery for integration into the CRISPR loci. Low cellular concentrations of self-targeting crRNAs resulted in acquisition of large numbers of spacers originating from the entire genomic DNA. In contrast, high concentrations of self-targeting crRNAs resulted in lower acquisition that was mostly centred around the targeting site. Furthermore, we observed naive spacer acquisition at a low level in wild type Haloferax cells and with higher efficiency upon overexpression of the Cas proteins Cas1, Cas2 and Cas4. Taken together these findings indicate that naive adaptation is a regulated process in H. volcanii that operates at low basal levels and is induced by DNA breaks.

  • CRISPR and Salty: CRISPR-Cas Systems in Haloarchaea
    RNA Metabolism and Gene Expression in Archaea, 2017
    Co-Authors: Lisa-katharina Maier, Omer S. Alkhnbashi, Rolf Backofen, Anita Marchfelder
    Abstract:

    CRISPR-Cas (CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats and Cas: CRISPR associated) systems are unique defence mechanisms since they are able to adapt to new invaders and are heritable. CRISPR-Cas systems facilitate the sequence-specific elimination of invading genetic elements in prokaryotes, they are found in 45% of bacteria and 85% of archaea. Their general features have been studied in detail, but subtype- and species-specific variations await investigation. Haloarchaea is one of few archaeal classes in which CRISPR-Cas systems have been investigated in more than one genus. Here, we summarize the available information on CRISPR-Cas defence in three Haloarchaea: Haloferax volcanii, Haloferax mediterranei and Haloarcula hispanica. Haloarchaea share type I CRISPR-Cas systems, with subtype I-B being dominant. Type I-B systems rely on Cas proteins Cas5, Cas7, and Cas8b for the interference reaction and these proteins have been shown to form a Cascade (CRISPR-associated complex for antiviral defence) -like complex in Hfx (Haloferax). volcanii. Cas6b is the endonuclease for crRNA (CRISPR RNA) maturation in type I-B systems but the protein is dispensable for interference in Hfx. volcanii. Haloarchaea share a common repeat sequence and crRNA-processing pattern. A prerequisite for successful invader recognition in Hfx. volcanii is base pairing over a ten-nucleotide-long non-contiguous seed sequence. Moreover, Hfx. volcanii and Har (Haloarcula). hispanica rely each on certain specific PAM (protospacer adjacent motif) sequences to elicit interference, but they share only one PAM sequence. Primed adaptation in Har. hispanica relies on another set of PAM sequences.

  • The Adaptive Immune System of Haloferax volcanii.
    Life (Basel Switzerland), 2015
    Co-Authors: Lisa-katharina Maier, Anita Marchfelder
    Abstract:

    To fight off invading genetic elements, prokaryotes have developed an elaborate defence system that is both adaptable and heritable—the CRISPR-Cas system (CRISPR is short for: clustered regularly interspaced short palindromic repeats and Cas: CRISPR associated). Comprised of proteins and multiple small RNAs, this prokaryotic defence system is present in 90% of archaeal and 40% of bacterial species, and enables foreign intruders to be eliminated in a sequence-specific manner. There are three major types (I–III) and at least 14 subtypes of this system, with only some of the subtypes having been analysed in detail, and many aspects of the defence reaction remaining to be elucidated. Few archaeal examples have so far been analysed. Here we summarize the characteristics of the CRISPR-Cas system of Haloferax volcanii, an extremely halophilic archaeon originally isolated from the Dead Sea. It carries a single CRISPR-Cas system of type I-B, with a Cascade like complex composed of Cas proteins Cas5, Cas6b and Cas7. Cas6b is essential for CRISPR RNA (crRNA) maturation but is otherwise not required for the defence reaction. A systematic search revealed that six protospacer adjacent motif (PAM) sequences are recognised by the Haloferax defence system. For successful invader recognition, a non-contiguous seed sequence of 10 base-pairs between the crRNA and the invader is required.

  • essential requirements for the detection and degradation of invaders by the Haloferax volcanii crispr cas system i b
    RNA Biology, 2013
    Co-Authors: Lisa-katharina Maier, Rolf Backofen, Britta Stoll, Susan Fischer, Karina A. Haas, Sita J Lange, Eike Fischer, Elke Duchardtferner, Jens Wohnert, Anita Marchfelder
    Abstract:

    To fend off foreign genetic elements, prokaryotes have developed several defense systems. The most recently discovered defense system, CRISPR/Cas, is sequence-specific, adaptive and heritable. The two central components of this system are the Cas proteins and the CRISPR RNA. The latter consists of repeat sequences that are interspersed with spacer sequences. The CRISPR locus is transcribed into a precursor RNA that is subsequently processed into short crRNAs. CRISPR/Cas systems have been identified in bacteria and archaea, and data show that many variations of this system exist. We analyzed the requirements for a successful defense reaction in the halophilic archaeon Haloferax volcanii. Haloferax encodes a CRISPR/Cas system of the I-B subtype, about which very little is known. Analysis of the mature crRNAs revealed that they contain a spacer as their central element, which is preceded by an eight-nucleotide-long 5′ handle that originates from the upstream repeat. The repeat sequences have the potential to...

  • Assigning a function to a conserved archaeal metallo-β-lactamase from Haloferax volcanii
    Extremophiles, 2012
    Co-Authors: Susan Fischer, Thorsten Allers, Simona John Von Freyend, Anice Sabag-daigle, Charles J. Daniels, Anita Marchfelder
    Abstract:

    The metallo-β-lactamase family of enzymes comprises a large group of proteins with diverse functions in the metabolism of the cell. Among others, this superfamily contains proteins which are involved in DNA and RNA metabolism, acting as nucleases in e.g. repair and maturation. Many proteins have been annotated in prokaryotic genomes as being potential metallo-β-lactamases, but very often the function has not been proven. The protein HVO_2763 from Haloferax volcanii is such a potential metallo-β-lactamase. HVO_2763 has sequence similarity to the metallo-β-lactamase tRNase Z, a tRNA 3′ processing endonuclease. Here, we report the characterisation of this metallo-β-lactamase HVO_2763 in the halophilic archaeon Haloferax volcanii . Using different in vitro assays with the recombinant HVO_2763, we could show that the protein does not have tRNA 3′ processing or exonuclease activity. According to transcriptome analyses of the HVO_2763 deletion strain, expression of proteins involved in membrane transport is downregulated in the mutant. Therefore, HVO_2763 might be involved directly or indirectly in membrane transport.

J. Esclapez - One of the best experts on this subject based on the ideXlab platform.

  • analysis of Haloferax mediterranei lrp transcriptional regulator
    Genes, 2021
    Co-Authors: Laura Matarredona, Monica Camacho, J. Esclapez, Basilio Zafrilla, Mariajose Garciabonete, Belen Esquerra, María José Bonete
    Abstract:

    Haloferax mediterranei is an extremely halophilic archaeon, able to live in hypersaline environments with versatile nutritional requirements, whose study represents an excellent basis in the field of biotechnology. The transcriptional machinery in Archaea combines the eukaryotic basal apparatus and the bacterial regulation mechanisms. However, little is known about molecular mechanisms of gene expression regulation compared with Bacteria, particularly in Haloarchaea. The genome of Hfx. mediterranei contains a gene, lrp (HFX_RS01210), which encodes a transcriptional factor belonging to Lrp/AsnC family. It is located downstream of the glutamine synthetase gene (HFX_RS01205), an enzyme involved in ammonium assimilation and amino acid metabolism. To study this transcriptional factor more deeply, the lrp gene has been homologously overexpressed and purified under native conditions by two chromatographic steps, namely nickel affinity and gel filtration chromatography, showing that Lrp behaves asa tetrameric protein of approximately 67 kDa. Its promoter region has been characterized under different growth conditions using bgaH as a reporter gene. The amount of Lrp protein was also analyzed by Western blotting in different nitrogen sources and under various stress conditions. To sum up, regarding its involvement in the nitrogen cycle, it has been shown that its expression profile does not change in response to the nitrogen sources tested. Differences in its expression pattern have been observed under different stress conditions, such as in the presence of hydrogen peroxide or heavy metals. According to these results, the Lrp seems to be involved in a general response against stress factors, acting as a first-line transcriptional regulator.

  • functional analysis of lsm protein under multiple stress conditions in the extreme haloarchaeon Haloferax mediterranei
    Biochimie, 2021
    Co-Authors: Gloria Paya, María José Bonete, Monica Camacho, Vanesa Bautista, J. Esclapez
    Abstract:

    Abstract The Sm, like-Sm, and Hfq proteins belonging to the Sm superfamily of proteins are represented in all domains of life. These proteins are involved in several RNA metabolism pathways. The functions of bacterial Hfq and eukaryotic Sm proteins have been described, but knowledge about the in vivo functions of archaeal Sm proteins remains limited. This study aims to improve the understanding of Lsm proteins and their role using the haloarchaeon Haloferax mediterranei as a model microorganism. The Haloferax mediterranei genome contains one lsm gene that overlaps with the rpl37e gene. To determine the expression of lsm and rpl37e genes and the co-transcription of both, reverse transcription-polymerase chain reaction (RT-PCR) analyses were performed under different standard and stress conditions. The results suggest that the expression of lsm and rpl37e is constitutive. Co-transcription occurs at sub-optimal salt concentrations and temperatures, depending on the growth phase. The halophilic Lsm protein contains two Sm motifs, Sm1 and Sm2, and the sequence encoding the Sm2 motif also constitutes the promoter of the rpl37e gene. To investigate their biological functions, the lsm deletion mutant and the Sm1 motif deletion mutant, where the Sm2 motif remained intact, were generated and characterised. Comparison of the lsm deletion mutant, Sm1 deletion mutant, and the parental strain HM26 under standard and stress growth conditions revealed growth differences. Finally, swarming assays in complex and defined media showed greater swarming capacity in the deletion mutants.

  • New proposal of nitrogen metabolism regulation by small RNAs in the extreme halophilic archaeon Haloferax mediterranei
    Molecular Genetics and Genomics, 2020
    Co-Authors: Gloria Paya, María José Bonete, Monica Camacho, Vanesa Bautista, J. Esclapez
    Abstract:

    The regulatory networks involved in the uptake and metabolism of different nitrogen sources in response to their availability are crucial in all organisms. Nitrogen metabolism pathways have been studied in detail in archaea such as the extreme halophilic archaeon Haloferax mediterranei. However, knowledge about nitrogen metabolism regulation in haloarchaea is very scarce, and no transcriptional regulators involved in nitrogen metabolism have been identified to date. Advances in the molecular biology field have revealed that many small RNAs (sRNAs) are involved in the regulation of a diverse metabolic pathways. Surprisingly, no studies on regulation mediated by sRNAs have focused on the response to environmental fluctuations in nitrogen in haloarchaea. To identify sRNAs involved in the transcriptional regulation of nitrogen assimilation genes in Haloferax mediterranei and, thus, propose a novel regulatory mechanism, RNA-Seq was performed using cells grown in the presence of two different nitrogen sources. The differential transcriptional expression analysis of the RNA-Seq data revealed differences in the transcription patterns of 102 sRNAs according to the nitrogen source, and the molecular functions, cellular locations and biological processes with which the target genes were associated were predicted. These results enabled the identification of four sRNAs that could be directly related to the regulation of genes involved in nitrogen metabolism. This work provides the first proposed regulatory mechanism of nitrogen assimilation-related gene expression by sRNAs in haloarchaea as an alternative to transcriptional regulation mediated by proteins.

  • cu nirk from Haloferax mediterranei as an example of metalloprotein maturation and exportation via tat system
    Biochimica et Biophysica Acta, 2013
    Co-Authors: J. Esclapez, Rosa Maria Martinezespinosa, Basilio Zafrilla, María José Bonete
    Abstract:

    The green Cu-NirK from Haloferax mediterranei (Cu-NirK) has been expressed, refolded and retrieved as a trimeric enzyme using an expression method developed for halophilic Archaea. This method utilizes Haloferax volcanii as a halophilic host and an expression vector with a constitutive and strong promoter. The enzymatic activity of recombinant Cu-NirK was detected in both cellular fractions (cytoplasmic fraction and membranes) and in the culture media. The characterization of the enzyme isolated from the cytoplasmic fraction as well as the culture media revealed important differences in the primary structure of both forms indicating that Hfx. mediterranei could carry out a maturation and exportation process within the cell before the protein is exported to the S-layer. Several conserved signals found in Cu-NirK from Hfx. mediterranei sequence indicate that these processes are closely related to the Tat system. Furthermore, the N-terminal sequence of the two Cu-NirK subunits constituting different isoforms revealed that translation of this protein could begin at two different points, identifying two possible start codons. The hypothesis proposed in this work for halophilic Cu-NirK processing and exportation via the Tat system represents the first approximation of this mechanism in the Halobacteriaceae family and in Prokarya in general.

  • stability and enzymatic studies of glucose dehydrogenase from the archaeon Haloferax mediterranei in reverse micelles
    Biocatalysis and Biotransformation, 2004
    Co-Authors: Carmen Pire, Juan Ferrer, J. Esclapez, Frutos C Marhuendaegea, Luis A Alcaraz, María José Bonete
    Abstract:

    Reverse micelles were used as a cytoplasmic model to study the kinetics of an extreme halophilic enzyme such as the recombinant glucose dehydrogenase from the Archaeon Haloferax mediterranei. This enzyme was solubilized in reverse micelles of hexadecyltrimethylammoniumbromide in cyclohexane, with 1-butanol as co-surfactant. Glucose dehydrogenase retained its catalytic properties in this organic medium, showing good stability at low water content, even at low salt concentration (125 mM NaCl). The dependence of the enzymatic activity on the molar water surfactant ratio (w0=[H2O]/[surfactant]) increased with rising water content. Surprisingly, the activity of this extreme halophilic enzyme did not depend on the salt concentration in reverse micelles. The kinetic of the enzymatic oxidation of β-D-glucose to D-glucono-1,5-lactone using NADP+ as coenzyme for the glucose dehydrogenase from Haloferax mediterranei was also studied in the reverse micellar system.