HCN2

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 50031 Experts worldwide ranked by ideXlab platform

Ira S Cohen - One of the best experts on this subject based on the ideXlab platform.

  • Regulation of HCN2 Current by PI3K/Akt Signaling.
    Frontiers in physiology, 2020
    Co-Authors: Hong Zhan Wang, Chris Gordon, Lisa M. Ballou, Richard Z. Lin, Ira S Cohen
    Abstract:

    It has long been known that heart rate is regulated by the autonomic nervous system. Recently, we demonstrated that the pacemaker current, I f , is regulated by phosphoinositide 3-kinase (PI3K) signaling independently of the autonomic nervous system. Inhibition of PI3K in sinus node (SN) myocytes shifts the activation of I f by almost 16 mV in the negative direction. I f in the SN is predominantly mediated by two members of the HCN gene family, HCN4 and HCN1. Purkinje fibers also possess I f and are an important secondary pacemaker in the heart. In contrast to the SN, they express HCN2 and HCN4, while ventricular myocytes, which do not normally pace, express HCN2 alone. In the current work, we investigated PI3K regulation of HCN2 expressed in HEK293 cells. Treatment with the PI3K inhibitor PI-103 caused a negative shift in the activation voltage and a dramatic reduction in the magnitude of the HCN2 current. Similar changes were also seen in cells treated with an inhibitor of the protein kinase Akt, a downstream effector of PI3K. The effects of PI-103 were reversed by perfusion of cells with phosphatidylinositol 3,4,5-trisphosphate (the second messenger produced by PI3K) or active Akt protein. We identified serine 861 in mouse HCN2 as a putative Akt phosphorylation site. Mutation of S861 to alanine mimicked the effects of Akt inhibition on voltage dependence and current magnitude. In addition, the Akt inhibitor had no effect on the mutant channel. These results suggest that Akt phosphorylation of mHCN2 S861 accounts for virtually all of the observed actions of PI3K signaling on the HCN2 current. Unexpectedly, Akt inhibition had no effect on I f in SN myocytes. This result raises the possibility that diverse PI3K signaling pathways differentially regulate HCN-induced currents in different tissues, depending on the isoforms expressed.

  • regulation of HCN2 current by pi3k akt signaling
    Frontiers in Physiology, 2020
    Co-Authors: Hong Zhan Wang, Chris Gordon, Lisa M. Ballou, Richard Z. Lin, Ira S Cohen
    Abstract:

    It has long been known that heart rate is regulated by the autonomic nervous system. Recently, we demonstrated that the pacemaker current, I f , is regulated by phosphoinositide 3-kinase (PI3K) signaling independently of the autonomic nervous system. Inhibition of PI3K in sinus node (SN) myocytes shifts the activation of I f by almost 16 mV in the negative direction. I f in the SN is predominantly mediated by two members of the HCN gene family, HCN4 and HCN1. Purkinje fibers also possess I f and are an important secondary pacemaker in the heart. In contrast to the SN, they express HCN2 and HCN4, while ventricular myocytes, which do not normally pace, express HCN2 alone. In the current work, we investigated PI3K regulation of HCN2 expressed in HEK293 cells. Treatment with the PI3K inhibitor PI-103 caused a negative shift in the activation voltage and a dramatic reduction in the magnitude of the HCN2 current. Similar changes were also seen in cells treated with an inhibitor of the protein kinase Akt, a downstream effector of PI3K. The effects of PI-103 were reversed by perfusion of cells with phosphatidylinositol 3,4,5-trisphosphate (the second messenger produced by PI3K) or active Akt protein. We identified serine 861 in mouse HCN2 as a putative Akt phosphorylation site. Mutation of S861 to alanine mimicked the effects of Akt inhibition on voltage dependence and current magnitude. In addition, the Akt inhibitor had no effect on the mutant channel. These results suggest that Akt phosphorylation of mHCN2 S861 accounts for virtually all of the observed actions of PI3K signaling on the HCN2 current. Unexpectedly, Akt inhibition had no effect on I f in SN myocytes. This result raises the possibility that diverse PI3K signaling pathways differentially regulate HCN-induced currents in different tissues, depending on the isoforms expressed.

  • Tyrosine kinase inhibition differentially regulates heterologously expressed HCN channels
    Pflügers Archiv, 2004
    Co-Authors: Hangang Yu, Zhongju Lu, Ira S Cohen
    Abstract:

    The HCN ion channel subunit gene family encodes hyperpolarization-activated cation channels that are permeable to Na^+ and K^+. There are four members of this channel family, three of which, HCN1, HCN2, and HCN4, are expressed in the heart. Current evidence suggests that the HCN ion channel subunit family is the molecular correlate of the alpha subunit of the cardiac pacemaker current i _f. Our previous work has shown that HCN4 is the dominant isoform expressed in the rabbit sinoatrial (SA) node and that changes in tyrosine phosphorylation, either by kinase inhibition or growth factor activation, lead to changes in rabbit SA node i _f conductance with no change in voltage dependence. In the present study we investigate the actions of genistein, a tyrosine kinase inhibitor, on heterologously expressed HCN currents in Xenopus oocytes. Genistein had no effect on HCN1-induced currents, but reduced whole-cell currents induced by HCN2 or HCN4 and slowed activation kinetics at voltages near the midpoint of activation. In the case of HCN2 there was also a negative shift in the voltage dependence of activation that accompanies the current reduction. We have shown previously that HCN2 is the dominant isoform expressed in rat ventricular myocytes. The above results predict that genistein should reduce i _f in the rat ventricle and cause a negative shift of voltage dependence and kinetics of activation. We tested this hypothesis by studying the effects of genistein on isolated rat ventricular myocytes. Genistein significantly reduced i _f current density (pA/pF) (control: 12.2±1.8; genistein: 3.5±0.5; washout: 7.7±0.8; n =10), and caused a negative shift of the midpoint of activation by 14 mV (−133±1 mV for genistein and −119±1 mV for washout, n =7) with no change in slope factor. Our results thus suggest that i _f in the heart and i _f-like currents in other tissues can be regulated differentially by tyrosine phosphorylation based on isoform expression patterns.

  • distribution and prevalence of hyperpolarization activated cation channel hcn mrna expression in cardiac tissues
    Circulation Research, 1999
    Co-Authors: Richard B. Robinson, Randy S Wymore, Hangang Yu, Jiying Wu, Jane E Dixon, David Mckinnon, Ira S Cohen
    Abstract:

    Abstract—HCN cation channel mRNA expression was determined in the rabbit heart and neonatal and adult rat ventricle using RNase protection assays. In the rabbit SA node, the dominant HCN transcript is HCN4, representing >81% of the total HCN message. HCN1 is also expressed, representing >18% of the total HCN mRNA. Rabbit Purkinje fibers contained almost equal amounts of HCN1 and HCN4 transcripts with low levels of HCN2, whereas rabbit ventricle contained predominantly HCN2. The SA node contained 25 times the total HCN message of Purkinje fibers and 140 times the total HCN message of ventricle. No reports of hyperpolarization-activated current (If) exist in rabbit Purkinje fibers, and we could not record If in rabbit ventricular myocytes. To investigate the possible role of isoform switching in determining the voltage dependence of If, we determined the prevalence of HCN isoforms in neonatal and adult rat ventricle. We had previously determined the threshold for activation of If to be ≈−70 mV in neonatal r...

Andreas Ludwig - One of the best experts on this subject based on the ideXlab platform.

  • Dendritic HCN2 Channels Constrain Glutamate-Driven Excitability in Reticular Thalamic Neurons
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2007
    Co-Authors: Shui-wang Ying, Andreas Ludwig, Franz Hofmann, Fan Jia, Syed Y. Abbas, Peter A Goldstein
    Abstract:

    Hyperpolarization activated cyclic nucleotide (HCN) gated channels conduct a current, I(h); how I(h) influences excitability and spike firing depends primarily on channel distribution in subcellular compartments. For example, dendritic expression of HCN1 normalizes somatic voltage responses and spike output in hippocampal and cortical neurons. We reported previously that HCN2 is predominantly expressed in dendritic spines in reticular thalamic nucleus (RTN) neurons, but the functional impact of such nonsomatic HCN2 expression remains unknown. We examined the role of HCN2 expression in regulating RTN excitability and GABAergic output from RTN to thalamocortical relay neurons using wild-type and HCN2 knock-out mice. Pharmacological blockade of I(h) significantly increased spike firing in RTN neurons and large spontaneous IPSC frequency in relay neurons; conversely, pharmacological enhancement of HCN channel function decreased spontaneous IPSC frequency. HCN2 deletion abolished I(h) in RTN neurons and significantly decreased sensitivity to 8-bromo-cAMP and lamotrigine. Recapitulating the effects of I(h) block, HCN2 deletion increased both temporal summation of EPSPs in RTN neurons as well as GABAergic output to postsynaptic relay neurons. The enhanced excitability of RTN neurons after I(h) block required activation of ionotropic glutamate receptors; consistent with this was the colocalization of HCN2 and glutamate receptor 4 subunit immunoreactivities in dendritic spines of RTN neurons. The results indicate that, in mouse RTN neurons, HCN2 is the primary functional isoform underlying I(h) and expression of HCN2 constrains excitatory synaptic integration.

  • Pathophysiology of HCN channels
    Pflügers Archiv - European Journal of Physiology, 2007
    Co-Authors: Stefan Herrmann, Juliane Stieber, Andreas Ludwig
    Abstract:

    Hyperpolarization-activated cation currents termed I _f/h are observed in many neurons and cardiac cells. Four genes (HCN1-4) encode the channels underlying these currents. New insights into the pathophysiological significance of HCN channels have been gained recently from analyses of mice engineered to be deficient in HCN genes. Lack of individual subunits results in markedly different phenotypes. Disruption of HCN1 impairs motor learning but enhances spatial learning and memory. Deletion of HCN2 results in absence epilepsy, ataxia, and sinus node dysfunction. Mice lacking HCN4 die during embryonic development and develop no sinoatrial node-like action potentials. In the present review, we summarize the physiology and pathophysiology of HCN channel family members based primarily on information from the transgenic mouse models and on data from human patients carrying defects in HCN4 channels.

  • absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2
    The EMBO Journal, 2003
    Co-Authors: Andreas Ludwig, Juliane Stieber, Sven Moosmang, Thomas Budde, Christian Wahl, Knut Holthoff, Anke Langebartels, Carsten T Wotjak, Thomas Munsch, Xiangang Zong
    Abstract:

    Hyperpolarization-activated cation (HCN) channels are believed to be involved in the generation of cardiac pacemaker depolarizations as well as in the control of neuronal excitability and plasticity. The contributions of the four individual HCN channel isoforms (HCN1–4) to these diverse functions are not known. Here we show that HCN2-deficient mice exhibit spontaneous absence seizures. The thalamocortical relay neurons of these mice displayed a near complete loss of the HCN current, resulting in a pronounced hyperpolarizing shift of the resting membrane potential, an altered response to depolarizing inputs and an increased susceptibility for oscillations. HCN2-null mice also displayed cardiac sinus dysrhythmia, a reduction of the sinoatrial HCN current and a shift of the maximum diastolic potential to hyperpolarized values. Mice with cardiomyocyte- specific deletion of HCN2 displayed the same dysrhythmia as mice lacking HCN2 globally, indicating that the dysrhythmia is indeed caused by sinoatrial dysfunction. Our results define the physiological role of the HCN2 subunit as a major determinant of membrane resting potential that is required for regular cardiac and neuronal rhythmicity.

  • cellular expression and functional characterization of four hyperpolarization activated pacemaker channels in cardiac and neuronal tissues
    FEBS Journal, 2001
    Co-Authors: Sven Moosmang, Martin Biel, Juliane Stieber, Xiangang Zong, Franz Hofmann, Andreas Ludwig
    Abstract:

    Hyperpolarization-activated cation currents (I(h)) have been identified in cardiac pacemaker cells and a variety of central and peripheral neurons. Four members of a gene family encoding hyperpolarization-activated, cyclic nucleotide-gated cation channels (HCN1--4) have been cloned recently. Native I(h) currents recorded from different cell types exhibit distinct activation kinetics. To determine if this diversity of I(h) currents may be caused by differential expression of HCN channel isoforms, we investigated the cellular distribution of the transcripts of HCN1--4 in the murine sinoatrial node, retina and dorsal root ganglion (DRG) by in situ hybridization. In the sinoatrial node, the most prominently expressed HCN channel is HCN4, whereas HCN2 and HCN1 are detected there at moderate and low levels, respectively. Retinal photoreceptors express high levels of HCN1, whereas HCN2, 3 and 4 were not found in these cells. In DRG neurons, the dominant HCN transcript is HCN1, followed by HCN2. We next determined the functional properties of recombinant HCN1--4 channels expressed in HEK293 cells. All four channel types gave rise to I(h) currents but displayed marked differences in their activation kinetics. Our results suggest that the heterogeneity of native I(h) currents is generated, at least in part, by the tissue-specific expression of HCN channel genes.

Lianjun Guo - One of the best experts on this subject based on the ideXlab platform.

  • Baclofen ameliorates spatial working memory impairments induced by chronic cerebral hypoperfusion via up-regulation of HCN2 expression in the PFC in rats.
    Behavioural brain research, 2016
    Co-Authors: Pan Luo, Cheng Chen, Lianjun Guo
    Abstract:

    Chronic cerebral hypoperfusion (CCH) causes memory deficits and increases the risk of vascular dementia (VD) through several biologically plausible pathways. However, whether CCH causes prefrontal cortex (PFC)-dependent spatial working memory impairments and Baclofen, a GABAB receptor agonist, could ameliorate the impairments is still not clear especially the mechanisms underlying the process. In this study, rats were subjected to permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO) to induce CCH. Two weeks later, rats were treated with 25mg/kg Baclofen (intraperitioneal injection, i.p.) for 3 weeks. Spatial working memory was evaluated in a Morris water maze using a modified delayed matching-to-place (DMP) procedure. Western blotting and immunohistochemistry were used to quantify the protein levels and protein localization. Our results showed that 2VO caused striking spatial working memory impairments, accompanied with a decreased HCN2 expression in PFC, but the protein levels of protein gene product 9.5 (PGP9.5, a neuron specific protein), glial fibrillary acidic protein (GFAP), synaptophysin (SYP), brain-derived neurotrophic factor (BDNF), parvalbumin (PV) and HCN1 were not distinguishably changed as compared with sham-operated rats. Baclofen treatment significantly improved the spatial working memory impairments caused by 2VO, accompanied with a reversion of 2VO-induced down-regulation of HCN2. Furthermore, there was a co-localization of HCN2 subunits and parvalbumin-positive neurons in PFC. Therefore, HCN2 may target inhibitory interneurons that is implicated in working memory processes, which may be a possible mechanism of the up-regulation of HCN2 by Baclofen treatment that reliefs spatial working memory deficits in rats with CCH.

  • long lasting spatial learning and memory impairments caused by chronic cerebral hypoperfusion associate with a dynamic change of hcn1 HCN2 expression in hippocampal ca1 region
    Neurobiology of Learning and Memory, 2015
    Co-Authors: Pan Luo, Mei Zhou, Cheng Chen, Lianjun Guo
    Abstract:

    Abstract Chronic cerebral hypoperfusion (CCH) causes learning and memory impairments and increases the risk of Alzheimer disease (AD) and vascular dementia (VD) through several biologically plausible pathways, yet the mechanisms underlying the disease process remained unclear particularly in a temporal manner. We performed permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO) to induce CCH. To determine whether hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are altered at different stages of cognitive impairment caused by CCH, adult male SD rats were randomly distributed into sham-operated 4, 8 and 12 weeks group, 2VO 4, 8 and 12 weeks group. Learning and memory performance were evaluated with Morris water maze (MWM) and long-term potentiation (LTP) was used to address the underlying synaptic mechanisms. Expression of NeuN, HCN1 and HCN2 in hippocampal CA1, DG and CA3 areas was quantified by immunohistochemistry and western blotting. Our data showed that CCH induced a remarkable spatial learning and memory deficits in rats of 2VO 4, 8, and 12 weeks group although neuronal loss only occurred after 4 weeks of 2VO surgery in CA1. In addition, a significant reduction of HCN1 surface expression in CA1 was observed in the group that suffered 4 weeks ischemia but neither 8 nor 12 weeks. However, HCN2 surface expression in CA1 increased throughout the ischemia time-scales (4, 8 and 12 w). Our findings indicate spatial learning and memory deficits in the CCH model are associated with disturbed HCN1 and HCN2 surface expression in hippocampal CA1. The altered patterns of both HCN1 and HCN2 surface expression may be implicated in the early stage (4 w) of spatial learning and memory impairments; and the stable and long-lasting impairments of spatial learning and memory may partially attribute to the up-regulated HCN2 surface expression.

  • Imbalance of HCN1 and HCN2 expression in hippocampal CA1 area impairs spatial learning and memory in rats with chronic morphine exposure
    Progress in neuro-psychopharmacology & biological psychiatry, 2014
    Co-Authors: Mei Zhou, Pan Luo, Dian-shi Wang, Lianjun Guo
    Abstract:

    The hyperpolarization-activated cyclic-nucleotide-gated non-selective cation (HCN) channels play a vital role in the neurological basis underlying nervous system diseases. However, the role of HCN channels in drug addiction is not fully understood. In the present study, we investigated the expression of HCN1 and HCN2 subunits in hippocampal CA1 and the potential molecular mechanisms underlying the modulation of HCN channels in rats with chronic morphine exposure with approaches of electrophysiology, water maze, and Western blotting. We found that chronic morphine exposure (5 mg/kg, sc, for 7 days) caused an inhibition of long-term potentiation (LTP) and impairment of spatial learning and memory, which is associated with a decrease in HCN1, and an increase in HCN2 on cell membrane of hippocampal CA1 area. Additional experiments showed that the imbalance of cell membrane HCN1 and HCN2 expression under chronic morphine exposure was related to an increase in expression of TPR containing Rab8b interacting protein (TRIP8b) (1a-4) and TRIP8b (1b-2), and phosphorylation of protein kinase A (PKA) and adaptor protein 2 μ2 (AP2 μ2). Our results demonstrate the novel information that drug addiction-induced impairment of learning and memory is involved in the imbalance of HCN1 and HCN2 subunits, which is mediated by activation of TRIP8b (1a-4), TRIP8b (1b-2), PKA and AP2 μ2.

Ulf Strauss - One of the best experts on this subject based on the ideXlab platform.

  • protein kinase c activation inhibits rat and human hyperpolarization activated cyclic nucleotide gated channel hcn 1 mediated current in mammalian cells
    Cellular Physiology and Biochemistry, 2013
    Co-Authors: Olivia Reetz, Ulf Strauss
    Abstract:

    Background/Aims: Hyperpolarization activated cyclic nucleotide gated 1 (HCN1) channels determine neuronal excitability in several brain regions. In contrast to HCN2 and HCN4, HCN1 is less sensitive to cAMP and the number of other known modulators is limited. One of those, the protein kinase C (PKC), showed opposing effects on mouse HCN1 channels expressed in Xenopus oocytes. Methods: In order to study PKC effects on HCN1 mediated currents in a mammalian environment we expressed rat HCN1 or human HCN1 in human embryonic kidney (HEK293) cells and rat HCN1 in murine neuroblastoma (N1E-115) cells. We recorded the resulting Ih before and during the application of the membrane permeable non-metabolizable PKC-activator 4βPMA in cell-attached mode of the patch-clamp technique, leaving the intracellular environment intact. Results: 4βPMA reduced maximal HCN1 mediated currents to about 60-70 % and slowed its activation, but left its voltage sensitivity unchanged. The effect was neither due to species-related differences nor restricted to HEK293 cells, because it was comparable for human and rat HCN1 in HEK293 and for rat HCN1 in N1E-115 cells. However, pre-treatment with the PKC blocker GF109203X abolished 4βPMA induced Ih changes. Disrupting the intracellular environment by recording in whole-cell mode drastically reduced the 4βPMA effect. Conclusion: PKC activation reduces and slows Ih in non-neuronal and neuronal mammalian cells transfected with rat or human HCN1 if the intracellular content remains intact.

  • Functional significance of HCN2/3‐mediated Ih in striatal cells at early developmental stages
    Journal of neuroscience research, 2005
    Co-Authors: Rika Bajorat, Anja U. Bräuer, Ulrike Wasner, Arndt Rolfs, Ulf Strauss
    Abstract:

    Hyperpolarization-activated cAMP-gated cation currents (Ih) were recently linked to pre- and postnatal developmental processes in several brain regions, including the ventral telencephalon. To evaluate the role of Ih in striatal development, we used short-term cultured cells from the lateral ganglionic eminence at embryonic day 14 (E14) and postnatal days 1–3 (P1–3) as well as the embryonic striatal progenitor cell line ST14A. Western blot analysis of the Ih underlying subunit proteins HCN1–4 revealed strong HCN2 expression in proliferating ST14A cells and weak expression in postmitotic ST14A cells and in cells from the developing brain. We also found HCN3 expression only in ST14A cells at both proliferative and nonproliferative stages but not in short-term cultured striatal cells. In all cases, HCN1 and HCN4 transcripts were below the detection level. Despite the selective protein expression, RT-PCR analysis showed stable expression of HCN2–4 but not HCN1 mRNA in all short-term-cultured striatal cells and in the ST14A cell line. Consistent with the strong protein expression, an Ih was recorded with features of an HCN2-mediated current in ST14A cells at the proliferative stage and in short-term-cultured E14 cells. Of particular importance is that we detected no currents upon hyperpolarization in the ST14A cells at the nonproliferative stage when only HCN3 protein was present. These results suggest the potential importance of ST14A cells in defining the molecular mechanisms regulating Ih expression and function. © 2005 Wiley-Liss, Inc.

  • functional significance of HCN2 3 mediated ih in striatal cells at early developmental stages
    Journal of Neuroscience Research, 2005
    Co-Authors: Rika Bajorat, Anja U. Bräuer, Ulrike Wasner, Arndt Rolfs, Ulf Strauss
    Abstract:

    Hyperpolarization-activated cAMP-gated cation currents (Ih) were recently linked to pre- and postnatal developmental processes in several brain regions, including the ventral telencephalon. To evaluate the role of Ih in striatal development, we used short-term cultured cells from the lateral ganglionic eminence at embryonic day 14 (E14) and postnatal days 1–3 (P1–3) as well as the embryonic striatal progenitor cell line ST14A. Western blot analysis of the Ih underlying subunit proteins HCN1–4 revealed strong HCN2 expression in proliferating ST14A cells and weak expression in postmitotic ST14A cells and in cells from the developing brain. We also found HCN3 expression only in ST14A cells at both proliferative and nonproliferative stages but not in short-term cultured striatal cells. In all cases, HCN1 and HCN4 transcripts were below the detection level. Despite the selective protein expression, RT-PCR analysis showed stable expression of HCN2–4 but not HCN1 mRNA in all short-term-cultured striatal cells and in the ST14A cell line. Consistent with the strong protein expression, an Ih was recorded with features of an HCN2-mediated current in ST14A cells at the proliferative stage and in short-term-cultured E14 cells. Of particular importance is that we detected no currents upon hyperpolarization in the ST14A cells at the nonproliferative stage when only HCN3 protein was present. These results suggest the potential importance of ST14A cells in defining the molecular mechanisms regulating Ih expression and function. © 2005 Wiley-Liss, Inc.

Richard Z. Lin - One of the best experts on this subject based on the ideXlab platform.

  • Regulation of HCN2 Current by PI3K/Akt Signaling.
    Frontiers in physiology, 2020
    Co-Authors: Hong Zhan Wang, Chris Gordon, Lisa M. Ballou, Richard Z. Lin, Ira S Cohen
    Abstract:

    It has long been known that heart rate is regulated by the autonomic nervous system. Recently, we demonstrated that the pacemaker current, I f , is regulated by phosphoinositide 3-kinase (PI3K) signaling independently of the autonomic nervous system. Inhibition of PI3K in sinus node (SN) myocytes shifts the activation of I f by almost 16 mV in the negative direction. I f in the SN is predominantly mediated by two members of the HCN gene family, HCN4 and HCN1. Purkinje fibers also possess I f and are an important secondary pacemaker in the heart. In contrast to the SN, they express HCN2 and HCN4, while ventricular myocytes, which do not normally pace, express HCN2 alone. In the current work, we investigated PI3K regulation of HCN2 expressed in HEK293 cells. Treatment with the PI3K inhibitor PI-103 caused a negative shift in the activation voltage and a dramatic reduction in the magnitude of the HCN2 current. Similar changes were also seen in cells treated with an inhibitor of the protein kinase Akt, a downstream effector of PI3K. The effects of PI-103 were reversed by perfusion of cells with phosphatidylinositol 3,4,5-trisphosphate (the second messenger produced by PI3K) or active Akt protein. We identified serine 861 in mouse HCN2 as a putative Akt phosphorylation site. Mutation of S861 to alanine mimicked the effects of Akt inhibition on voltage dependence and current magnitude. In addition, the Akt inhibitor had no effect on the mutant channel. These results suggest that Akt phosphorylation of mHCN2 S861 accounts for virtually all of the observed actions of PI3K signaling on the HCN2 current. Unexpectedly, Akt inhibition had no effect on I f in SN myocytes. This result raises the possibility that diverse PI3K signaling pathways differentially regulate HCN-induced currents in different tissues, depending on the isoforms expressed.

  • regulation of HCN2 current by pi3k akt signaling
    Frontiers in Physiology, 2020
    Co-Authors: Hong Zhan Wang, Chris Gordon, Lisa M. Ballou, Richard Z. Lin, Ira S Cohen
    Abstract:

    It has long been known that heart rate is regulated by the autonomic nervous system. Recently, we demonstrated that the pacemaker current, I f , is regulated by phosphoinositide 3-kinase (PI3K) signaling independently of the autonomic nervous system. Inhibition of PI3K in sinus node (SN) myocytes shifts the activation of I f by almost 16 mV in the negative direction. I f in the SN is predominantly mediated by two members of the HCN gene family, HCN4 and HCN1. Purkinje fibers also possess I f and are an important secondary pacemaker in the heart. In contrast to the SN, they express HCN2 and HCN4, while ventricular myocytes, which do not normally pace, express HCN2 alone. In the current work, we investigated PI3K regulation of HCN2 expressed in HEK293 cells. Treatment with the PI3K inhibitor PI-103 caused a negative shift in the activation voltage and a dramatic reduction in the magnitude of the HCN2 current. Similar changes were also seen in cells treated with an inhibitor of the protein kinase Akt, a downstream effector of PI3K. The effects of PI-103 were reversed by perfusion of cells with phosphatidylinositol 3,4,5-trisphosphate (the second messenger produced by PI3K) or active Akt protein. We identified serine 861 in mouse HCN2 as a putative Akt phosphorylation site. Mutation of S861 to alanine mimicked the effects of Akt inhibition on voltage dependence and current magnitude. In addition, the Akt inhibitor had no effect on the mutant channel. These results suggest that Akt phosphorylation of mHCN2 S861 accounts for virtually all of the observed actions of PI3K signaling on the HCN2 current. Unexpectedly, Akt inhibition had no effect on I f in SN myocytes. This result raises the possibility that diverse PI3K signaling pathways differentially regulate HCN-induced currents in different tissues, depending on the isoforms expressed.