Iflaviridae

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 225 Experts worldwide ranked by ideXlab platform

Joachim R. De Miranda - One of the best experts on this subject based on the ideXlab platform.

  • cryo em study of slow bee paralysis virus at low ph reveals iflavirus genome release mechanism
    Proceedings of the National Academy of Sciences of the United States of America, 2017
    Co-Authors: S. Kalynych, Joachim R. De Miranda, Tibor Fuzik, Antonin Přidal, Pavel Plevka
    Abstract:

    Viruses from the family Iflaviridae are insect pathogens. Many of them, including slow bee paralysis virus (SBPV), cause lethal diseases in honeybees and bumblebees, resulting in agricultural losses. Iflaviruses have nonenveloped icosahedral virions containing single-stranded RNA genomes. However, their genome release mechanism is unknown. Here, we show that low pH promotes SBPV genome release, indicating that the virus may use endosomes to enter host cells. We used cryo-EM to study a heterogeneous population of SBPV virions at pH 5.5. We determined the structures of SBPV particles before and after genome release to resolutions of 3.3 and 3.4 angstrom, respectively. The capsids of SBPV virions in low pH are not expanded. Thus, SBPV does not appear to form "altered" particles with pores in their capsids before genome release, as is the case in many related picornaviruses. The egress of the genome from SBPV virions is associated with a loss of interpentamer contacts mediated by N-terminal arms of VP2 capsid proteins, which result in the expansion of the capsid. Pores that are 7 angstrom an diameter form around icosahedral threefold symmetry axes. We speculate that they serve as channels for the genome release. Our findings provide an atomic-level characterization of the genome release mechanism of iflaviruses.

  • Virion Structure of Iflavirus Slow Bee Paralysis Virus at 2.6-Angstrom Resolution.
    Journal of Virology, 2016
    Co-Authors: S. Kalynych, Antonín Přidal, Lenka Pálková, Yevgen Levdansky, Joachim R. De Miranda, Pavel Plevka
    Abstract:

    The western honeybee (Apis mellifera) is the most important commercial insect pollinator. However, bees are under pressure from habitat loss, environmental stress, and pathogens, including viruses that can cause lethal epidemics. Slow bee paralysis virus (SBPV) belongs to the Iflaviridae family of nonenveloped single-stranded RNA viruses. Here we present the structure of the SBPV virion determined from two crystal forms to resolutions of 3.4 angstrom and 2.6 angstrom. The overall structure of the virion resembles that of picornaviruses, with the three major capsid proteins VP1 to 3 organized into a pseudo-T3 icosahedral capsid. However, the SBPV capsid protein VP3 contains a C-terminal globular domain that has not been observed in other viruses from the order Picornavirales. The protruding (P) domains form "crowns" on the virion surface around each 5-fold axis in one of the crystal forms. However, the P domains are shifted 36 angstrom toward the 3-fold axis in the other crystal form. Furthermore, the P domain contains the Ser-His-Asp triad within a surface patch of eight conserved residues that constitutes a putative catalytic or receptor-binding site. The movements of the domain might be required for efficient substrate cleavage or receptor binding during virus cell entry. In addition, capsid protein VP2 contains an RGD sequence that is exposed on the virion surface, indicating that integrins might be cellular receptors of SBPV.IMPORTANCEPollination by honeybees is needed to sustain agricultural productivity as well as the biodiversity of wild flora. However, honey-bee populations in Europe and North America have been declining since the 1950s. Honeybee viruses from the Iflaviridae family are among the major causes of honeybee colony mortality. We determined the virion structure of an Iflavirus, slow bee paralysis virus (SBPV). SBPV exhibits unique structural features not observed in other picorna-like viruses. The SBPV capsid protein VP3 has a large C-terminal domain, five of which form highly prominent protruding "crowns" on the virion surface. However, the domains can change their positions depending on the conditions of the environment. The domain includes a putative catalytic or receptor binding site that might be important for SBPV cell entry.

  • genetic characterization of slow bee paralysis virus of the honeybee apis mellifera l
    Journal of General Virology, 2010
    Co-Authors: Joachim R. De Miranda, Benjamin Dainat, Barbara Locke, Guido Cordoni, Helene Berthoud, Laurent Gauthier, Peter J Neumann
    Abstract:

    Complete genome sequences were determined for two distinct strains of slow bee paralysis virus (SBPV) of honeybees (Apis mellifera). The SBPV genome is approximately 9.5 kb long and contains a single ORF flanked by 5′- and 3′-UTRs and a naturally polyadenylated 3′ tail, with a genome organization typical of members of the family Iflaviridae. The two strains, labelled ‘Rothamsted’ and ‘Harpenden’, are 83 % identical at the nucleotide level (94 % identical at the amino acid level), although this variation is distributed unevenly over the genome. The two strains were found to co-exist at different proportions in two independently propagated SBPV preparations. The natural prevalence of SBPV for 847 colonies in 162 apiaries across five European countries was <2 %, with positive samples found only in England and Switzerland, in colonies with variable degrees of Varroa infestation.

Salvador Herrero - One of the best experts on this subject based on the ideXlab platform.

  • ictv virus taxonomy profile Iflaviridae
    Journal of General Virology, 2017
    Co-Authors: Steven M Valles, Salvador Herrero, Yanping Chen, Andrew E Firth, Diego M A Guerin, Yoshifumi Hashimoto, J R De Miranda, Eugene V Ryabov
    Abstract:

    Iflaviridae is a family of small non-enveloped viruses with monopartite, positive-stranded RNA genomes of approximately 9–11 kilobases. Viruses of all classified species infect arthropod hosts, with the majority infecting insects. Both beneficial and pest insects serve as hosts, and infections can be symptomless (Nilaparvatalugens honeydew virus 1) or cause developmental abnormalities (deformed wing virus), behavioural changes (sacbrood virus) and premature mortality (infectious flacherie virus). The host range has not been examined for most members. The most common route of infection for iflaviruses is the ingestion of virus-contaminated food sources. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Iflaviridae, which is available at www.ictv.global/report/Iflaviridae.

  • natural populations of spodoptera exigua are infected by multiple viruses that are transmitted to their offspring
    Journal of Invertebrate Pathology, 2014
    Co-Authors: Rosa Murillo, Salvador Herrero, Primitivo Caballero, Cristina Virto, David Navarro, Maria Del Mar Tellez, Trevor Williams
    Abstract:

    Sublethal infections by baculoviruses (Baculoviridae) are believed to be common in Lepidoptera, including Spodoptera exigua. In addition, novel RNA viruses of the family Iflaviridae have been recently identified in a laboratory population of S. exigua (S. exigua iflavirus-1: SeIV-1; S. exigua iflavirus-2: SeIV-2) that showed no overt signs of disease. We determined the prevalence of these viruses in wild populations and the prevalence of co-infection by the different viruses in shared hosts. Infection by S. exigua multiple nucleopolyhedrovirus (SeMNPV) and iflaviruses in S. exigua adults (N = 130) from horticultural greenhouses in southern Spain was determined using qPCR and RT-PCR based techniques respectively. The offspring of these insects (N = 200) was reared under laboratory conditions and analyzed to determine virus transmission. Overall, 54% of field-caught adults were infected by SeMNPV, 13.1% were infected by SeIV-1 and 7.7% were infected by SeIV-2. Multiple infections were also detected, with 8.4% of individuals harboring SeMNPV and one of the iflaviruses, whereas 2.3% of adults were infected by all three viruses. All the viruses were transmitted to offspring independently of whether the parental female harbored covert infections or not. Analysis of laboratory-reared insects in the adult stage revealed that SeIV-1 was significantly more prevalent than SeMNPV or SeIV-2, suggesting high transmissibility of SeIV-1. Mixed infection involving three viruses was identified in 6.5% of laboratory-reared offspring. We conclude that interspecific interactions between these viruses in co-infected individuals are to be likely frequent, both in the field, following applications of SeMNPV-based insecticides, or in laboratory colonies used for SeMNPV mass production.

  • Simultaneous occurrence of covert infections with small RNA viruses in the lepidopteran Spodoptera exigua.
    Journal of Invertebrate Pathology, 2014
    Co-Authors: Agata K. Jakubowska, Melania D’angiolo, Rosa M. González-martínez, Anabel Millán-leiva, Arkaitz Carballo, Rosa Murillo, Primitivo Caballero, Salvador Herrero
    Abstract:

    Abstract Viral covert infections in invertebrates have been traditionally attributed to sublethal infections that were not able to establish an acute infection. Recent studies are revealing that, although true for some viruses, other viruses may follow the strategy of establishing covert or persistent infections without producing the death of the host. Recently, and due to the revolution in the sequencing technologies, a large number of viruses causing covert infections in all type of hosts have been identified. The beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae) is a worldwide pest that causes significant losses to agricultural and ornamental plant industries. In a previous project we used NGS to obtain a comprehensive transcriptome of the larval stage, revealing the presence of an important number of unigenes belonging to novel RNA viruses, most of them from the order Picornavirales. In order to characterize S. exigua viral complex, in this work we have completed the genomic sequences of two picorna-like viruses, and compared them to a SeIV1, a member of Iflaviridae previously described by our group. We performed additional studies to determine virus morphology, horizontal transmission, tissue and life stage distribution and abundance in the hosts. We discuss the role of virus persistent infections on insect populations.

  • Genome sequence of SeIV-1, a novel virus from the Iflaviridae family infective to Spodoptera exigua.
    Journal of Invertebrate Pathology, 2011
    Co-Authors: Anabel Millán-leiva, Agata K. Jakubowska, Juan Ferre, Salvador Herrero
    Abstract:

    Abstract Analysis of the transcriptome of Spodoptera exigua larvae revealed the presence of several ESTs with homology to virus of the order Picornavirales and with the highest similarity to Infectious flacherie virus ( Iflaviridae ) that infects Bombyx mori larvae. Iflaviridae is a recently defined family of insect-infecting viruses that consist of positive single strand RNA genomes translated into a single polyprotein of around 3000 amino acids long. Using the sequence information derived from the obtained ESTs, we have completed the genomic sequence of this virus. The novel S. exigua iflavirus (SeIV-1) has a genome of 10.3 kb and codes for a 3222 aa polyprotein. Expression analysis has revealed the presence of the virus in all tissues tested and insect stages, being more abundant in the midgut of the larvae. High infectivity of this virus against S. exigua has been demonstrated after observing the presence of this virus in different colonies that were reared in the same chamber with the virus-infected colony, despite no evidence of pathological effects. Further study of viral covert infections of SeIV-1 could lead to a better understanding of its pathological effect as well as any possible interaction with other microbial pathogens used for the control of this pest.

Pavel Plevka - One of the best experts on this subject based on the ideXlab platform.

  • Virion structure and genome delivery mechanism of sacbrood honeybee virus.
    Proceedings of the National Academy of Sciences of the United States of America, 2018
    Co-Authors: Michaela Procházková, T. Fuzik, Karel Skubnik, Jana Moravcová, Zorica Ubiparip, A. Pridal, Pavel Plevka
    Abstract:

    Infection by sacbrood virus (SBV) from the family Iflaviridae is lethal to honey bee larvae but only rarely causes the collapse of honey bee colonies. Despite the negative effect of SBV on honey bees, the structure of its particles and mechanism of its genome delivery are unknown. Here we present the crystal structure of SBV virion and show that it contains 60 copies of a minor capsid protein (MiCP) attached to the virion surface. No similar MiCPs have been previously reported in any of the related viruses from the order Picornavirales. The location of the MiCP coding sequence within the SBV genome indicates that the MiCP evolved from a C-terminal extension of a major capsid protein by the introduction of a cleavage site for a virus protease. The exposure of SBV to acidic pH, which the virus likely encounters during cell entry, induces the formation of pores at threefold and fivefold axes of the capsid that are 7 angstrom and 12 angstrom in diameter, respectively. This is in contrast to vertebrate picornaviruses, in which the pores along twofold icosahedral symmetry axes are currently considered the most likely sites for genome release. SBV virions lack VP4 subunits that facilitate the genome delivery of many related dicistroviruses and picornaviruses. MiCP subunits induce liposome disruption in vitro, indicating that they are functional analogs of VP4 subunits and enable the virus genome to escape across the endosome membrane into the cell cytoplasm.

  • cryo em study of slow bee paralysis virus at low ph reveals iflavirus genome release mechanism
    Proceedings of the National Academy of Sciences of the United States of America, 2017
    Co-Authors: S. Kalynych, Joachim R. De Miranda, Tibor Fuzik, Antonin Přidal, Pavel Plevka
    Abstract:

    Viruses from the family Iflaviridae are insect pathogens. Many of them, including slow bee paralysis virus (SBPV), cause lethal diseases in honeybees and bumblebees, resulting in agricultural losses. Iflaviruses have nonenveloped icosahedral virions containing single-stranded RNA genomes. However, their genome release mechanism is unknown. Here, we show that low pH promotes SBPV genome release, indicating that the virus may use endosomes to enter host cells. We used cryo-EM to study a heterogeneous population of SBPV virions at pH 5.5. We determined the structures of SBPV particles before and after genome release to resolutions of 3.3 and 3.4 angstrom, respectively. The capsids of SBPV virions in low pH are not expanded. Thus, SBPV does not appear to form "altered" particles with pores in their capsids before genome release, as is the case in many related picornaviruses. The egress of the genome from SBPV virions is associated with a loss of interpentamer contacts mediated by N-terminal arms of VP2 capsid proteins, which result in the expansion of the capsid. Pores that are 7 angstrom an diameter form around icosahedral threefold symmetry axes. We speculate that they serve as channels for the genome release. Our findings provide an atomic-level characterization of the genome release mechanism of iflaviruses.

  • Virion Structure of Iflavirus Slow Bee Paralysis Virus at 2.6-Angstrom Resolution.
    Journal of Virology, 2016
    Co-Authors: S. Kalynych, Antonín Přidal, Lenka Pálková, Yevgen Levdansky, Joachim R. De Miranda, Pavel Plevka
    Abstract:

    The western honeybee (Apis mellifera) is the most important commercial insect pollinator. However, bees are under pressure from habitat loss, environmental stress, and pathogens, including viruses that can cause lethal epidemics. Slow bee paralysis virus (SBPV) belongs to the Iflaviridae family of nonenveloped single-stranded RNA viruses. Here we present the structure of the SBPV virion determined from two crystal forms to resolutions of 3.4 angstrom and 2.6 angstrom. The overall structure of the virion resembles that of picornaviruses, with the three major capsid proteins VP1 to 3 organized into a pseudo-T3 icosahedral capsid. However, the SBPV capsid protein VP3 contains a C-terminal globular domain that has not been observed in other viruses from the order Picornavirales. The protruding (P) domains form "crowns" on the virion surface around each 5-fold axis in one of the crystal forms. However, the P domains are shifted 36 angstrom toward the 3-fold axis in the other crystal form. Furthermore, the P domain contains the Ser-His-Asp triad within a surface patch of eight conserved residues that constitutes a putative catalytic or receptor-binding site. The movements of the domain might be required for efficient substrate cleavage or receptor binding during virus cell entry. In addition, capsid protein VP2 contains an RGD sequence that is exposed on the virion surface, indicating that integrins might be cellular receptors of SBPV.IMPORTANCEPollination by honeybees is needed to sustain agricultural productivity as well as the biodiversity of wild flora. However, honey-bee populations in Europe and North America have been declining since the 1950s. Honeybee viruses from the Iflaviridae family are among the major causes of honeybee colony mortality. We determined the virion structure of an Iflavirus, slow bee paralysis virus (SBPV). SBPV exhibits unique structural features not observed in other picorna-like viruses. The SBPV capsid protein VP3 has a large C-terminal domain, five of which form highly prominent protruding "crowns" on the virion surface. However, the domains can change their positions depending on the conditions of the environment. The domain includes a putative catalytic or receptor binding site that might be important for SBPV cell entry.

Michaël Aubert - One of the best experts on this subject based on the ideXlab platform.

  • emerging and re emerging viruses of the honey bee apis mellifera l
    Veterinary Research, 2010
    Co-Authors: Elke Genersch, Michaël Aubert
    Abstract:

    Until the late 1980s, specific viral infections of the honey bee were generally considered harmless in all countries. Then, with the worldwide introduction of the ectoparasite mite Varroa destructor, beekeepers encountered increasing difficulties in maintaining their colonies. Epidemiological surveys and laboratory experiments have demonstrated that the newly acquired virulence of several viruses belonging to the family Dicistroviridae (acute bee paralysis virus, Kashmir bee virus and Israeli acute paralysis virus) in Europe and the USA had been observed in relation with V. destructor acting as a disseminator of these viruses between and within bee colonies and as an activator of virus multiplication in the infected individuals: bee larvae and adults. Equal emphasis is given to deformed wing virus (DWV) belonging to the Iflaviridae. Overt outbreaks of DWV infections have been shown to be linked to the ability of V. destructor to act not only as a mechanical vector of DWV but also as a biological vector. Its replication in mites prior to its vectoring into pupae seemed to be necessary and sufficient for the induction of a overt infection in pupae developing in non-viable bees with deformed wings. DWV in V. destructor infested colonies is now considered as one of the key players of the final collapse. Various approaches for combating bee viral diseases are described: they include selection of tolerant bees, RNA interference and prevention of new pathogen introduction. None of these approaches are expected to lead to enhanced bee-health in the short term.

Primitivo Caballero - One of the best experts on this subject based on the ideXlab platform.

  • natural populations of spodoptera exigua are infected by multiple viruses that are transmitted to their offspring
    Journal of Invertebrate Pathology, 2014
    Co-Authors: Rosa Murillo, Salvador Herrero, Primitivo Caballero, Cristina Virto, David Navarro, Maria Del Mar Tellez, Trevor Williams
    Abstract:

    Sublethal infections by baculoviruses (Baculoviridae) are believed to be common in Lepidoptera, including Spodoptera exigua. In addition, novel RNA viruses of the family Iflaviridae have been recently identified in a laboratory population of S. exigua (S. exigua iflavirus-1: SeIV-1; S. exigua iflavirus-2: SeIV-2) that showed no overt signs of disease. We determined the prevalence of these viruses in wild populations and the prevalence of co-infection by the different viruses in shared hosts. Infection by S. exigua multiple nucleopolyhedrovirus (SeMNPV) and iflaviruses in S. exigua adults (N = 130) from horticultural greenhouses in southern Spain was determined using qPCR and RT-PCR based techniques respectively. The offspring of these insects (N = 200) was reared under laboratory conditions and analyzed to determine virus transmission. Overall, 54% of field-caught adults were infected by SeMNPV, 13.1% were infected by SeIV-1 and 7.7% were infected by SeIV-2. Multiple infections were also detected, with 8.4% of individuals harboring SeMNPV and one of the iflaviruses, whereas 2.3% of adults were infected by all three viruses. All the viruses were transmitted to offspring independently of whether the parental female harbored covert infections or not. Analysis of laboratory-reared insects in the adult stage revealed that SeIV-1 was significantly more prevalent than SeMNPV or SeIV-2, suggesting high transmissibility of SeIV-1. Mixed infection involving three viruses was identified in 6.5% of laboratory-reared offspring. We conclude that interspecific interactions between these viruses in co-infected individuals are to be likely frequent, both in the field, following applications of SeMNPV-based insecticides, or in laboratory colonies used for SeMNPV mass production.

  • Simultaneous occurrence of covert infections with small RNA viruses in the lepidopteran Spodoptera exigua.
    Journal of Invertebrate Pathology, 2014
    Co-Authors: Agata K. Jakubowska, Melania D’angiolo, Rosa M. González-martínez, Anabel Millán-leiva, Arkaitz Carballo, Rosa Murillo, Primitivo Caballero, Salvador Herrero
    Abstract:

    Abstract Viral covert infections in invertebrates have been traditionally attributed to sublethal infections that were not able to establish an acute infection. Recent studies are revealing that, although true for some viruses, other viruses may follow the strategy of establishing covert or persistent infections without producing the death of the host. Recently, and due to the revolution in the sequencing technologies, a large number of viruses causing covert infections in all type of hosts have been identified. The beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae) is a worldwide pest that causes significant losses to agricultural and ornamental plant industries. In a previous project we used NGS to obtain a comprehensive transcriptome of the larval stage, revealing the presence of an important number of unigenes belonging to novel RNA viruses, most of them from the order Picornavirales. In order to characterize S. exigua viral complex, in this work we have completed the genomic sequences of two picorna-like viruses, and compared them to a SeIV1, a member of Iflaviridae previously described by our group. We performed additional studies to determine virus morphology, horizontal transmission, tissue and life stage distribution and abundance in the hosts. We discuss the role of virus persistent infections on insect populations.