IKBKG

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 360 Experts worldwide ranked by ideXlab platform

Matilde Valeria Ursini - One of the best experts on this subject based on the ideXlab platform.

  • cognitive behavioural phenotype in a group of girls from 1 2 to 12 years old with the incontinentia pigmenti syndrome recommendations for clinical management
    Applied neuropsychology. Child, 2017
    Co-Authors: Maria Rosa Pizzamiglio, Francesca R Fusco, Laura Piccardi, Filippo Bianchini, Loredana Canzano, Liana Palermo, Giovanni Dantuono, Chiara Gelmini, Livia Garavelli, Matilde Valeria Ursini
    Abstract:

    Incontinentia Pigmenti (IP, OMIM#308300) is a rare X-linked genomic disorder (about 1,400 cases) that affects the neuroectodermal tissue and Central Nervous System (CNS). The objective of this study was to describe the cognitive-behavioural profile in children in order to plan a clinical intervention to improve their quality of life. A total of 14 girls (age range: from 1 year and 2 months to 12 years and 10 months) with IP and the IKBKG/NEMO gene deletion were submitted to a cognitive assessment including intelligence scales, language and visuo-spatial competence tests, learning ability tests, and a behavioural assessment. Five girls had severe to mild intellectual deficiencies and the remaining nine had a normal neurodevelopment. Four girls were of school age and two of these showed no intellectual disability, but had specific disabilities in calculation and arithmetic reasoning. This is the first description of the cognitive-behavioural profile in relation to developmental age. We stress the importance of an early assessment of learning abilities in individuals with IP without intellectual deficiencies to prevent the onset of any such deficit.

  • unusual father to daughter transmission of incontinentia pigmenti due to mosaicism in ip males
    Pediatrics, 2017
    Co-Authors: Francesca R Fusco, Matilde Immacolata Conte, Andrea Diociaiuti, Stefania Bigoni, Maria Francesca Branda, Alessandra Ferlini, Maya El Hachem, Matilde Valeria Ursini
    Abstract:

    Incontinentia pigmenti (IP; Online Mendelian Inheritance in Man catalog #308300) is an X-linked dominant ectodermal disorder caused by mutations of the inhibitor of κ polypeptide gene enchancer in B cells, kinase γ (IKBKG)/ nuclear factor κB, essential modulator (NEMO) gene. Hemizygous IKBKG/NEMO loss-of-function (LoF) mutations are lethal in males, thus patients are female, and the disease is always transmitted from an IP-affected mother to her daughter. We present 2 families with father-to-daughter transmission of IP and provide for the first time molecular evidence that the combination of somatic and germ-line mosaicism for IKBKG/NEMO loss of function mutations in IP males resulted in the transmission of the disease to a female child. We searched for the IKBKG/NEMO mutant allele in blood, urine, skin, and sperm DNA and found that the 2 fathers were somatic and germ-line mosaics for the p.Gln132×mutation or the exon 4-10 deletion of IKBKG/NEMO, respectively. The highest level of IKBKG/NEMO mutant cells was detected in the sperm, which might explain the recurrence of the disease. We therefore recommend careful clinical evaluation in IP male cases and the genetic investigation in sperm DNA to ensure correct genetic counseling and prevent the risk of paternal transmission of IP.

  • eda id and ip two faces of the same coin how the same IKBKG nemo mutation affecting the nf κb pathway can cause immunodeficiency and or inflammation
    International Reviews of Immunology, 2015
    Co-Authors: Francesca R Fusco, Mariateresa Paciolla, Alessandra Pescatore, M B Lioi, Matilde Immacolata Conte, Peppino Mirabelli, Elio Esposito, Matilde Valeria Ursini
    Abstract:

    Anhidrotic Ectodermal Dysplasia with ImmunoDeficiency (EDA-ID, OMIM 300291) and Incontinentia Pigmenti (IP, OMIM 308300) are two rare diseases, caused by mutations of the IKBKG/NEMO gene. The protein NEMO/IKKγ is essential for the NF-κB activation pathway, involved in a variety of physiological and cellular processes, such as immunity, inflammation, cell proliferation, and survival. A wide spectrum of IKBKG/NEMO mutations have been identified so far, and, on the basis of their effect on NF-κB activation, they are considered hypomorphic or amorphic (loss of function) mutations. IKBKG/NEMO hypomorphic mutations, reducing but not abolishing NF-κB activation, have been identified in EDA-ID and IP patients. Instead, the amorphic mutations, abolishing NF-κB activation by complete IKBKG/NEMO gene silencing, cause only IP. Here, we present an overview of IKBKG/NEMO mutations in EDA-ID and IP patients and describe similarities and differences between the clinical/immunophenotypic and genetic aspects, highlighting any T and B lymphocyte defect, and paying particular attention to the cellular and molecular defects that underlie the pathogenesis of both diseases.

  • incontinentia pigmenti learning disabilities are a fundamental hallmark of the disease
    PLOS ONE, 2014
    Co-Authors: Maria Rosa Pizzamiglio, Francesca R Fusco, Laura Piccardi, Filippo Bianchini, Loredana Canzano, Liana Palermo, Giovanni Dantuono, Chiara Gelmini, Livia Garavelli, Matilde Valeria Ursini
    Abstract:

    Studies suggest that genetic factors are associated with the etiology of learning disabilities. Incontinentia Pigmenti (IP, OMIM#308300), which is caused by mutations of the IKBKG/NEMO gene, is a rare X-linked genomic disorder (1∶10000/20∶000) that affects the neuroectodermal tissues. It always affects the skin and sometimes the hair, teeth, nails, eyes and central nervous system (CNS). Data from IP patients demonstrate the heterogeneity of the clinical phenotype; about 30% have CNS manifestations. This extreme variability suggests that IP patients might also have learning disabilities. However, no studies in the literature have evaluated the cognitive profile of IP patients. In fact, the learning disability may go unnoticed in general neurological analyses, which focus on major disabling manifestations of the CNS. Here, we investigated the neuropsychological outcomes of a selected group of IP-patients by focusing on learning disabilities. We enrolled 10 women with IP (7 without mental retardation and 3 with mild to severe mental retardation) whose clinical diagnosis had been confirmed by the presence of a recurrent deletion in the IKBKG/NEMO gene. The participants were recruited from the Italian patients' association (I.P.A.SS.I. Onlus). They were submitted to a cognitive assessment that included the Wechsler Adult Intelligence scale and a battery of tests examining reading, arithmetic and writing skills. We found that 7 patients had deficits in calculation/arithmetic reasoning and reading but not writing skills; the remaining 3 had severe to mild intellectual disabilities. Results of this comprehensive evaluation of the molecular and psychoneurological aspects of IP make it possible to place “learning disabilities” among the CNS manifestations of the disease and suggest that the IKBKG/NEMO gene is a genetic determinant of this CNS defect. Our findings indicate the importance of an appropriate psychoneurological evaluation of IP patients, which includes early assessment of learning abilities, to prevent the onset of this deficit.

  • genomic architecture at the incontinentia pigmenti locus favours de novo pathological alleles through different mechanisms
    Human Molecular Genetics, 2012
    Co-Authors: Francesca R Fusco, Asma Smahi, Mariateresa Paciolla, Federico Napolitano, Alessandra Pescatore, Irene Daddario, Elodie Bal, M B Lioi, Maria Giuseppina Miano, Matilde Valeria Ursini
    Abstract:

    IKBKG/NEMO gene mutations cause an X-linked, dominant neuroectodermal disorder named Incontinentia Pigmenti (IP). Located at Xq28, IKBKG/NEMO has a unique genomic organization, as it is part of a segmental duplication or low copy repeat (LCR1-LCR2, >99% identical) containing the gene and its pseudogene copy (IKBKGP). In the opposite direction and outside LCR1, IKBKG/NEMO partially overlaps G6PD, whose mutations cause a common X-linked human enzymopathy. The two LCRs in the IKBKG/NEMO locus are able to recombine through non-allelic homologous recombination producing either a pathological recurrent exon 4-10 IKBKG/NEMO deletion (IKBKGdel) or benign small copy number variations. We here report that the local high frequency of micro/macro-homologies, tandem repeats and repeat/repetitive sequences make the IKBKG/NEMO locus susceptible to novel pathological IP alterations. Indeed, we describe the first two independent instances of inter-locus gene conversion, occurring between the two LCRs, that copies the IKBKGP pseudogene variants into the functional IKBKG/NEMO, causing the de novo occurrence of p.Glu390ArgfsX61 and the IKBKGdel mutations, respectively. Subsequently, by investigating a group of 20 molecularly unsolved IP subjects using a high-density quantitative polymerase chain reaction assay, we have identified seven unique de novo deletions varying from 4.8 to ∼115 kb in length. Each deletion removes partially or completely both IKBKG/NEMO and the overlapping G6PD, thereby uncovering the first deletions disrupting the G6PD gene which were found in patients with IP. Interestingly, the 4.8 kb deletion removes the conserved bidirectional promoterB, shared by the two overlapping IKBKG/NEMO and G6PD genes, leaving intact the alternative IKBKG/NEMO unidirectional promoterA. This promoter, although active in the keratinocytes of the basal dermal layer, is down-regulated during late differentiation. Genomic analysis at the breakpoint sites indicated that other mutational forces, such as non-homologous end joining, Alu-Alu-mediated recombination and replication-based events, might enhance the vulnerability of the IP locus to produce de novo pathological IP alleles.

Capucine Picard - One of the best experts on this subject based on the ideXlab platform.

  • lack of interaction between nemo and sharpin impairs linear ubiquitination and nf κb activation and leads to incontinentia pigmenti
    The Journal of Allergy and Clinical Immunology, 2017
    Co-Authors: Elodie Bal, Alessandra Pescatore, Emmanuel Laplantine, Yamina Hamel, Virginie Dubosclard, Bertrand Boisson, Capucine Picard
    Abstract:

    Background Incontinentia pigmenti (IP; MIM308300) is a severe, male-lethal, X-linked, dominant genodermatosis resulting from loss-of-function mutations in the IKBKG gene encoding nuclear factor κB (NF-κB) essential modulator (NEMO; the regulatory subunit of the IκB kinase [IKK] complex). In 80% of cases of IP, the deletion of exons 4 to 10 leads to the absence of NEMO and total inhibition of NF-κB signaling. Here we describe a new IKBKG mutation responsible for IP resulting in an inactive truncated form of NEMO. Objectives We sought to identify the mechanism or mechanisms by which the truncated NEMO protein inhibits the NF-κB signaling pathway. Methods We sequenced the IKBKG gene in patients with IP and performed complementation and transactivation assays in NEMO-deficient cells. We also used immunoprecipitation assays, immunoblotting, and an in situ proximity ligation assay to characterize the truncated NEMO protein interactions with IKK-α, IKK-β, TNF receptor–associated factor 6, TNF receptor–associated factor 2, receptor-interacting protein 1, Hemo-oxidized iron regulatory protein 2 ligase 1 (HOIL-1), HOIL-1–interacting protein, and SHANK-associated RH domain–interacting protein. Lastly, we assessed NEMO linear ubiquitination using immunoblotting and investigated the formation of NEMO-containing structures (using immunostaining and confocal microscopy) after cell stimulation with IL-1β. Results We identified a novel splice mutation in IKBKG (c.518+2T>G, resulting in an in-frame deletion: p.DelQ134_R256). The mutant NEMO lacked part of the CC1 coiled-coil and HLX2 helical domain. The p.DelQ134_R256 mutation caused inhibition of NF-κB signaling, although the truncated NEMO protein interacted with proteins involved in activation of NF-κB signaling. The IL-1β–induced formation of NEMO-containing structures was impaired in fibroblasts from patients with IP carrying the truncated NEMO form (as also observed in HOIL-1 −/− cells). The truncated NEMO interaction with SHANK-associated RH domain–interacting protein was impaired in a male fetus with IP, leading to defective linear ubiquitination. Conclusion We identified a hitherto unreported disease mechanism (defective linear ubiquitination) in patients with IP.

Alessandra Pescatore - One of the best experts on this subject based on the ideXlab platform.

  • lack of interaction between nemo and sharpin impairs linear ubiquitination and nf κb activation and leads to incontinentia pigmenti
    The Journal of Allergy and Clinical Immunology, 2017
    Co-Authors: Elodie Bal, Alessandra Pescatore, Emmanuel Laplantine, Yamina Hamel, Virginie Dubosclard, Bertrand Boisson, Capucine Picard
    Abstract:

    Background Incontinentia pigmenti (IP; MIM308300) is a severe, male-lethal, X-linked, dominant genodermatosis resulting from loss-of-function mutations in the IKBKG gene encoding nuclear factor κB (NF-κB) essential modulator (NEMO; the regulatory subunit of the IκB kinase [IKK] complex). In 80% of cases of IP, the deletion of exons 4 to 10 leads to the absence of NEMO and total inhibition of NF-κB signaling. Here we describe a new IKBKG mutation responsible for IP resulting in an inactive truncated form of NEMO. Objectives We sought to identify the mechanism or mechanisms by which the truncated NEMO protein inhibits the NF-κB signaling pathway. Methods We sequenced the IKBKG gene in patients with IP and performed complementation and transactivation assays in NEMO-deficient cells. We also used immunoprecipitation assays, immunoblotting, and an in situ proximity ligation assay to characterize the truncated NEMO protein interactions with IKK-α, IKK-β, TNF receptor–associated factor 6, TNF receptor–associated factor 2, receptor-interacting protein 1, Hemo-oxidized iron regulatory protein 2 ligase 1 (HOIL-1), HOIL-1–interacting protein, and SHANK-associated RH domain–interacting protein. Lastly, we assessed NEMO linear ubiquitination using immunoblotting and investigated the formation of NEMO-containing structures (using immunostaining and confocal microscopy) after cell stimulation with IL-1β. Results We identified a novel splice mutation in IKBKG (c.518+2T>G, resulting in an in-frame deletion: p.DelQ134_R256). The mutant NEMO lacked part of the CC1 coiled-coil and HLX2 helical domain. The p.DelQ134_R256 mutation caused inhibition of NF-κB signaling, although the truncated NEMO protein interacted with proteins involved in activation of NF-κB signaling. The IL-1β–induced formation of NEMO-containing structures was impaired in fibroblasts from patients with IP carrying the truncated NEMO form (as also observed in HOIL-1 −/− cells). The truncated NEMO interaction with SHANK-associated RH domain–interacting protein was impaired in a male fetus with IP, leading to defective linear ubiquitination. Conclusion We identified a hitherto unreported disease mechanism (defective linear ubiquitination) in patients with IP.

  • eda id and ip two faces of the same coin how the same IKBKG nemo mutation affecting the nf κb pathway can cause immunodeficiency and or inflammation
    International Reviews of Immunology, 2015
    Co-Authors: Francesca R Fusco, Mariateresa Paciolla, Alessandra Pescatore, M B Lioi, Matilde Immacolata Conte, Peppino Mirabelli, Elio Esposito, Matilde Valeria Ursini
    Abstract:

    Anhidrotic Ectodermal Dysplasia with ImmunoDeficiency (EDA-ID, OMIM 300291) and Incontinentia Pigmenti (IP, OMIM 308300) are two rare diseases, caused by mutations of the IKBKG/NEMO gene. The protein NEMO/IKKγ is essential for the NF-κB activation pathway, involved in a variety of physiological and cellular processes, such as immunity, inflammation, cell proliferation, and survival. A wide spectrum of IKBKG/NEMO mutations have been identified so far, and, on the basis of their effect on NF-κB activation, they are considered hypomorphic or amorphic (loss of function) mutations. IKBKG/NEMO hypomorphic mutations, reducing but not abolishing NF-κB activation, have been identified in EDA-ID and IP patients. Instead, the amorphic mutations, abolishing NF-κB activation by complete IKBKG/NEMO gene silencing, cause only IP. Here, we present an overview of IKBKG/NEMO mutations in EDA-ID and IP patients and describe similarities and differences between the clinical/immunophenotypic and genetic aspects, highlighting any T and B lymphocyte defect, and paying particular attention to the cellular and molecular defects that underlie the pathogenesis of both diseases.

  • insight into IKBKG nemo locus report of new mutations and complex genomic rearrangements leading to incontinentia pigmenti disease
    Human Mutation, 2014
    Co-Authors: Matilde Immacolata Conte, Mariateresa Paciolla, Alessandra Pescatore, M B Lioi, Maria Giuseppina Miano, Elio Esposito, Maeve A Mcaleer, Giuliana Giardino, Claudio Pignata, Alan D Irvine
    Abstract:

    Incontinentia pigmenti (IP) is an X-linked-dominant Mendelian disorder caused by mutation in the IKBKG/NEMO gene, encoding for NEMO/IKKgamma, a regulatory protein of nuclear factor kappaB (NF-kB) signaling. In more than 80% of cases, IP is due to recurrent or nonrecurrent deletions causing loss-of-function (LoF) of NEMO/IKKgamma. We review how the local architecture of the IKBKG/NEMO locus with segmental duplication and a high frequency of repetitive elements favor de novo aberrant recombination through different mechanisms producing genomic microdeletion. We report here a new microindel (c.436_471delinsT, p.Val146X) arising through a DNA-replication-repair fork-stalling-and-template-switching and microhomology-mediated-end-joining mechanism in a sporadic IP case. The LoF mutations of IKBKG/NEMO leading to IP include small insertions/deletions (indel) causing frameshift and premature stop codons, which account for 10% of cases. We here present 21 point mutations previously unreported, which further extend the spectrum of pathologic variants: 14/21 predict LoF because of premature stop codon (6/14) or frameshift (8/14), whereas 7/21 predict a partial loss of NEMO/IKKgamma activity (two splicing and five missense). We review how the analysis of IP-associated IKBKG/NEMO hypomorphic mutants has contributed to the understanding of the pathophysiological mechanism of IP disease and has provided important information on affected NF-kB signaling. We built a locus-specific database listing all IKBKG/NEMO variants, accessible at http://IKBKG.lovd.nl.

  • genomic architecture at the incontinentia pigmenti locus favours de novo pathological alleles through different mechanisms
    Human Molecular Genetics, 2012
    Co-Authors: Francesca R Fusco, Asma Smahi, Mariateresa Paciolla, Federico Napolitano, Alessandra Pescatore, Irene Daddario, Elodie Bal, M B Lioi, Maria Giuseppina Miano, Matilde Valeria Ursini
    Abstract:

    IKBKG/NEMO gene mutations cause an X-linked, dominant neuroectodermal disorder named Incontinentia Pigmenti (IP). Located at Xq28, IKBKG/NEMO has a unique genomic organization, as it is part of a segmental duplication or low copy repeat (LCR1-LCR2, >99% identical) containing the gene and its pseudogene copy (IKBKGP). In the opposite direction and outside LCR1, IKBKG/NEMO partially overlaps G6PD, whose mutations cause a common X-linked human enzymopathy. The two LCRs in the IKBKG/NEMO locus are able to recombine through non-allelic homologous recombination producing either a pathological recurrent exon 4-10 IKBKG/NEMO deletion (IKBKGdel) or benign small copy number variations. We here report that the local high frequency of micro/macro-homologies, tandem repeats and repeat/repetitive sequences make the IKBKG/NEMO locus susceptible to novel pathological IP alterations. Indeed, we describe the first two independent instances of inter-locus gene conversion, occurring between the two LCRs, that copies the IKBKGP pseudogene variants into the functional IKBKG/NEMO, causing the de novo occurrence of p.Glu390ArgfsX61 and the IKBKGdel mutations, respectively. Subsequently, by investigating a group of 20 molecularly unsolved IP subjects using a high-density quantitative polymerase chain reaction assay, we have identified seven unique de novo deletions varying from 4.8 to ∼115 kb in length. Each deletion removes partially or completely both IKBKG/NEMO and the overlapping G6PD, thereby uncovering the first deletions disrupting the G6PD gene which were found in patients with IP. Interestingly, the 4.8 kb deletion removes the conserved bidirectional promoterB, shared by the two overlapping IKBKG/NEMO and G6PD genes, leaving intact the alternative IKBKG/NEMO unidirectional promoterA. This promoter, although active in the keratinocytes of the basal dermal layer, is down-regulated during late differentiation. Genomic analysis at the breakpoint sites indicated that other mutational forces, such as non-homologous end joining, Alu-Alu-mediated recombination and replication-based events, might enhance the vulnerability of the IP locus to produce de novo pathological IP alleles.

  • alterations of the IKBKG locus and diseases an update and a report of 13 novel mutations
    Human Mutation, 2008
    Co-Authors: Francesca R Fusco, Christine Bodemer, Mariateresa Paciolla, Alessandra Pescatore, Elodie Bal, M B Lioi, Aida Ghoul, Michele Durso, Smail Hadj Rabia, Jeanpaul Bonnefont
    Abstract:

    Mutations in the inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma (IKBKG), also called nuclear factor-kappaB (NF-kB) essential modulator (NEMO), gene are the most common single cause of incontinentia pigmenti (IP) in females and anhydrotic ectodermal dysplasia with immunodeficiency (EDA-ID) in males. The IKBKG gene, located in the Xq28 chromosomal region, encodes for the regulatory subunit of the inhibitor of kappaB (IkB) kinase (IKK) complex required for the activation of the NF-kB pathway. Therefore, the remarkably heterogeneous and often severe clinical presentation reported in IP is due to the pleiotropic role of this signaling transcription pathway. A recurrent exon 4_10 genomic rearrangement in the IKBKG gene accounts for 60 to 80% of IP-causing mutations. Besides the IKBKG rearrangement found in IP females (which is lethal in males), a total of 69 different small mutations (missense, frameshift, nonsense, and splice-site mutations) have been reported, including 13 novel ones in this work. The updated distribution of all the IP- and EDA-ID-causing mutations along the IKBKG gene highlights a secondary hotspot mutation in exon 10, which contains only 11% of the protein. Furthermore, familial inheritance analysis revealed an unexpectedly high incidence of sporadic cases (465%). The sum of the observations can aid both in determining the molecular basis of IP and EDA-ID allelic diseases, and in genetic counseling in affected families. Hum Mutat 29(5), 595–604, 2008. r 2008 Wiley-Liss, Inc.

Francesca R Fusco - One of the best experts on this subject based on the ideXlab platform.

  • cognitive behavioural phenotype in a group of girls from 1 2 to 12 years old with the incontinentia pigmenti syndrome recommendations for clinical management
    Applied neuropsychology. Child, 2017
    Co-Authors: Maria Rosa Pizzamiglio, Francesca R Fusco, Laura Piccardi, Filippo Bianchini, Loredana Canzano, Liana Palermo, Giovanni Dantuono, Chiara Gelmini, Livia Garavelli, Matilde Valeria Ursini
    Abstract:

    Incontinentia Pigmenti (IP, OMIM#308300) is a rare X-linked genomic disorder (about 1,400 cases) that affects the neuroectodermal tissue and Central Nervous System (CNS). The objective of this study was to describe the cognitive-behavioural profile in children in order to plan a clinical intervention to improve their quality of life. A total of 14 girls (age range: from 1 year and 2 months to 12 years and 10 months) with IP and the IKBKG/NEMO gene deletion were submitted to a cognitive assessment including intelligence scales, language and visuo-spatial competence tests, learning ability tests, and a behavioural assessment. Five girls had severe to mild intellectual deficiencies and the remaining nine had a normal neurodevelopment. Four girls were of school age and two of these showed no intellectual disability, but had specific disabilities in calculation and arithmetic reasoning. This is the first description of the cognitive-behavioural profile in relation to developmental age. We stress the importance of an early assessment of learning abilities in individuals with IP without intellectual deficiencies to prevent the onset of any such deficit.

  • unusual father to daughter transmission of incontinentia pigmenti due to mosaicism in ip males
    Pediatrics, 2017
    Co-Authors: Francesca R Fusco, Matilde Immacolata Conte, Andrea Diociaiuti, Stefania Bigoni, Maria Francesca Branda, Alessandra Ferlini, Maya El Hachem, Matilde Valeria Ursini
    Abstract:

    Incontinentia pigmenti (IP; Online Mendelian Inheritance in Man catalog #308300) is an X-linked dominant ectodermal disorder caused by mutations of the inhibitor of κ polypeptide gene enchancer in B cells, kinase γ (IKBKG)/ nuclear factor κB, essential modulator (NEMO) gene. Hemizygous IKBKG/NEMO loss-of-function (LoF) mutations are lethal in males, thus patients are female, and the disease is always transmitted from an IP-affected mother to her daughter. We present 2 families with father-to-daughter transmission of IP and provide for the first time molecular evidence that the combination of somatic and germ-line mosaicism for IKBKG/NEMO loss of function mutations in IP males resulted in the transmission of the disease to a female child. We searched for the IKBKG/NEMO mutant allele in blood, urine, skin, and sperm DNA and found that the 2 fathers were somatic and germ-line mosaics for the p.Gln132×mutation or the exon 4-10 deletion of IKBKG/NEMO, respectively. The highest level of IKBKG/NEMO mutant cells was detected in the sperm, which might explain the recurrence of the disease. We therefore recommend careful clinical evaluation in IP male cases and the genetic investigation in sperm DNA to ensure correct genetic counseling and prevent the risk of paternal transmission of IP.

  • eda id and ip two faces of the same coin how the same IKBKG nemo mutation affecting the nf κb pathway can cause immunodeficiency and or inflammation
    International Reviews of Immunology, 2015
    Co-Authors: Francesca R Fusco, Mariateresa Paciolla, Alessandra Pescatore, M B Lioi, Matilde Immacolata Conte, Peppino Mirabelli, Elio Esposito, Matilde Valeria Ursini
    Abstract:

    Anhidrotic Ectodermal Dysplasia with ImmunoDeficiency (EDA-ID, OMIM 300291) and Incontinentia Pigmenti (IP, OMIM 308300) are two rare diseases, caused by mutations of the IKBKG/NEMO gene. The protein NEMO/IKKγ is essential for the NF-κB activation pathway, involved in a variety of physiological and cellular processes, such as immunity, inflammation, cell proliferation, and survival. A wide spectrum of IKBKG/NEMO mutations have been identified so far, and, on the basis of their effect on NF-κB activation, they are considered hypomorphic or amorphic (loss of function) mutations. IKBKG/NEMO hypomorphic mutations, reducing but not abolishing NF-κB activation, have been identified in EDA-ID and IP patients. Instead, the amorphic mutations, abolishing NF-κB activation by complete IKBKG/NEMO gene silencing, cause only IP. Here, we present an overview of IKBKG/NEMO mutations in EDA-ID and IP patients and describe similarities and differences between the clinical/immunophenotypic and genetic aspects, highlighting any T and B lymphocyte defect, and paying particular attention to the cellular and molecular defects that underlie the pathogenesis of both diseases.

  • incontinentia pigmenti learning disabilities are a fundamental hallmark of the disease
    PLOS ONE, 2014
    Co-Authors: Maria Rosa Pizzamiglio, Francesca R Fusco, Laura Piccardi, Filippo Bianchini, Loredana Canzano, Liana Palermo, Giovanni Dantuono, Chiara Gelmini, Livia Garavelli, Matilde Valeria Ursini
    Abstract:

    Studies suggest that genetic factors are associated with the etiology of learning disabilities. Incontinentia Pigmenti (IP, OMIM#308300), which is caused by mutations of the IKBKG/NEMO gene, is a rare X-linked genomic disorder (1∶10000/20∶000) that affects the neuroectodermal tissues. It always affects the skin and sometimes the hair, teeth, nails, eyes and central nervous system (CNS). Data from IP patients demonstrate the heterogeneity of the clinical phenotype; about 30% have CNS manifestations. This extreme variability suggests that IP patients might also have learning disabilities. However, no studies in the literature have evaluated the cognitive profile of IP patients. In fact, the learning disability may go unnoticed in general neurological analyses, which focus on major disabling manifestations of the CNS. Here, we investigated the neuropsychological outcomes of a selected group of IP-patients by focusing on learning disabilities. We enrolled 10 women with IP (7 without mental retardation and 3 with mild to severe mental retardation) whose clinical diagnosis had been confirmed by the presence of a recurrent deletion in the IKBKG/NEMO gene. The participants were recruited from the Italian patients' association (I.P.A.SS.I. Onlus). They were submitted to a cognitive assessment that included the Wechsler Adult Intelligence scale and a battery of tests examining reading, arithmetic and writing skills. We found that 7 patients had deficits in calculation/arithmetic reasoning and reading but not writing skills; the remaining 3 had severe to mild intellectual disabilities. Results of this comprehensive evaluation of the molecular and psychoneurological aspects of IP make it possible to place “learning disabilities” among the CNS manifestations of the disease and suggest that the IKBKG/NEMO gene is a genetic determinant of this CNS defect. Our findings indicate the importance of an appropriate psychoneurological evaluation of IP patients, which includes early assessment of learning abilities, to prevent the onset of this deficit.

  • genomic architecture at the incontinentia pigmenti locus favours de novo pathological alleles through different mechanisms
    Human Molecular Genetics, 2012
    Co-Authors: Francesca R Fusco, Asma Smahi, Mariateresa Paciolla, Federico Napolitano, Alessandra Pescatore, Irene Daddario, Elodie Bal, M B Lioi, Maria Giuseppina Miano, Matilde Valeria Ursini
    Abstract:

    IKBKG/NEMO gene mutations cause an X-linked, dominant neuroectodermal disorder named Incontinentia Pigmenti (IP). Located at Xq28, IKBKG/NEMO has a unique genomic organization, as it is part of a segmental duplication or low copy repeat (LCR1-LCR2, >99% identical) containing the gene and its pseudogene copy (IKBKGP). In the opposite direction and outside LCR1, IKBKG/NEMO partially overlaps G6PD, whose mutations cause a common X-linked human enzymopathy. The two LCRs in the IKBKG/NEMO locus are able to recombine through non-allelic homologous recombination producing either a pathological recurrent exon 4-10 IKBKG/NEMO deletion (IKBKGdel) or benign small copy number variations. We here report that the local high frequency of micro/macro-homologies, tandem repeats and repeat/repetitive sequences make the IKBKG/NEMO locus susceptible to novel pathological IP alterations. Indeed, we describe the first two independent instances of inter-locus gene conversion, occurring between the two LCRs, that copies the IKBKGP pseudogene variants into the functional IKBKG/NEMO, causing the de novo occurrence of p.Glu390ArgfsX61 and the IKBKGdel mutations, respectively. Subsequently, by investigating a group of 20 molecularly unsolved IP subjects using a high-density quantitative polymerase chain reaction assay, we have identified seven unique de novo deletions varying from 4.8 to ∼115 kb in length. Each deletion removes partially or completely both IKBKG/NEMO and the overlapping G6PD, thereby uncovering the first deletions disrupting the G6PD gene which were found in patients with IP. Interestingly, the 4.8 kb deletion removes the conserved bidirectional promoterB, shared by the two overlapping IKBKG/NEMO and G6PD genes, leaving intact the alternative IKBKG/NEMO unidirectional promoterA. This promoter, although active in the keratinocytes of the basal dermal layer, is down-regulated during late differentiation. Genomic analysis at the breakpoint sites indicated that other mutational forces, such as non-homologous end joining, Alu-Alu-mediated recombination and replication-based events, might enhance the vulnerability of the IP locus to produce de novo pathological IP alleles.

Elodie Bal - One of the best experts on this subject based on the ideXlab platform.

  • lack of interaction between nemo and sharpin impairs linear ubiquitination and nf κb activation and leads to incontinentia pigmenti
    The Journal of Allergy and Clinical Immunology, 2017
    Co-Authors: Elodie Bal, Alessandra Pescatore, Emmanuel Laplantine, Yamina Hamel, Virginie Dubosclard, Bertrand Boisson, Capucine Picard
    Abstract:

    Background Incontinentia pigmenti (IP; MIM308300) is a severe, male-lethal, X-linked, dominant genodermatosis resulting from loss-of-function mutations in the IKBKG gene encoding nuclear factor κB (NF-κB) essential modulator (NEMO; the regulatory subunit of the IκB kinase [IKK] complex). In 80% of cases of IP, the deletion of exons 4 to 10 leads to the absence of NEMO and total inhibition of NF-κB signaling. Here we describe a new IKBKG mutation responsible for IP resulting in an inactive truncated form of NEMO. Objectives We sought to identify the mechanism or mechanisms by which the truncated NEMO protein inhibits the NF-κB signaling pathway. Methods We sequenced the IKBKG gene in patients with IP and performed complementation and transactivation assays in NEMO-deficient cells. We also used immunoprecipitation assays, immunoblotting, and an in situ proximity ligation assay to characterize the truncated NEMO protein interactions with IKK-α, IKK-β, TNF receptor–associated factor 6, TNF receptor–associated factor 2, receptor-interacting protein 1, Hemo-oxidized iron regulatory protein 2 ligase 1 (HOIL-1), HOIL-1–interacting protein, and SHANK-associated RH domain–interacting protein. Lastly, we assessed NEMO linear ubiquitination using immunoblotting and investigated the formation of NEMO-containing structures (using immunostaining and confocal microscopy) after cell stimulation with IL-1β. Results We identified a novel splice mutation in IKBKG (c.518+2T>G, resulting in an in-frame deletion: p.DelQ134_R256). The mutant NEMO lacked part of the CC1 coiled-coil and HLX2 helical domain. The p.DelQ134_R256 mutation caused inhibition of NF-κB signaling, although the truncated NEMO protein interacted with proteins involved in activation of NF-κB signaling. The IL-1β–induced formation of NEMO-containing structures was impaired in fibroblasts from patients with IP carrying the truncated NEMO form (as also observed in HOIL-1 −/− cells). The truncated NEMO interaction with SHANK-associated RH domain–interacting protein was impaired in a male fetus with IP, leading to defective linear ubiquitination. Conclusion We identified a hitherto unreported disease mechanism (defective linear ubiquitination) in patients with IP.

  • severe neuroimaging anomalies are usually associated with random x inactivation in leucocytes circulating dna in x linked dominant incontinentia pigmenti
    Molecular Genetics and Metabolism, 2017
    Co-Authors: Volodia Dangouloffros, S Hadjrabia, Elodie Bal, Judite Oliveira Santos, Isabelle Desguerre, Manoelle Kossorotoff, Asma Smahi
    Abstract:

    Abstract Incontinentia Pigmenti (IP) is a skin disorder with neurological impairment in 30% of cases. The most common disease causing mutation is a deletion of exons 4-10 of the IKBKG gene, located on chromosome Xq28, with skewed X-chromosome inactivation in females, but few cases of random X-inactivation have been reported. We have correlated brain anomalies with X-chromosome inactivation status determined on leucocytes circulating DNA. We reviewed MRI of 18 girls with genetically proven IP. We found three patterns of MRI, normal MRI ( n  = 5), mild white matter abnormalities with cortical and corpus callosum atrophy ( n  = 6), and severe cortical abnormalities suggesting a vascular disease ( n  = 7). Most patients with severe abnormalities had random X-inactivation (6/7,86%), while 80% (4/5) of patients with normal MRI and 100% (6/6) of patients with mild white matter abnormalities had skewed inactivation. These results suggest that skewed chromosome X-inactivation may protect brain from damage, while in case of random inactivation, expression of the mutated IKBKG gene may lead to severe brain lesions.

  • genomic architecture at the incontinentia pigmenti locus favours de novo pathological alleles through different mechanisms
    Human Molecular Genetics, 2012
    Co-Authors: Francesca R Fusco, Asma Smahi, Mariateresa Paciolla, Federico Napolitano, Alessandra Pescatore, Irene Daddario, Elodie Bal, M B Lioi, Maria Giuseppina Miano, Matilde Valeria Ursini
    Abstract:

    IKBKG/NEMO gene mutations cause an X-linked, dominant neuroectodermal disorder named Incontinentia Pigmenti (IP). Located at Xq28, IKBKG/NEMO has a unique genomic organization, as it is part of a segmental duplication or low copy repeat (LCR1-LCR2, >99% identical) containing the gene and its pseudogene copy (IKBKGP). In the opposite direction and outside LCR1, IKBKG/NEMO partially overlaps G6PD, whose mutations cause a common X-linked human enzymopathy. The two LCRs in the IKBKG/NEMO locus are able to recombine through non-allelic homologous recombination producing either a pathological recurrent exon 4-10 IKBKG/NEMO deletion (IKBKGdel) or benign small copy number variations. We here report that the local high frequency of micro/macro-homologies, tandem repeats and repeat/repetitive sequences make the IKBKG/NEMO locus susceptible to novel pathological IP alterations. Indeed, we describe the first two independent instances of inter-locus gene conversion, occurring between the two LCRs, that copies the IKBKGP pseudogene variants into the functional IKBKG/NEMO, causing the de novo occurrence of p.Glu390ArgfsX61 and the IKBKGdel mutations, respectively. Subsequently, by investigating a group of 20 molecularly unsolved IP subjects using a high-density quantitative polymerase chain reaction assay, we have identified seven unique de novo deletions varying from 4.8 to ∼115 kb in length. Each deletion removes partially or completely both IKBKG/NEMO and the overlapping G6PD, thereby uncovering the first deletions disrupting the G6PD gene which were found in patients with IP. Interestingly, the 4.8 kb deletion removes the conserved bidirectional promoterB, shared by the two overlapping IKBKG/NEMO and G6PD genes, leaving intact the alternative IKBKG/NEMO unidirectional promoterA. This promoter, although active in the keratinocytes of the basal dermal layer, is down-regulated during late differentiation. Genomic analysis at the breakpoint sites indicated that other mutational forces, such as non-homologous end joining, Alu-Alu-mediated recombination and replication-based events, might enhance the vulnerability of the IP locus to produce de novo pathological IP alleles.

  • alterations of the IKBKG locus and diseases an update and a report of 13 novel mutations
    Human Mutation, 2008
    Co-Authors: Francesca R Fusco, Christine Bodemer, Mariateresa Paciolla, Alessandra Pescatore, Elodie Bal, M B Lioi, Aida Ghoul, Michele Durso, Smail Hadj Rabia, Jeanpaul Bonnefont
    Abstract:

    Mutations in the inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma (IKBKG), also called nuclear factor-kappaB (NF-kB) essential modulator (NEMO), gene are the most common single cause of incontinentia pigmenti (IP) in females and anhydrotic ectodermal dysplasia with immunodeficiency (EDA-ID) in males. The IKBKG gene, located in the Xq28 chromosomal region, encodes for the regulatory subunit of the inhibitor of kappaB (IkB) kinase (IKK) complex required for the activation of the NF-kB pathway. Therefore, the remarkably heterogeneous and often severe clinical presentation reported in IP is due to the pleiotropic role of this signaling transcription pathway. A recurrent exon 4_10 genomic rearrangement in the IKBKG gene accounts for 60 to 80% of IP-causing mutations. Besides the IKBKG rearrangement found in IP females (which is lethal in males), a total of 69 different small mutations (missense, frameshift, nonsense, and splice-site mutations) have been reported, including 13 novel ones in this work. The updated distribution of all the IP- and EDA-ID-causing mutations along the IKBKG gene highlights a secondary hotspot mutation in exon 10, which contains only 11% of the protein. Furthermore, familial inheritance analysis revealed an unexpectedly high incidence of sporadic cases (465%). The sum of the observations can aid both in determining the molecular basis of IP and EDA-ID allelic diseases, and in genetic counseling in affected families. Hum Mutat 29(5), 595–604, 2008. r 2008 Wiley-Liss, Inc.