Isochrysidales

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 171 Experts worldwide ranked by ideXlab platform

Yongsong Huang - One of the best experts on this subject based on the ideXlab platform.

  • Group 2i Isochrysidales produce characteristic alkenones reflecting sea ice distribution
    Nature Communications, 2021
    Co-Authors: Karen Jiaxi Wang, Yongsong Huang, Nora Richter, Sian Liao, Markus Majaneva, Simon T. Belt, Tyler R. Kartzinel, Timothy D. Herbert, Joseph Novak, Patricia Cabedo-sanz
    Abstract:

    Alkenones are biomarkers produced solely by algae in the order Isochrysidales that have been used to reconstruct sea surface temperature (SST) since the 1980s. However, alkenone-based SST reconstructions in the northern high latitude oceans show significant bias towards warmer temperatures in core-tops, diverge from other SST proxies in down core records, and are often accompanied by anomalously high relative abundance of the C_37 tetra-unsaturated methyl alkenone (%C_37:4). Elevated %C_37:4 is widely interpreted as an indicator of low sea surface salinity from polar water masses, but its biological source has thus far remained elusive. Here we identify a lineage of Isochrysidales that is responsible for elevated C_37:4 methyl alkenone in the northern high latitude oceans through next-generation sequencing and lab-culture experiments. This Isochrysidales lineage co-occurs widely with sea ice in marine environments and is distinct from other known marine alkenone-producers, namely Emiliania huxleyi and Gephyrocapsa oceanica . More importantly, the %C_37:4 in seawater filtered particulate organic matter and surface sediments is significantly correlated with annual mean sea ice concentrations. In sediment cores from the Svalbard region, the %C_37:4 concentration aligns with the Greenland temperature record and other qualitative regional sea ice records spanning the past 14 kyrs, reflecting sea ice concentrations quantitatively. Our findings imply that %C_37:4 is a powerful proxy for reconstructing sea ice conditions in the high latitude oceans on thousand- and, potentially, on million-year timescales. Some algae produce compounds called alkenones that can reconstruct sea surface temperature through geological time, but in high latitudes unknown species complicate use of this proxy. Here the authors find a lineage of sea ice algae that produces alkenones and can be used as a paleo-sensor for sea ice abundance.

  • Group 2i Isochrysidales produce characteristic alkenones reflecting sea ice distribution.
    Nature communications, 2021
    Co-Authors: Karen Jiaxi Wang, Yongsong Huang, Nora Richter, Sian Liao, Markus Majaneva, Simon T. Belt, Joseph B. Novak, Tyler R. Kartzinel, Timothy D. Herbert, Patricia Cabedo-sanz
    Abstract:

    Alkenones are biomarkers produced solely by algae in the order Isochrysidales that have been used to reconstruct sea surface temperature (SST) since the 1980s. However, alkenone-based SST reconstructions in the northern high latitude oceans show significant bias towards warmer temperatures in core-tops, diverge from other SST proxies in down core records, and are often accompanied by anomalously high relative abundance of the C37 tetra-unsaturated methyl alkenone (%C37:4). Elevated %C37:4 is widely interpreted as an indicator of low sea surface salinity from polar water masses, but its biological source has thus far remained elusive. Here we identify a lineage of Isochrysidales that is responsible for elevated C37:4 methyl alkenone in the northern high latitude oceans through next-generation sequencing and lab-culture experiments. This Isochrysidales lineage co-occurs widely with sea ice in marine environments and is distinct from other known marine alkenone-producers, namely Emiliania huxleyi and Gephyrocapsa oceanica. More importantly, the %C37:4 in seawater filtered particulate organic matter and surface sediments is significantly correlated with annual mean sea ice concentrations. In sediment cores from the Svalbard region, the %C37:4 concentration aligns with the Greenland temperature record and other qualitative regional sea ice records spanning the past 14 kyrs, reflecting sea ice concentrations quantitatively. Our findings imply that %C37:4 is a powerful proxy for reconstructing sea ice conditions in the high latitude oceans on thousand- and, potentially, on million-year timescales.

  • Cold season warming in the North Atlantic during the last 2000 years: Evidence from Southwest Iceland
    2020
    Co-Authors: Nora Richter, James M. Russell, Johanna Garfinkel, Yongsong Huang
    Abstract:

    Abstract. Temperature reconstructions from the Northern Hemisphere (NH) generally indicate cooling over the Holocene which is often attributed to decreasing summer insolation. However, climate model simulations predict that rising atmospheric CO2 concentrations and the collapse of the Laurentian ice sheet caused mean annual warming during this epoch. This contrast could reflect a bias in temperature proxies, and particularly a lack of proxies that record cold (late fall–early spring) season temperatures, or inaccuracies in climate model predictions of NH temperature. We reconstructed winter–spring temperatures during the Common Era (i.e. the last 2000 years) using alkenones, lipids produced by Isochrysidales haptophyte algae that bloom during spring ice-off, preserved in sediments from Vestra Gislholtsvatn (VGHV), southwest Iceland. Our record indicates cold-season temperatures warmed during the last 2000 years, in contrast to NH averages. Sensitivity tests with a lake energy balance model show that this warming is likely driven by increasing winter–spring insolation. We also found distinct seasonal differences in centennial-scale, cold-season temperature variations in VGHV compared to existing records of summer and annual temperatures from Iceland. Sustained or abrupt cooling in VGHV temperatures are associated with the cumulative effects of solar minima and volcanic eruptions, and potentially ocean and sea-ice feedbacks associated with cooling in the broader Arctic. However, multi-decadal to centennial-scale changes in cold season temperatures were strongly modulated by internal climate variability, i.e. the North Atlantic Oscillation, which can result in winter warming in Iceland even after a major negative radiative perturbation.

  • C41 methyl and C42 ethyl alkenones are biomarkers for Group II Isochrysidales
    Organic Geochemistry, 2020
    Co-Authors: Sian Liao, William M. Longo, Linda A. Amaral-zettler, Yuan Yao, Li Wang, Karen J. Wang, Yongsong Huang
    Abstract:

    Abstract Alkenones are polyunsaturated long-chain methyl or ethyl ketones produced by species in the Isochrysidales, an order of haptophyte algae. Based on phylogenetic data, members of the Isochrysidales have been classified into three groups with each group showing significant differences in alkenone profiles and preferred growth environments. Common carbon chain lengths of alkenones range from 37 to 40. Extended C41 methyl (C41Me) and C42 ethyl (C42Et) alkenones have been reported in hypersaline lakes in China (Lake Alahake and Lake Balikun), Canada (Lake Snakehole) and marine sediments (e.g., ∼95 Ma in Blake-Bahama Basin). It is unclear, however, if these extended alkenones are produced by one or more groups of Isochrysidales. Here, we systematically examined alkenones from cultures of Group II (Isochrysis nuda, Isochrysis litoralis, Ruttnera lamellosa, Isochrysis galbana and Tisochrysis lutea) and Group III (Emiliania huxleyi and Gephyrocapsa oceanica) Isochrysidales and environmental samples of Group I Isochysidales. C41Me and C42Et alkenones were found in all Group II species with Isochrysis nuda producing the highest percentages, but not in alkenones produced by Group I nor Group III Isochrysidales. Our results indicate that extended C41Me and C42Et alkenones are specific biomarkers for Group II Isochrysidales. We also report the first temperature calibrations of alkenones for Isochrysis nuda and Isochrysis litoralis using culture experiments, and find temperatures inferred from extended alkenones in Balikun and Alahake surface sediments match warm-season temperatures based on Isochrysis nuda calibrations, which is further corroborated by genomic data indicating the dominance of Isochrysis nuda Isochrysidales.

  • Phylogenetic diversity in freshwater-dwelling Isochrysidales haptophytes with implications for alkenone production
    Geobiology, 2019
    Co-Authors: Nora Richter, William M. Longo, Yongsong Huang, Sarabeth George, Anna Shipunova, Linda Amaral-zettler
    Abstract:

    Members of the order Isochrysidales are unique among haptophyte lineages in being the exclusive producers of alkenones, long-chain ketones that are commonly used for paleotemperature reconstructions. Alkenone-producing haptophytes are divided into three major groups based largely on molecular ecological data: Group I is found in freshwater lakes, Group II commonly occurs in brackish and coastal marine environments, and Group III consists of open ocean species. Each group has distinct alkenone distributions; however, only Groups II and III Isochrysidales currently have cultured representatives. The uncultured Group I Isochrysidales are distinguished geochemically by the presence of tri-unsaturated alkenone isomers (C37:3b Me, C38:3b Et, C38:3b Me, C39:3b Et) present in water column and sediment samples, yet their genetic diversity, morphology, and environmental controls are largely unknown. Using small-subunit (SSU) ribosomal RNA (rRNA) marker gene amplicon high-throughput sequencing of environmental water column and sediment samples, we show that Group I is monophyletic with high phylogenetic diversity and contains a well-supported clade separating the previously described "EV" clade from the "Greenland" clade. We infer the first partial large-subunit (LSU) rRNA gene Group I sequence phylogeny, which uncovered additional well-supported clades embedded within Group I. Relative to Group II, Group I revealed higher levels of genetic diversity despite conservation of alkenone signatures and a closer evolutionary relationship with Group III. In Group I, the presence of the tri-unsaturated alkenone isomers appears to be conserved, which is not the case for Group II. This suggests differing environmental influences on Group I and II and perhaps uncovers evolutionary constraints on alkenone biosynthesis.

Patricia Cabedo-sanz - One of the best experts on this subject based on the ideXlab platform.

  • Group 2i Isochrysidales produce characteristic alkenones reflecting sea ice distribution.
    Nature communications, 2021
    Co-Authors: Karen Jiaxi Wang, Yongsong Huang, Nora Richter, Sian Liao, Markus Majaneva, Simon T. Belt, Joseph B. Novak, Tyler R. Kartzinel, Timothy D. Herbert, Patricia Cabedo-sanz
    Abstract:

    Alkenones are biomarkers produced solely by algae in the order Isochrysidales that have been used to reconstruct sea surface temperature (SST) since the 1980s. However, alkenone-based SST reconstructions in the northern high latitude oceans show significant bias towards warmer temperatures in core-tops, diverge from other SST proxies in down core records, and are often accompanied by anomalously high relative abundance of the C37 tetra-unsaturated methyl alkenone (%C37:4). Elevated %C37:4 is widely interpreted as an indicator of low sea surface salinity from polar water masses, but its biological source has thus far remained elusive. Here we identify a lineage of Isochrysidales that is responsible for elevated C37:4 methyl alkenone in the northern high latitude oceans through next-generation sequencing and lab-culture experiments. This Isochrysidales lineage co-occurs widely with sea ice in marine environments and is distinct from other known marine alkenone-producers, namely Emiliania huxleyi and Gephyrocapsa oceanica. More importantly, the %C37:4 in seawater filtered particulate organic matter and surface sediments is significantly correlated with annual mean sea ice concentrations. In sediment cores from the Svalbard region, the %C37:4 concentration aligns with the Greenland temperature record and other qualitative regional sea ice records spanning the past 14 kyrs, reflecting sea ice concentrations quantitatively. Our findings imply that %C37:4 is a powerful proxy for reconstructing sea ice conditions in the high latitude oceans on thousand- and, potentially, on million-year timescales.

  • Group 2i Isochrysidales produce characteristic alkenones reflecting sea ice distribution
    Nature Communications, 2021
    Co-Authors: Karen Jiaxi Wang, Yongsong Huang, Nora Richter, Sian Liao, Markus Majaneva, Simon T. Belt, Tyler R. Kartzinel, Timothy D. Herbert, Joseph Novak, Patricia Cabedo-sanz
    Abstract:

    Alkenones are biomarkers produced solely by algae in the order Isochrysidales that have been used to reconstruct sea surface temperature (SST) since the 1980s. However, alkenone-based SST reconstructions in the northern high latitude oceans show significant bias towards warmer temperatures in core-tops, diverge from other SST proxies in down core records, and are often accompanied by anomalously high relative abundance of the C_37 tetra-unsaturated methyl alkenone (%C_37:4). Elevated %C_37:4 is widely interpreted as an indicator of low sea surface salinity from polar water masses, but its biological source has thus far remained elusive. Here we identify a lineage of Isochrysidales that is responsible for elevated C_37:4 methyl alkenone in the northern high latitude oceans through next-generation sequencing and lab-culture experiments. This Isochrysidales lineage co-occurs widely with sea ice in marine environments and is distinct from other known marine alkenone-producers, namely Emiliania huxleyi and Gephyrocapsa oceanica . More importantly, the %C_37:4 in seawater filtered particulate organic matter and surface sediments is significantly correlated with annual mean sea ice concentrations. In sediment cores from the Svalbard region, the %C_37:4 concentration aligns with the Greenland temperature record and other qualitative regional sea ice records spanning the past 14 kyrs, reflecting sea ice concentrations quantitatively. Our findings imply that %C_37:4 is a powerful proxy for reconstructing sea ice conditions in the high latitude oceans on thousand- and, potentially, on million-year timescales. Some algae produce compounds called alkenones that can reconstruct sea surface temperature through geological time, but in high latitudes unknown species complicate use of this proxy. Here the authors find a lineage of sea ice algae that produces alkenones and can be used as a paleo-sensor for sea ice abundance.

Shoko Fujiwara - One of the best experts on this subject based on the ideXlab platform.

  • Pleurochrysome: A Web Database of Pleurochrysis Transcripts and Orthologs Among Heterogeneous Algae
    Plant & cell physiology, 2016
    Co-Authors: Naoki Yamamoto, Shoko Fujiwara, Toru Kudo, Yukiko Takatsuka, Yasutaka Hirokawa, Mikio Tsuzuki, Tomoyuki Takano, Masaaki Kobayashi, Kunihiro Suda, Erika Asamizu
    Abstract:

    Pleurochrysis is a coccolithophorid genus, which belongs to the Coccolithales in the Haptophyta. The genus has been used extensively for biological research, together with Emiliania in the Isochrysidales, to understand distinctive features between the two coccolithophorid-including orders. However, molecular biological research on Pleurochrysis such as elucidation of the molecular mechanism behind coccolith formation has not made great progress at least in part because of lack of comprehensive gene information. To provide such information to the research community, we built an open web database, the Pleurochrysome (http://bioinf.mind.meiji.ac.jp/phapt/), which currently stores 9,023 unique gene sequences (designated as UNIGENEs) assembled from expressed sequence tag sequences of P. haptonemofera as core information. The UNIGENEs were annotated with gene sequences sharing significant homology, conserved domains, Gene Ontology, KEGG Orthology, predicted subcellular localization, open reading frames and orthologous relationship with genes of 10 other algal species, a cyanobacterium and the yeast Saccharomyces cerevisiae. This sequence and annotation information can be easily accessed via several search functions. Besides fundamental functions such as BLAST and keyword searches, this database also offers search functions to explore orthologous genes in the 12 organisms and to seek novel genes. The Pleurochrysome will promote molecular biological and phylogenetic research on coccolithophorids and other haptophytes by helping scientists mine data from the primary transcriptome of P. haptonemofera.

  • Pleurochrysome: A Web Database of Pleurochrysis Transcripts and Orthologs Among Heterogeneous Algae
    2015
    Co-Authors: Naoki Yamamoto, Shoko Fujiwara, Toru Kudo, Yukiko Takatsuka, Yasutaka Hirokawa, Mikio Tsuzuki, Tomoyuki Takano, Masaaki Kobayashi, Kunihiro Suda, Erika Asamizu
    Abstract:

    Pleurochrysis is a coccolithophorid genus, which belongs to the Coccolithales in the Haptophyta. The genus has been used extensively for biological research, together with Emiliania in the Isochrysidales, to understand distinctive fea-tures between the two coccolithophorid-including orders. However, molecular biological research on Pleurochrysis such as elucidation of the molecular mechanism behind coccolith formation has not made great progress at least in part because of lack of comprehensive gene information. To provide such information to the research community, we built an open web database, the Pleurochrysom

  • MOLECULAR PHYLOGENY OF THE HAPTOPHYTA BASED ON THE rbcL GENE AND SEQUENCE VARIATION IN THE SPACER REGION OF THE RUBISCO OPERON
    Journal of Phycology, 2001
    Co-Authors: Shoko Fujiwara, Nobuhiro Minaka, Masanobu Kawachi, Mikio Tsuzuki, Isao Inouye
    Abstract:

    A phylogeny of 21 haptophyte algae was inferred by maximum parsimony, neighbor-joining, and maximum likelihood analyses of sequences of the plastid-encoded gene, rbcL. Sequence variation in the spacer region of the RUBISCO operon was also investigated. In all the rbcL trees constructed, the haptophytes form two distinct clades: one includes the Pavlovales and the other includes the Prymnesiales, Coccosphaerales, and Isochrysidales (all sensuParke and Green 1976. This relationship coincides with the recent taxonomic treatment splitting the division into two subclasses, the Prymnesidae and Pavlovidae (Cavalier-Smith 1989) or the Prymnesiophycidae and the Pavlovophycidae using botanical suffixes ( Jordan and Green 1994), or into two classes, the Patelliferea and the Pavlovea (Cavalier-Smith 1993). In the Prymnesiophycidae, all the coccolithophorids examined are placed in a single clade, which suggests a single origin of the coccolithophorids and the ability of coccolith formation in the haptophytes. The genus Chrysochromulina is polyphyletic. Species of Chrysochromulina with a very long haptonema and a compressed cell body (typical of species including the type C. parva Lackey) form a clade, including Imantonia, that is often classified in the Isochrysidales in the neighbor-joining tree, whereas some species possessing a nontypical cell body and cell covering form a clade with Prymnesium and Platychrysis in all trees. It is suggested that loss of the haptonema in Imantonia and the reduction in Prymnesium and Platychrysis occurred secondarily and independently in two different lineages. Within the coccolithophorids, four clades are recognized: Pleurochrysis, Calyptrosphaera-Cruciplacolithus-Calcidiscus-Umbilicosphaera, Helicosphaera, and Emiliania-Gephyrocapsa. A non-coccolith-bearing haptophyte, Isochrysis, is an ingroup of the Emiliania-Gephyrocapsa clade, suggesting its secondary loss of the ability to form a coccolith. Sequence comparison of the spacer region of RUBISCO operon supports most results obtained in the analysis of rbcL sequences. Monophyly of the Prymnesiales sensu Parke and Green is still unclear because of low (

  • MOLECULAR PHYLOGENETIC ANALYSIS OF rbcL IN THE PRYMNESIOPHYTA1
    Journal of Phycology, 1994
    Co-Authors: Shoko Fujiwara, Mitsuhiro Sawada, Junichiro Someya, Nobuhiro Minaka, Masanobu Kawachi, Isao Inouye
    Abstract:

    The nucleotide sequences of rbcL genes encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) were determined from six species of Prymnesiophyta to clarify their phylogenetic relationships. Molecular phylogenetic trees were constructed using PAUP (Phylogenetic Analysis Using Parsimony). These analyses suggest that the Prymnesiophyta, except for the Pavlovales, area relatively stable monophyletic group. Pleurochrysis carterae, included in the Isochrysidales, is a sister species of a monophyletic group consisting of other members of the Isochrysidales, Gephyrocapsa oceanica and Emiliania huxleyi, members of the Coccosphaerales, Calyptrosphaera sphaeroidea and Umbilicosphaera sibogae var. foliosa, and a member of the Prymnesiales, Chrysochromulina hirta. The nucleotide sequence of rbcL from G. oceanica was identical to that from E. huxleyi within the region examined. Our trees show that G. oceanica and E. huxleyi are more closely related to C. hirta than to U. sibogae, C. sphaeroidea, and P. carterae. These results suggest that orders in the Prymnesiophyceae, including the above-mentioned genera, should be redefined.

Nora Richter - One of the best experts on this subject based on the ideXlab platform.

  • Group 2i Isochrysidales produce characteristic alkenones reflecting sea ice distribution
    Nature Communications, 2021
    Co-Authors: Karen Jiaxi Wang, Yongsong Huang, Nora Richter, Sian Liao, Markus Majaneva, Simon T. Belt, Tyler R. Kartzinel, Timothy D. Herbert, Joseph Novak, Patricia Cabedo-sanz
    Abstract:

    Alkenones are biomarkers produced solely by algae in the order Isochrysidales that have been used to reconstruct sea surface temperature (SST) since the 1980s. However, alkenone-based SST reconstructions in the northern high latitude oceans show significant bias towards warmer temperatures in core-tops, diverge from other SST proxies in down core records, and are often accompanied by anomalously high relative abundance of the C_37 tetra-unsaturated methyl alkenone (%C_37:4). Elevated %C_37:4 is widely interpreted as an indicator of low sea surface salinity from polar water masses, but its biological source has thus far remained elusive. Here we identify a lineage of Isochrysidales that is responsible for elevated C_37:4 methyl alkenone in the northern high latitude oceans through next-generation sequencing and lab-culture experiments. This Isochrysidales lineage co-occurs widely with sea ice in marine environments and is distinct from other known marine alkenone-producers, namely Emiliania huxleyi and Gephyrocapsa oceanica . More importantly, the %C_37:4 in seawater filtered particulate organic matter and surface sediments is significantly correlated with annual mean sea ice concentrations. In sediment cores from the Svalbard region, the %C_37:4 concentration aligns with the Greenland temperature record and other qualitative regional sea ice records spanning the past 14 kyrs, reflecting sea ice concentrations quantitatively. Our findings imply that %C_37:4 is a powerful proxy for reconstructing sea ice conditions in the high latitude oceans on thousand- and, potentially, on million-year timescales. Some algae produce compounds called alkenones that can reconstruct sea surface temperature through geological time, but in high latitudes unknown species complicate use of this proxy. Here the authors find a lineage of sea ice algae that produces alkenones and can be used as a paleo-sensor for sea ice abundance.

  • Group 2i Isochrysidales produce characteristic alkenones reflecting sea ice distribution.
    Nature communications, 2021
    Co-Authors: Karen Jiaxi Wang, Yongsong Huang, Nora Richter, Sian Liao, Markus Majaneva, Simon T. Belt, Joseph B. Novak, Tyler R. Kartzinel, Timothy D. Herbert, Patricia Cabedo-sanz
    Abstract:

    Alkenones are biomarkers produced solely by algae in the order Isochrysidales that have been used to reconstruct sea surface temperature (SST) since the 1980s. However, alkenone-based SST reconstructions in the northern high latitude oceans show significant bias towards warmer temperatures in core-tops, diverge from other SST proxies in down core records, and are often accompanied by anomalously high relative abundance of the C37 tetra-unsaturated methyl alkenone (%C37:4). Elevated %C37:4 is widely interpreted as an indicator of low sea surface salinity from polar water masses, but its biological source has thus far remained elusive. Here we identify a lineage of Isochrysidales that is responsible for elevated C37:4 methyl alkenone in the northern high latitude oceans through next-generation sequencing and lab-culture experiments. This Isochrysidales lineage co-occurs widely with sea ice in marine environments and is distinct from other known marine alkenone-producers, namely Emiliania huxleyi and Gephyrocapsa oceanica. More importantly, the %C37:4 in seawater filtered particulate organic matter and surface sediments is significantly correlated with annual mean sea ice concentrations. In sediment cores from the Svalbard region, the %C37:4 concentration aligns with the Greenland temperature record and other qualitative regional sea ice records spanning the past 14 kyrs, reflecting sea ice concentrations quantitatively. Our findings imply that %C37:4 is a powerful proxy for reconstructing sea ice conditions in the high latitude oceans on thousand- and, potentially, on million-year timescales.

  • Cold season warming in the North Atlantic during the last 2000 years: Evidence from Southwest Iceland
    2020
    Co-Authors: Nora Richter, James M. Russell, Johanna Garfinkel, Yongsong Huang
    Abstract:

    Abstract. Temperature reconstructions from the Northern Hemisphere (NH) generally indicate cooling over the Holocene which is often attributed to decreasing summer insolation. However, climate model simulations predict that rising atmospheric CO2 concentrations and the collapse of the Laurentian ice sheet caused mean annual warming during this epoch. This contrast could reflect a bias in temperature proxies, and particularly a lack of proxies that record cold (late fall–early spring) season temperatures, or inaccuracies in climate model predictions of NH temperature. We reconstructed winter–spring temperatures during the Common Era (i.e. the last 2000 years) using alkenones, lipids produced by Isochrysidales haptophyte algae that bloom during spring ice-off, preserved in sediments from Vestra Gislholtsvatn (VGHV), southwest Iceland. Our record indicates cold-season temperatures warmed during the last 2000 years, in contrast to NH averages. Sensitivity tests with a lake energy balance model show that this warming is likely driven by increasing winter–spring insolation. We also found distinct seasonal differences in centennial-scale, cold-season temperature variations in VGHV compared to existing records of summer and annual temperatures from Iceland. Sustained or abrupt cooling in VGHV temperatures are associated with the cumulative effects of solar minima and volcanic eruptions, and potentially ocean and sea-ice feedbacks associated with cooling in the broader Arctic. However, multi-decadal to centennial-scale changes in cold season temperatures were strongly modulated by internal climate variability, i.e. the North Atlantic Oscillation, which can result in winter warming in Iceland even after a major negative radiative perturbation.

  • Phylogenetic diversity in freshwater-dwelling Isochrysidales haptophytes with implications for alkenone production
    Geobiology, 2019
    Co-Authors: Nora Richter, William M. Longo, Yongsong Huang, Sarabeth George, Anna Shipunova, Linda Amaral-zettler
    Abstract:

    Members of the order Isochrysidales are unique among haptophyte lineages in being the exclusive producers of alkenones, long-chain ketones that are commonly used for paleotemperature reconstructions. Alkenone-producing haptophytes are divided into three major groups based largely on molecular ecological data: Group I is found in freshwater lakes, Group II commonly occurs in brackish and coastal marine environments, and Group III consists of open ocean species. Each group has distinct alkenone distributions; however, only Groups II and III Isochrysidales currently have cultured representatives. The uncultured Group I Isochrysidales are distinguished geochemically by the presence of tri-unsaturated alkenone isomers (C37:3b Me, C38:3b Et, C38:3b Me, C39:3b Et) present in water column and sediment samples, yet their genetic diversity, morphology, and environmental controls are largely unknown. Using small-subunit (SSU) ribosomal RNA (rRNA) marker gene amplicon high-throughput sequencing of environmental water column and sediment samples, we show that Group I is monophyletic with high phylogenetic diversity and contains a well-supported clade separating the previously described "EV" clade from the "Greenland" clade. We infer the first partial large-subunit (LSU) rRNA gene Group I sequence phylogeny, which uncovered additional well-supported clades embedded within Group I. Relative to Group II, Group I revealed higher levels of genetic diversity despite conservation of alkenone signatures and a closer evolutionary relationship with Group III. In Group I, the presence of the tri-unsaturated alkenone isomers appears to be conserved, which is not the case for Group II. This suggests differing environmental influences on Group I and II and perhaps uncovers evolutionary constraints on alkenone biosynthesis.

Sian Liao - One of the best experts on this subject based on the ideXlab platform.

  • Group 2i Isochrysidales produce characteristic alkenones reflecting sea ice distribution
    Nature Communications, 2021
    Co-Authors: Karen Jiaxi Wang, Yongsong Huang, Nora Richter, Sian Liao, Markus Majaneva, Simon T. Belt, Tyler R. Kartzinel, Timothy D. Herbert, Joseph Novak, Patricia Cabedo-sanz
    Abstract:

    Alkenones are biomarkers produced solely by algae in the order Isochrysidales that have been used to reconstruct sea surface temperature (SST) since the 1980s. However, alkenone-based SST reconstructions in the northern high latitude oceans show significant bias towards warmer temperatures in core-tops, diverge from other SST proxies in down core records, and are often accompanied by anomalously high relative abundance of the C_37 tetra-unsaturated methyl alkenone (%C_37:4). Elevated %C_37:4 is widely interpreted as an indicator of low sea surface salinity from polar water masses, but its biological source has thus far remained elusive. Here we identify a lineage of Isochrysidales that is responsible for elevated C_37:4 methyl alkenone in the northern high latitude oceans through next-generation sequencing and lab-culture experiments. This Isochrysidales lineage co-occurs widely with sea ice in marine environments and is distinct from other known marine alkenone-producers, namely Emiliania huxleyi and Gephyrocapsa oceanica . More importantly, the %C_37:4 in seawater filtered particulate organic matter and surface sediments is significantly correlated with annual mean sea ice concentrations. In sediment cores from the Svalbard region, the %C_37:4 concentration aligns with the Greenland temperature record and other qualitative regional sea ice records spanning the past 14 kyrs, reflecting sea ice concentrations quantitatively. Our findings imply that %C_37:4 is a powerful proxy for reconstructing sea ice conditions in the high latitude oceans on thousand- and, potentially, on million-year timescales. Some algae produce compounds called alkenones that can reconstruct sea surface temperature through geological time, but in high latitudes unknown species complicate use of this proxy. Here the authors find a lineage of sea ice algae that produces alkenones and can be used as a paleo-sensor for sea ice abundance.

  • Group 2i Isochrysidales produce characteristic alkenones reflecting sea ice distribution.
    Nature communications, 2021
    Co-Authors: Karen Jiaxi Wang, Yongsong Huang, Nora Richter, Sian Liao, Markus Majaneva, Simon T. Belt, Joseph B. Novak, Tyler R. Kartzinel, Timothy D. Herbert, Patricia Cabedo-sanz
    Abstract:

    Alkenones are biomarkers produced solely by algae in the order Isochrysidales that have been used to reconstruct sea surface temperature (SST) since the 1980s. However, alkenone-based SST reconstructions in the northern high latitude oceans show significant bias towards warmer temperatures in core-tops, diverge from other SST proxies in down core records, and are often accompanied by anomalously high relative abundance of the C37 tetra-unsaturated methyl alkenone (%C37:4). Elevated %C37:4 is widely interpreted as an indicator of low sea surface salinity from polar water masses, but its biological source has thus far remained elusive. Here we identify a lineage of Isochrysidales that is responsible for elevated C37:4 methyl alkenone in the northern high latitude oceans through next-generation sequencing and lab-culture experiments. This Isochrysidales lineage co-occurs widely with sea ice in marine environments and is distinct from other known marine alkenone-producers, namely Emiliania huxleyi and Gephyrocapsa oceanica. More importantly, the %C37:4 in seawater filtered particulate organic matter and surface sediments is significantly correlated with annual mean sea ice concentrations. In sediment cores from the Svalbard region, the %C37:4 concentration aligns with the Greenland temperature record and other qualitative regional sea ice records spanning the past 14 kyrs, reflecting sea ice concentrations quantitatively. Our findings imply that %C37:4 is a powerful proxy for reconstructing sea ice conditions in the high latitude oceans on thousand- and, potentially, on million-year timescales.

  • C41 methyl and C42 ethyl alkenones are biomarkers for Group II Isochrysidales
    Organic Geochemistry, 2020
    Co-Authors: Sian Liao, William M. Longo, Linda A. Amaral-zettler, Yuan Yao, Li Wang, Karen J. Wang, Yongsong Huang
    Abstract:

    Abstract Alkenones are polyunsaturated long-chain methyl or ethyl ketones produced by species in the Isochrysidales, an order of haptophyte algae. Based on phylogenetic data, members of the Isochrysidales have been classified into three groups with each group showing significant differences in alkenone profiles and preferred growth environments. Common carbon chain lengths of alkenones range from 37 to 40. Extended C41 methyl (C41Me) and C42 ethyl (C42Et) alkenones have been reported in hypersaline lakes in China (Lake Alahake and Lake Balikun), Canada (Lake Snakehole) and marine sediments (e.g., ∼95 Ma in Blake-Bahama Basin). It is unclear, however, if these extended alkenones are produced by one or more groups of Isochrysidales. Here, we systematically examined alkenones from cultures of Group II (Isochrysis nuda, Isochrysis litoralis, Ruttnera lamellosa, Isochrysis galbana and Tisochrysis lutea) and Group III (Emiliania huxleyi and Gephyrocapsa oceanica) Isochrysidales and environmental samples of Group I Isochysidales. C41Me and C42Et alkenones were found in all Group II species with Isochrysis nuda producing the highest percentages, but not in alkenones produced by Group I nor Group III Isochrysidales. Our results indicate that extended C41Me and C42Et alkenones are specific biomarkers for Group II Isochrysidales. We also report the first temperature calibrations of alkenones for Isochrysis nuda and Isochrysis litoralis using culture experiments, and find temperatures inferred from extended alkenones in Balikun and Alahake surface sediments match warm-season temperatures based on Isochrysis nuda calibrations, which is further corroborated by genomic data indicating the dominance of Isochrysis nuda Isochrysidales.