Keratohyalin

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 786 Experts worldwide ranked by ideXlab platform

John P Sundberg - One of the best experts on this subject based on the ideXlab platform.

  • loss of normal profilaggrin and filaggrin in flaky tail ft ft mice an animal model for the filaggrin deficient skin disease ichthyosis vulgaris
    Journal of Investigative Dermatology, 2000
    Co-Authors: Richard B Presland, Philip Fleckman, Dawnalyn Boggess, Patrick S Lewis, Christopher M Hull, John P Sundberg
    Abstract:

    Flaky tail (gene symbol ft) is an autosomal recessive mutation in mice that results in a dry, flaky skin, and annular tail and paw constrictions in the neonatal period. Previous studies demonstrated that the ft mutation maps to the central region of mouse chromosome 3, in the vicinity of the epidermal differentiation complex, a gene locus that includes many nonkeratin genes expressed in epidermis. In this study we report a detailed characterization of the flaky tail mouse. Affected homozygous ft/ft mice exhibit large, disorganized scales on tail and paw skin, marked attenuation of the epidermal granular layer, mild acanthosis, and orthokeratotic hyperkeratosis. Biochemical analysis demonstrated that ft/ft mice lacked normal high molecular profilaggrin (≈ 500 kDa), and instead expressed a lower molecular weight form of profilaggrin (220 kDa) that is not proteolytically processed to profilaggrin intermediates or filaggrin. Mutant mice lacked the large, irregular F-type Keratohyalin granules that contain profilaggrin, and filaggrin was absent from the cornified layers of ft/ft epidermis. The expression of epidermal keratins was unchanged, whereas the cornified envelope proteins involucrin and loricrin were increased in ft/ft epidermis. Cultured ft/ft keratinocytes also synthesized reduced amounts of profilaggrin mRNA and protein, demonstrating that the defect in profilaggrin expression is intrinsic to epidermal cells. These findings demonstrate that flaky tail mice express an abnormal profilaggrin polypeptide that does not form normal Keratohyalin F-granules and is not proteolytically processed to filaggrin. We propose that the absence of filaggrin, and in particular the hygroscopic, filaggrin-derived amino acids that are thought to function in epidermal hydration, underlies the dry, scaly skin characteristic of ft/ft mice. This animal model provides a tool for understanding the role of filaggrin in normal epidermal function and may provide insight into the molecular basis of the filaggrin-deficient human skin disorder ichthyosis vulgaris.

Philip Fleckman - One of the best experts on this subject based on the ideXlab platform.

  • absence of the granular layer and Keratohyalin define a morphologically distinct subset of individuals with ichthyosis vulgaris
    Experimental Dermatology, 2002
    Co-Authors: Philip Fleckman, Steve Brumbaugh
    Abstract:

    : The clinical diagnosis of ichthyosis vulgaris (IV) can be difficult. Abnormalities in the granular layer and the ultrastructure of Keratohyalin granules (KHG) suggest that morphology may be helpful. To clarify morphologic findings in IV, 41 clinically affected individuals and 21 unaffected family members or age- and sex-matched controls were studied by light microscopy. In these, the granular layer was totally absent in approximately 50% of affected individuals, while present in all controls. Forty-seven individuals in the light microscopy group were also studied by electron microscopy. Keratohyalin granules were absent in all affected individuals lacking the granular layer by light microscopy. Clinical severity usually correlated with the lack of a granular layer and KHG. Absence of the granular layer was consistent in different anatomic sites and in serial biopsies taken over a 1–3-year period. In a subset of clinically affected, unrelated subjects with moderate to severe involvement, four out of 11 (36%) had similar findings. Keratinocytes cultured from affected individuals with no KHG expressed virtually no detectable profilaggrin protein in vitro. The data suggest that a subset of individuals with moderate to severe IV have a consistently absent granular layer and KHG. Absence of the granular layer and lack of KHG correlated almost perfectly; thus light microscopy offers a convenient means of identifying this subtype of IV. However, both morphologic types of IV were observed within single families. Therefore, the relationship between granular layer abnormalities and IV is complex and requires the study of more affected families. One interpretation of the data is that IV is a multigenic disorder in which one of the genes alters profilaggrin expression. We propose this clinical and histologic phenotype as useful for identifying the gene(s) involved and also for determining whether it represents a modifier or a major locus of the disorder.

  • loss of normal profilaggrin and filaggrin in flaky tail ft ft mice an animal model for the filaggrin deficient skin disease ichthyosis vulgaris
    Journal of Investigative Dermatology, 2000
    Co-Authors: Richard B Presland, Philip Fleckman, Dawnalyn Boggess, Patrick S Lewis, Christopher M Hull, John P Sundberg
    Abstract:

    Flaky tail (gene symbol ft) is an autosomal recessive mutation in mice that results in a dry, flaky skin, and annular tail and paw constrictions in the neonatal period. Previous studies demonstrated that the ft mutation maps to the central region of mouse chromosome 3, in the vicinity of the epidermal differentiation complex, a gene locus that includes many nonkeratin genes expressed in epidermis. In this study we report a detailed characterization of the flaky tail mouse. Affected homozygous ft/ft mice exhibit large, disorganized scales on tail and paw skin, marked attenuation of the epidermal granular layer, mild acanthosis, and orthokeratotic hyperkeratosis. Biochemical analysis demonstrated that ft/ft mice lacked normal high molecular profilaggrin (≈ 500 kDa), and instead expressed a lower molecular weight form of profilaggrin (220 kDa) that is not proteolytically processed to profilaggrin intermediates or filaggrin. Mutant mice lacked the large, irregular F-type Keratohyalin granules that contain profilaggrin, and filaggrin was absent from the cornified layers of ft/ft epidermis. The expression of epidermal keratins was unchanged, whereas the cornified envelope proteins involucrin and loricrin were increased in ft/ft epidermis. Cultured ft/ft keratinocytes also synthesized reduced amounts of profilaggrin mRNA and protein, demonstrating that the defect in profilaggrin expression is intrinsic to epidermal cells. These findings demonstrate that flaky tail mice express an abnormal profilaggrin polypeptide that does not form normal Keratohyalin F-granules and is not proteolytically processed to filaggrin. We propose that the absence of filaggrin, and in particular the hygroscopic, filaggrin-derived amino acids that are thought to function in epidermal hydration, underlies the dry, scaly skin characteristic of ft/ft mice. This animal model provides a tool for understanding the role of filaggrin in normal epidermal function and may provide insight into the molecular basis of the filaggrin-deficient human skin disorder ichthyosis vulgaris.

Richard B Presland - One of the best experts on this subject based on the ideXlab platform.

  • loss of normal profilaggrin and filaggrin in flaky tail ft ft mice an animal model for the filaggrin deficient skin disease ichthyosis vulgaris
    Journal of Investigative Dermatology, 2000
    Co-Authors: Richard B Presland, Philip Fleckman, Dawnalyn Boggess, Patrick S Lewis, Christopher M Hull, John P Sundberg
    Abstract:

    Flaky tail (gene symbol ft) is an autosomal recessive mutation in mice that results in a dry, flaky skin, and annular tail and paw constrictions in the neonatal period. Previous studies demonstrated that the ft mutation maps to the central region of mouse chromosome 3, in the vicinity of the epidermal differentiation complex, a gene locus that includes many nonkeratin genes expressed in epidermis. In this study we report a detailed characterization of the flaky tail mouse. Affected homozygous ft/ft mice exhibit large, disorganized scales on tail and paw skin, marked attenuation of the epidermal granular layer, mild acanthosis, and orthokeratotic hyperkeratosis. Biochemical analysis demonstrated that ft/ft mice lacked normal high molecular profilaggrin (≈ 500 kDa), and instead expressed a lower molecular weight form of profilaggrin (220 kDa) that is not proteolytically processed to profilaggrin intermediates or filaggrin. Mutant mice lacked the large, irregular F-type Keratohyalin granules that contain profilaggrin, and filaggrin was absent from the cornified layers of ft/ft epidermis. The expression of epidermal keratins was unchanged, whereas the cornified envelope proteins involucrin and loricrin were increased in ft/ft epidermis. Cultured ft/ft keratinocytes also synthesized reduced amounts of profilaggrin mRNA and protein, demonstrating that the defect in profilaggrin expression is intrinsic to epidermal cells. These findings demonstrate that flaky tail mice express an abnormal profilaggrin polypeptide that does not form normal Keratohyalin F-granules and is not proteolytically processed to filaggrin. We propose that the absence of filaggrin, and in particular the hygroscopic, filaggrin-derived amino acids that are thought to function in epidermal hydration, underlies the dry, scaly skin characteristic of ft/ft mice. This animal model provides a tool for understanding the role of filaggrin in normal epidermal function and may provide insight into the molecular basis of the filaggrin-deficient human skin disorder ichthyosis vulgaris.

Sue Lewisjones - One of the best experts on this subject based on the ideXlab platform.

  • loss of function mutations in the gene encoding filaggrin cause ichthyosis vulgaris
    Nature Genetics, 2006
    Co-Authors: Frances J D Smith, Ana Terronkwiatkowski, Linda E Campbell, Haihui Liao, David Goudie, Yiwei Zhao, Alan Evans, Alan D Irvine, Aileen Sandilands, Sue Lewisjones
    Abstract:

    Ichthyosis vulgaris (OMIM 146700) is the most common inherited disorder of keratinization and one of the most frequent single-gene disorders in humans. The most widely cited incidence figure is 1 in 250 based on a survey of 6,051 healthy English schoolchildren1. We have identified homozygous or compound heterozygous mutations R501X and 2282del4 in the gene encoding filaggrin (FLG) as the cause of moderate or severe ichthyosis vulgaris in 15 kindreds. In addition, these mutations are semidominant; heterozygotes show a very mild phenotype with incomplete penetrance. The mutations show a combined allele frequency of ∼4% in populations of European ancestry, explaining the high incidence of ichthyosis vulgaris. Profilaggrin is the major protein of Keratohyalin granules in the epidermis. During terminal differentiation, it is cleaved into multiple filaggrin peptides that aggregate keratin filaments. The resultant matrix is cross-linked to form a major component of the cornified cell envelope. We find that loss or reduction of this major structural protein leads to varying degrees of impaired keratinization.

  • loss of function mutations in the gene encoding filaggrin cause ichthyosis vulgaris
    Nature Genetics, 2006
    Co-Authors: Frances J D Smith, Ana Terronkwiatkowski, Linda E Campbell, Haihui Liao, David Goudie, Yiwei Zhao, Alan Evans, Alan D Irvine, Aileen Sandilands, Sue Lewisjones
    Abstract:

    Ichthyosis vulgaris (OMIM 146700) is the most common inherited disorder of keratinization and one of the most frequent single-gene disorders in humans. The most widely cited incidence figure is 1 in 250 based on a survey of 6,051 healthy English schoolchildren. We have identified homozygous or compound heterozygous mutations R501X and 2282del4 in the gene encoding filaggrin (FLG) as the cause of moderate or severe ichthyosis vulgaris in 15 kindreds. In addition, these mutations are semidominant; heterozygotes show a very mild phenotype with incomplete penetrance. The mutations show a combined allele frequency of approximately 4% in populations of European ancestry, explaining the high incidence of ichthyosis vulgaris. Profilaggrin is the major protein of Keratohyalin granules in the epidermis. During terminal differentiation, it is cleaved into multiple filaggrin peptides that aggregate keratin filaments. The resultant matrix is cross-linked to form a major component of the cornified cell envelope. We find that loss or reduction of this major structural protein leads to varying degrees of impaired keratinization.

Howard Cohen - One of the best experts on this subject based on the ideXlab platform.

  • dominant ichthyosis vulgaris with an ultrastructuraally normal granular layer
    Clinical Genetics, 2008
    Co-Authors: Naomi Fitch, Richard Segool, Alex Ferenczy, Howard Cohen
    Abstract:

    It has been suggested that ultrastructural studies of Keratohyalin granules in the granular layer of the skin can clearly distinguish the dominant type from the X-linked recessive type of ichthyosis vulgaris. The distinctive features are found in the granular layer and the Keratohyalin granules. In the dominant form the granular layer is absent or reduced in size and the Keratohyalin granules are minute and crumbly in appearance. In the recessive form the granular layer and Keratohyalin granules are normal. A family which probably has dominant ichthyosis vulgaris is described. The stratum granulosum and Keratohyalin granules as determined by both light and electron microscopy are normal. In view of the inconstant morphologic appearance of the stratum granulosum in ichthyosis vulgaris, it is suggested that distinction between the dominant and X-linked forms should not be based on the structural characteristics of the granular layer alone, but rather on a combined evaluation of the pedigree, clinical features and the appearance of the stratum granulosum.