Lactobacillus jensenii

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 276 Experts worldwide ranked by ideXlab platform

David N Fredricks - One of the best experts on this subject based on the ideXlab platform.

  • changes in vaginal microbiota and immune mediators in hiv 1 seronegative kenyan women initiating depot medroxyprogesterone acetate
    Journal of Acquired Immune Deficiency Syndromes, 2016
    Co-Authors: Alison C Roxby, David N Fredricks, Tina L Fiedler, Katherine Odemdavis, Kristjana H Asbjornsdottir, Linnet Masese, Stephen C De Rosa, Walter Jaoko, James Kiarie, Julie Overbaugh
    Abstract:

    BACKGROUND Depot medroxyprogesterone acetate (DMPA) is associated with HIV acquisition. We studied changes in vaginal microbiota and inflammatory milieu after DMPA initiation. METHODS In a cohort of HIV-negative Kenyan women, we collected monthly vaginal swabs over 1 year before and after DMPA. Using quantitative polymerase chain reaction, we compared quantities of Lactobacillus crispatus, Lactobacillus jensenii, Lactobacillus iners, Gardnerella vaginalis, and total bacterial load (16S ribosomal RNA gene levels). Six vaginal immune mediators were measured with enzyme-linked immunosorbent assay. Trends in the detection and quantity of bacteria were estimated by logistic and linear mixed-effects regression. RESULTS From 2010 to 2012, 15 HIV-seronegative women initiated DMPA, contributing 85 visits (median, 6 visits/woman; range, 3-8 visits/woman). The median time of DMPA-exposed follow-up was 8.4 months (range, 1.5-11.6 months). Seven women (46%) had bacterial vaginosis within 70 days before DMPA start. L. iners was detected in 13 women (87%) before DMPA start, but other lactobacilli were rarely detected. Gardnerella vaginalis decreased by 0.21 log10 copies per swab per month after DMPA exposure (P = 0.01). Total bacterial load decreased by 0.08 log10 copies per swab per month of DMPA (P = 0.02). Sustained decreases in interleukin (IL)-6 (P = 0.03), IL-8 (P = 0.04), and IL-1 receptor antagonist (P < 0.001) were also noted. Nine women (60%) had L. crispatus detected post-DMPA, which significantly correlated with reduced IL-6 (P < 0.01) and IL-8 (P = 0.02). CONCLUSIONS Initiation of DMPA led to sustained shifts in vaginal bacterial concentrations and levels of inflammatory mediators. Further studies are warranted to outline components of the vaginal microbiota influenced by DMPA use and impact on HIV susceptibility.

  • relationship of specific bacteria in the cervical and vaginal microbiotas with cervicitis
    Sexually Transmitted Diseases, 2015
    Co-Authors: Linda M Gorgos, Sujatha Srinivasan, David N Fredricks, Tina L Fiedler, Martin Morgan, Laura K Sycuro, Jennifer E Balkus, Scott R Mcclelland
    Abstract:

    Background Cervicitis is an inflammatory condition of the cervix associated with upper genital tract infection and reproductive complications. Although cervicitis can be caused by several known pathogens, the etiology frequently remains obscure. Here we investigate vaginal bacteria associated with bacterial vaginosis as potential causes of cervicitis. Methods Associations between vaginal bacteria and cervicitis were assessed in a retrospective case-control study of women attending a Seattle sexually transmitted disease clinic. Individual bacterial species were detected using 2 molecular methods: quantitative polymerase chain reaction (qPCR) and broad-range 16S rRNA gene PCR with pyrosequencing. The primary finding from this initial study was evaluated using qPCR in a second cohort of Kenyan women. Results The presence of Mageeibacillus indolicus, formerly BVAB3, in the cervix was associated with cervicitis, whereas the presence of Lactobacillus jensenii was inversely associated. Quantities of these bacteria did not differ between cervicitis cases and controls, although in a model inclusive of presence and abundance, M. indolicus remained significantly associated with cervicitis after adjustment for other cervicitis-causing pathogens. M. indolicus was not associated with cervicitis in our study of Kenyan women, possibly due to differences in the clinical definition of cervicitis. Conclusions Colonization of the endocervix with M. indolicus may contribute to the clinical manifestations of cervicitis, but further study is needed to determine whether this finding is repeatable and applicable to diverse groups of women. Colonization of the cervix with L. jensenii could be a marker of health, perhaps reducing inflammation or inhibiting pathogenic infection.

  • metabolic signatures of bacterial vaginosis
    Mbio, 2015
    Co-Authors: Sujatha Srinivasan, David N Fredricks, Tina L Fiedler, Jeanne M Marrazzo, Martin Morgan, Danijel Djukovic, Noah G Hoffman, Daniel Raftery
    Abstract:

    ABSTRACT Bacterial vaginosis (BV) is characterized by shifts in the vaginal microbiota from Lactobacillus dominant to a microbiota with diverse anaerobic bacteria. Few studies have linked specific metabolites with bacteria found in the human vagina. Here, we report dramatic differences in metabolite compositions and concentrations associated with BV using a global metabolomics approach. We further validated important metabolites using samples from a second cohort of women and a different platform to measure metabolites. In the primary study, we compared metabolite profiles in cervicovaginal lavage fluid from 40 women with BV and 20 women without BV. Vaginal bacterial representation was determined using broad-range PCR with pyrosequencing and concentrations of bacteria by quantitative PCR. We detected 279 named biochemicals; levels of 62% of metabolites were significantly different in women with BV. Unsupervised clustering of metabolites separated women with and without BV. Women with BV have metabolite profiles marked by lower concentrations of amino acids and dipeptides, concomitant with higher levels of amino acid catabolites and polyamines. Higher levels of the signaling eicosanoid 12-hydroxyeicosatetraenoic acid (12-HETE), a biomarker for inflammation, were noted in BV. Lactobacillus crispatus and Lactobacillus jensenii exhibited similar metabolite correlation patterns, which were distinct from correlation patterns exhibited by BV-associated bacteria. Several metabolites were significantly associated with clinical signs and symptoms (Amsel criteria) used to diagnose BV, and no metabolite was associated with all four clinical criteria. BV has strong metabolic signatures across multiple metabolic pathways, and these signatures are associated with the presence and concentrations of particular bacteria. IMPORTANCE Bacterial vaginosis (BV) is a common but highly enigmatic condition that is associated with adverse outcomes for women and their neonates. Small molecule metabolites in the vagina may influence host physiology, affect microbial community composition, and impact risk of adverse health outcomes, but few studies have comprehensively studied the metabolomics profile of BV. Here, we used mass spectrometry to link specific metabolites with particular bacteria detected in the human vagina by PCR. BV was associated with strong metabolic signatures across multiple pathways affecting amino acid, carbohydrate, and lipid metabolism, highlighting the profound metabolic changes in BV. These signatures were associated with the presence and concentrations of particular vaginal bacteria, including some bacteria yet to be cultivated, thereby providing clues as to the microbial origin of many metabolites. Insights from this study provide opportunities for developing new diagnostic markers of BV and novel approaches for treatment or prevention of BV.

  • altered biomarkers of mucosal immunity and reduced vaginal Lactobacillus concentrations in sexually active female adolescents
    PLOS ONE, 2012
    Co-Authors: Rebecca Pellett Madan, David N Fredricks, Tina L Fiedler, Colleen Carpenter, Sabah Kalyoussef, Thomas Mcandrew, Shankar Viswanathan, Mimi Kim, Marla J Keller, Betsy C Herold
    Abstract:

    Background Genital secretions collected from adult women exhibit in vitro activity against herpes simplex virus (HSV) and Escherichia coli (E. coli), but prior studies have not investigated this endogenous antimicrobial activity or its mediators in adolescent females. Methodology/Principal Findings Anti-HSV and anti-E.coli activity were quantified from cervicovaginal lavage (CVL) specimens collected from 20 sexually active adolescent females (15–18 years). Soluble immune mediators that may influence this activity were measured in CVL, and concentrations of Lactobacillus jensenii and crispatus were quantified by PCR from vaginal swabs. Results for adolescents were compared to those obtained from 54 healthy, premenopausal adult women. Relative to specimens collected from adults, CVL collected from adolescent subjects had significantly reduced activity against E. coli and diminished concentrations of protein, IgG, and IgA but significantly increased anti-HSV activity and concentrations of interleukin (IL)-1α, IL-6 and IL-1 receptor antagonist. Vaginal swabs collected from adolescent subjects had comparable concentrations of L. crispatus but significantly reduced concentrations of L. jensenii, relative to adult swabs. Conclusions/Significance Biomarkers of genital mucosal innate immunity may differ substantially between sexually active adolescents and adult women. These findings warrant further study and may have significant implications for prevention of sexually transmitted infections in adolescent females.

  • behavioral predictors of colonization with Lactobacillus crispatus or Lactobacillus jensenii after treatment for bacterial vaginosis a cohort study
    Infectious Diseases in Obstetrics & Gynecology, 2012
    Co-Authors: Caroline Mitchell, David N Fredricks, Tina L Fiedler, Lisa E Manhart, Kathy Thomas, Jeanne M Marrazzo
    Abstract:

    Objective: Evaluate predictors of vaginal colonization with lactobacilli after treatment for bacterial vaginosis (BV). Methods. Vaginal fluid specimens from women with BV underwent qPCR for Lactobacillus crispatus, L. jensenii, and L. iners pre- and posttreatment. Results. Few women with BV were colonized with L. crispatus (4/44, 9%) or L. jensenii (1/44, 2%), though all had L. iners. One month posttreatment 12/44 (27%) had L. crispatus, 12/44 (27%) L. jensenii, and 43/44 (98%) L. iners. Presence of L. jensenii posttreatment was associated with cure (Risk Ratio (RR) 1.67; 95% CI 1.09–2.56); L. crispatus showed a similar trend (RR 1.41; 95% CI 0.89–2.24, P = 0.14). Receptive oral sex was associated with 2.2-log10 lower concentration of L. crispatus (95% CI −4.38, −.02), and digital-vaginal sex with 2.6-log10 lower concentration (95% CI −4.87, −.33). Conclusion. One month after BV treatment, few women established colonization with L. crispatus or L. jensenii. Few behaviors were associated with colonization.

Julio Villena - One of the best experts on this subject based on the ideXlab platform.

  • draft genome sequence of the immunobiotic strain Lactobacillus jensenii tl2937
    Genome Announcements, 2017
    Co-Authors: Julio Villena, Yuki Masumizu, Hikaru Iida, Wakako Ikedaohtsubo, Leonardo Albarracin, Seiya Makino, Sou Ohkawara, Katsunori Kimura
    Abstract:

    ABSTRACT The genome of the immunomodulatory strain Lactobacillus jensenii TL2937 is described here. The draft genome has a total length of 1,678,416 bp, a G+C content of 34.3%, and 1,470 predicted protein-coding sequences. The genome information will be useful for gaining insight into the immunomodulatory properties of the TL2937 strain in the porcine host.

  • immunobiotic Lactobacillus jensenii as immune health promoting factor to improve growth performance and productivity in post weaning pigs
    BMC Immunology, 2014
    Co-Authors: Yoshihito Suda, Julio Villena, Kohichiro Tsukida, Hisashi Aso, Tomoyuki Shimazu, Shoichi Hosoya, Yu Takahashi, Yohsuke Tomosada, Masanori Tohno
    Abstract:

    Immunoregulatory probiotics (immunobiotics) have been proposed to improve piglets’ immune system to avoid intestinal infections and reduce unproductive inflammation after weaning. Previously, it was demonstrated that Lactobacillus jensenii TL2937 (LjTL2937) attenuated the inflammatory response triggered by activation of Toll-like receptor 4 (TLR-4) in porcine intestinal epithelial (PIE) cells and antigen presenting cells (APCs) from porcine Peyer’s patches (PP). In view of the critical importance of PIE-APCs interactions in the regulation of intestinal immune responses, we aimed to examine the effect of LjTL2937 on activation patterns of APCs from swine PPs in co-cultures with PIE cells. In addition, we investigated whether LjTL2937 was able to beneficially modulate intestinal immunity of piglets after weaning to improve immune-health status. Stimulation of PIE-APCs co-cultures with LjTL2937 increased the expression of MHC-II, CD80/86, IL-10, and Bcl-3 in CD172a+CD11R1- and CD172a+CD11R1high APCs. In addition, the TL2937 strain caused the upregulation of three negative regulators of TLR4 in PIE cells: MKP-1, Bcl-3 and A20. These changes significantly reduced the inflammatory response triggered by TLR4 activation in PIE-APCs co-cultures. The in vivo experiments using castrated male piglets (crossbreeding (LWD) with Landrace (L), Large Yorkshire (W) and Duroc (D))of 3 weeks of age demonstrated that feeding with LjTL2937 significantly reduced blood complement activity and C reactive protein concentrations while no changes were observed in blood leukocytes, ratio of granulocytes to lymphocyte numbers, macrophages’ activity and antibody levels. In addition, treatment with LjTL2937 significantly improved growth performance and productivity, and increased carcass quality. We demonstrated that the use of immunobiotics strains like LjTL2937, as supplemental additives for piglets feedings, could be used as a strategy to maintain and improve intestinal homeostasis; that is important for the development of the pig and for health and performance throughout the productive life of the animal.

  • modulation of intestinal tlr4 inflammatory signaling pathways by probiotic microorganisms lessons learned from Lactobacillus jensenii tl2937
    Frontiers in Immunology, 2014
    Co-Authors: Julio Villena, Haruki Kitazawa
    Abstract:

    The intestinal mucosa plays a critical role in the host's interactions with innocuous commensal microbiota and invading pathogenic microorganisms. Intestinal epithelial cells (IECs) and gut associated immune cells recognize the bacterial components via pattern-recognition receptors (PRRs) and are responsible for maintaining tolerance to the large communities of resident luminal bacteria while being also able to mount inflammatory responses against pathogens. Toll-like receptors (TLRs) are a major class of PRRs that are present on IECs and immune cells which are involved in the induction of both tolerance and inflammation. A growing body of experimental and clinical evidence supports the therapeutic and preventive application of probiotics for several gastrointestinal inflammatory disorders in which TLRs exert a significant role. This review aims to summarize the current knowledge of the beneficial effects of probiotic microorganisms with the capacity to modulate the immune system (immunobiotics) in the regulation of intestinal inflammation in pigs, which are very important as both livestock and human model. Especially we discuss the role of TLRs, their signalling pathways and their negative regulators in both the inflammatory intestinal injury and the beneficial effects of immunobiotics in general, and Lactobacillus jensenii TL2937 in particular. This review article emphasizes the cellular and molecular interactions of immunobiotics with IECs and immune cells through TLRs and their application for improving animal and human health.

  • immunobiotic Lactobacillus jensenii modulates the toll like receptor 4 induced inflammatory response via negative regulation in porcine antigen presenting cells
    Clinical and Vaccine Immunology, 2012
    Co-Authors: Julio Villena, Takuya Takahashi, Hisashi Aso, Tomoyuki Shimazu, Hitomi Fujie, Yohsuke Tomosada, Rie Suzuki, Eriko Chiba, Shyuichi Ohwada, Yoshihito Suda
    Abstract:

    Previously, we demonstrated that Lactobacillus jensenii TL2937 attenuates the inflammatory response triggered by activation of Toll-like receptor 4 (TLR-4) in porcine intestinal epithelial cells. In view of the critical importance of antigen-presenting cell (APC) polarization in immunoregulation, the objective of the present study was to examine the effect of strain TL2937 on the activation patterns of APCs from swine Peyer's patches (PPs). We demonstrated that direct exposure of porcine APCs to L. jensenii in the absence of inflammatory signals increased expression of interleukin-10 (IL-10) and transforming growth factor β in CD172a(+) APCs and caused them to display tolerogenic properties. In addition, pretreatment of CD172a(+) APCs with L. jensenii resulted in differential modulation of the production of pro- and anti-inflammatory cytokines in response to TLR4 activation. The immunomodulatory effect of strain TL2937 was not related to a downregulation of TLR4 but was related to an upregulation of the expression of three negative regulators of TLRs: single immunoglobulin IL-1-related receptor (SIGIRR), A20, and interleukin-1 receptor-associated kinase M (IRAK-M). Our results also indicated that TLR2 has an important role in the anti-inflammatory activity of L. jensenii TL2937, since anti-TLR2 antibodies blocked the upregulation of SIGIRR and IRAK-M in CD172a(+) APCs and the production of IL-10 in response to TLR4 activation. We performed, for the first time, a precise functional characterization of porcine APCs from PPs, and we demonstrated that CD172a(+) cells were tolerogenic. Our findings demonstrate that adherent cells and isolated CD172a(+) cells harvested from swine PPs were useful for in vitro study of the inflammatory responses in the porcine gut and the immunomodulatory effects of immunobiotic microorganisms.

  • immunobiotic Lactobacillus jensenii elicits anti inflammatory activity in porcine intestinal epithelial cells by modulating negative regulators of the toll like receptor signaling pathway
    Infection and Immunity, 2012
    Co-Authors: Tomoyuki Shimazu, Julio Villena, Yoshihito Suda, Hisashi Aso, Masanori Tohno, Hitomi Fujie, Shoichi Hosoya, Takeshi Shimosato, Yasushi Kawai, Tadao Saito
    Abstract:

    The effect of Lactobacillus jensenii TL2937 on the inflammatory immune response triggered by enterotoxigenic Escherichia coli (ETEC) and lipopolysaccharide (LPS) in a porcine intestinal epitheliocyte cell line (PIE cells) was evaluated. Challenges with ETEC or LPS elicited Toll-like receptor 4 (TLR4)-mediated inflammatory responses in cultured PIE cells, indicating that our cell line may be useful for studying inflammation in the guts of weaning piglets. In addition, we demonstrated that L. jensenii TL2937 attenuated the expression of proinflammatory cytokines and chemokines caused by ETEC or LPS challenge by downregulating TLR4-dependent nuclear factorκB (NF-κB) and mitogen-activated protein kinase (MAPK) activation. Furthermore, we demonstrated that L. jensenii TL2937 stimulation of PIE cells upregulated three negative regulators of TLRs: A20, Bcl-3, and MKP-1, deepening the understanding of an immunobiotic mechanism of action. L. jensenii TL2937-mediated induction of negative regulators of TLRs would have a substantial physiological impact on homeostasis in PIE cells, because excessive TLR inflammatory signaling would be downregulated. These results indicated that PIE cells can be used to study the mechanisms involved in the protective activity of immunobiotics against intestinal inflammatory damage and may provide useful information for the development of new immunologically functional feeds that help to prevent inflammatory intestinal disorders, including weaning-associated intestinal inflammation.

Tina L Fiedler - One of the best experts on this subject based on the ideXlab platform.

  • changes in vaginal microbiota and immune mediators in hiv 1 seronegative kenyan women initiating depot medroxyprogesterone acetate
    Journal of Acquired Immune Deficiency Syndromes, 2016
    Co-Authors: Alison C Roxby, David N Fredricks, Tina L Fiedler, Katherine Odemdavis, Kristjana H Asbjornsdottir, Linnet Masese, Stephen C De Rosa, Walter Jaoko, James Kiarie, Julie Overbaugh
    Abstract:

    BACKGROUND Depot medroxyprogesterone acetate (DMPA) is associated with HIV acquisition. We studied changes in vaginal microbiota and inflammatory milieu after DMPA initiation. METHODS In a cohort of HIV-negative Kenyan women, we collected monthly vaginal swabs over 1 year before and after DMPA. Using quantitative polymerase chain reaction, we compared quantities of Lactobacillus crispatus, Lactobacillus jensenii, Lactobacillus iners, Gardnerella vaginalis, and total bacterial load (16S ribosomal RNA gene levels). Six vaginal immune mediators were measured with enzyme-linked immunosorbent assay. Trends in the detection and quantity of bacteria were estimated by logistic and linear mixed-effects regression. RESULTS From 2010 to 2012, 15 HIV-seronegative women initiated DMPA, contributing 85 visits (median, 6 visits/woman; range, 3-8 visits/woman). The median time of DMPA-exposed follow-up was 8.4 months (range, 1.5-11.6 months). Seven women (46%) had bacterial vaginosis within 70 days before DMPA start. L. iners was detected in 13 women (87%) before DMPA start, but other lactobacilli were rarely detected. Gardnerella vaginalis decreased by 0.21 log10 copies per swab per month after DMPA exposure (P = 0.01). Total bacterial load decreased by 0.08 log10 copies per swab per month of DMPA (P = 0.02). Sustained decreases in interleukin (IL)-6 (P = 0.03), IL-8 (P = 0.04), and IL-1 receptor antagonist (P < 0.001) were also noted. Nine women (60%) had L. crispatus detected post-DMPA, which significantly correlated with reduced IL-6 (P < 0.01) and IL-8 (P = 0.02). CONCLUSIONS Initiation of DMPA led to sustained shifts in vaginal bacterial concentrations and levels of inflammatory mediators. Further studies are warranted to outline components of the vaginal microbiota influenced by DMPA use and impact on HIV susceptibility.

  • relationship of specific bacteria in the cervical and vaginal microbiotas with cervicitis
    Sexually Transmitted Diseases, 2015
    Co-Authors: Linda M Gorgos, Sujatha Srinivasan, David N Fredricks, Tina L Fiedler, Martin Morgan, Laura K Sycuro, Jennifer E Balkus, Scott R Mcclelland
    Abstract:

    Background Cervicitis is an inflammatory condition of the cervix associated with upper genital tract infection and reproductive complications. Although cervicitis can be caused by several known pathogens, the etiology frequently remains obscure. Here we investigate vaginal bacteria associated with bacterial vaginosis as potential causes of cervicitis. Methods Associations between vaginal bacteria and cervicitis were assessed in a retrospective case-control study of women attending a Seattle sexually transmitted disease clinic. Individual bacterial species were detected using 2 molecular methods: quantitative polymerase chain reaction (qPCR) and broad-range 16S rRNA gene PCR with pyrosequencing. The primary finding from this initial study was evaluated using qPCR in a second cohort of Kenyan women. Results The presence of Mageeibacillus indolicus, formerly BVAB3, in the cervix was associated with cervicitis, whereas the presence of Lactobacillus jensenii was inversely associated. Quantities of these bacteria did not differ between cervicitis cases and controls, although in a model inclusive of presence and abundance, M. indolicus remained significantly associated with cervicitis after adjustment for other cervicitis-causing pathogens. M. indolicus was not associated with cervicitis in our study of Kenyan women, possibly due to differences in the clinical definition of cervicitis. Conclusions Colonization of the endocervix with M. indolicus may contribute to the clinical manifestations of cervicitis, but further study is needed to determine whether this finding is repeatable and applicable to diverse groups of women. Colonization of the cervix with L. jensenii could be a marker of health, perhaps reducing inflammation or inhibiting pathogenic infection.

  • metabolic signatures of bacterial vaginosis
    Mbio, 2015
    Co-Authors: Sujatha Srinivasan, David N Fredricks, Tina L Fiedler, Jeanne M Marrazzo, Martin Morgan, Danijel Djukovic, Noah G Hoffman, Daniel Raftery
    Abstract:

    ABSTRACT Bacterial vaginosis (BV) is characterized by shifts in the vaginal microbiota from Lactobacillus dominant to a microbiota with diverse anaerobic bacteria. Few studies have linked specific metabolites with bacteria found in the human vagina. Here, we report dramatic differences in metabolite compositions and concentrations associated with BV using a global metabolomics approach. We further validated important metabolites using samples from a second cohort of women and a different platform to measure metabolites. In the primary study, we compared metabolite profiles in cervicovaginal lavage fluid from 40 women with BV and 20 women without BV. Vaginal bacterial representation was determined using broad-range PCR with pyrosequencing and concentrations of bacteria by quantitative PCR. We detected 279 named biochemicals; levels of 62% of metabolites were significantly different in women with BV. Unsupervised clustering of metabolites separated women with and without BV. Women with BV have metabolite profiles marked by lower concentrations of amino acids and dipeptides, concomitant with higher levels of amino acid catabolites and polyamines. Higher levels of the signaling eicosanoid 12-hydroxyeicosatetraenoic acid (12-HETE), a biomarker for inflammation, were noted in BV. Lactobacillus crispatus and Lactobacillus jensenii exhibited similar metabolite correlation patterns, which were distinct from correlation patterns exhibited by BV-associated bacteria. Several metabolites were significantly associated with clinical signs and symptoms (Amsel criteria) used to diagnose BV, and no metabolite was associated with all four clinical criteria. BV has strong metabolic signatures across multiple metabolic pathways, and these signatures are associated with the presence and concentrations of particular bacteria. IMPORTANCE Bacterial vaginosis (BV) is a common but highly enigmatic condition that is associated with adverse outcomes for women and their neonates. Small molecule metabolites in the vagina may influence host physiology, affect microbial community composition, and impact risk of adverse health outcomes, but few studies have comprehensively studied the metabolomics profile of BV. Here, we used mass spectrometry to link specific metabolites with particular bacteria detected in the human vagina by PCR. BV was associated with strong metabolic signatures across multiple pathways affecting amino acid, carbohydrate, and lipid metabolism, highlighting the profound metabolic changes in BV. These signatures were associated with the presence and concentrations of particular vaginal bacteria, including some bacteria yet to be cultivated, thereby providing clues as to the microbial origin of many metabolites. Insights from this study provide opportunities for developing new diagnostic markers of BV and novel approaches for treatment or prevention of BV.

  • altered biomarkers of mucosal immunity and reduced vaginal Lactobacillus concentrations in sexually active female adolescents
    PLOS ONE, 2012
    Co-Authors: Rebecca Pellett Madan, David N Fredricks, Tina L Fiedler, Colleen Carpenter, Sabah Kalyoussef, Thomas Mcandrew, Shankar Viswanathan, Mimi Kim, Marla J Keller, Betsy C Herold
    Abstract:

    Background Genital secretions collected from adult women exhibit in vitro activity against herpes simplex virus (HSV) and Escherichia coli (E. coli), but prior studies have not investigated this endogenous antimicrobial activity or its mediators in adolescent females. Methodology/Principal Findings Anti-HSV and anti-E.coli activity were quantified from cervicovaginal lavage (CVL) specimens collected from 20 sexually active adolescent females (15–18 years). Soluble immune mediators that may influence this activity were measured in CVL, and concentrations of Lactobacillus jensenii and crispatus were quantified by PCR from vaginal swabs. Results for adolescents were compared to those obtained from 54 healthy, premenopausal adult women. Relative to specimens collected from adults, CVL collected from adolescent subjects had significantly reduced activity against E. coli and diminished concentrations of protein, IgG, and IgA but significantly increased anti-HSV activity and concentrations of interleukin (IL)-1α, IL-6 and IL-1 receptor antagonist. Vaginal swabs collected from adolescent subjects had comparable concentrations of L. crispatus but significantly reduced concentrations of L. jensenii, relative to adult swabs. Conclusions/Significance Biomarkers of genital mucosal innate immunity may differ substantially between sexually active adolescents and adult women. These findings warrant further study and may have significant implications for prevention of sexually transmitted infections in adolescent females.

  • behavioral predictors of colonization with Lactobacillus crispatus or Lactobacillus jensenii after treatment for bacterial vaginosis a cohort study
    Infectious Diseases in Obstetrics & Gynecology, 2012
    Co-Authors: Caroline Mitchell, David N Fredricks, Tina L Fiedler, Lisa E Manhart, Kathy Thomas, Jeanne M Marrazzo
    Abstract:

    Objective: Evaluate predictors of vaginal colonization with lactobacilli after treatment for bacterial vaginosis (BV). Methods. Vaginal fluid specimens from women with BV underwent qPCR for Lactobacillus crispatus, L. jensenii, and L. iners pre- and posttreatment. Results. Few women with BV were colonized with L. crispatus (4/44, 9%) or L. jensenii (1/44, 2%), though all had L. iners. One month posttreatment 12/44 (27%) had L. crispatus, 12/44 (27%) L. jensenii, and 43/44 (98%) L. iners. Presence of L. jensenii posttreatment was associated with cure (Risk Ratio (RR) 1.67; 95% CI 1.09–2.56); L. crispatus showed a similar trend (RR 1.41; 95% CI 0.89–2.24, P = 0.14). Receptive oral sex was associated with 2.2-log10 lower concentration of L. crispatus (95% CI −4.38, −.02), and digital-vaginal sex with 2.6-log10 lower concentration (95% CI −4.87, −.33). Conclusion. One month after BV treatment, few women established colonization with L. crispatus or L. jensenii. Few behaviors were associated with colonization.

Yoshihito Suda - One of the best experts on this subject based on the ideXlab platform.

  • modulation of porcine intestinal epitheliocytes immunetranscriptome response by Lactobacillus jensenii tl2937
    Beneficial Microbes, 2016
    Co-Authors: Hisakazu Kobayashi, Wakako Ikedaohtsubo, Leonardo Albarracin, Paulraj Kanmani, Yoshihito Suda, Nana Sato, Akm Humayun Kober, Tomonori Nochi
    Abstract:

    In order to evaluate probiotic strains applicable for the beneficial immunomodulation of the porcine gut (immunobiotics), we previously developed a porcine intestinal epitheliocyte cell line (PIE c...

  • immunoregulatory effects triggered by immunobiotic Lactobacillus jensenii tl2937 strain involve efficient phagocytosis in porcine antigen presenting cells
    BMC Immunology, 2016
    Co-Authors: Kohichiro Tsukida, Takuya Takahashi, Hikaru Iida, Sou Ohkawara, Paulraj Kanmani, Yoshihito Suda, Tomonori Nochi, Shuichi Ohwada, Hisashi Aso, Seiya Makino
    Abstract:

    Immunobiotic Lactobacillus jensenii TL2937 modulates porcine mononuclear phagocytes from Peyer’s patches (PPMPs) and induces a differential production of pro- and anti-inflammatory cytokines in response to Toll-like receptor (TLR)-4 activation. In view of the important role played by phagocytosis in the activation of antigen presenting cells (APCs), the aim of the present work was to examine the interaction of TL2937 with porcine PPMPs focusing on phagocytosis. In addition, this study aimed to investigate whether the effects of L. jensenii TL2937 in porcine blood monocyte-derived dendritic cells (MoDCs) are similar to those found in PPMPs considering that MoDCs do not recapitulate all functions of mucosal APCs. Studies showed a high ability of porcine CD172a+ PPMPs to phagocytose L. jensenii TL2937. Interestingly, our results also revealed a reduced capacity of the non-immunomodulatory L. plantarum TL2766 to be phagocytosed by those immune cells. Phagocytosis of L. jensenii TL2937 by porcine PPMPs was partially dependent on TLR2. In addition, we demonstrated that TL2937 strain was able to improve the expression of IL-1β, IL-12 and IL-10 in immature MoDCs resembling the effect of this immunobiotic bacterium on PPMPs. Moreover, similarly to PPMPs those immunomodulatory effects were related to the higher capacity of TL2937 to be phagocytosed by immature MoDCs. Microbial recognition in APCs could be effectively mediated through ligand-receptor interactions that then mediate phagocytosis and signaling. For the immunobiotic strain TL2937, TLR2 has a partial role for its interaction with porcine APCs and it is necessary to investigate the role of other receptors. A challenge for future research will be advance in the full understanding of the molecular interactions of immunobiotic L. jensenii TL2937 with porcine APCs that will be crucial for the successful development of functional feeds for the porcine host. This study is a step in that direction.

  • immunobiotic Lactobacillus jensenii as immune health promoting factor to improve growth performance and productivity in post weaning pigs
    BMC Immunology, 2014
    Co-Authors: Yoshihito Suda, Julio Villena, Kohichiro Tsukida, Hisashi Aso, Tomoyuki Shimazu, Shoichi Hosoya, Yu Takahashi, Yohsuke Tomosada, Masanori Tohno
    Abstract:

    Immunoregulatory probiotics (immunobiotics) have been proposed to improve piglets’ immune system to avoid intestinal infections and reduce unproductive inflammation after weaning. Previously, it was demonstrated that Lactobacillus jensenii TL2937 (LjTL2937) attenuated the inflammatory response triggered by activation of Toll-like receptor 4 (TLR-4) in porcine intestinal epithelial (PIE) cells and antigen presenting cells (APCs) from porcine Peyer’s patches (PP). In view of the critical importance of PIE-APCs interactions in the regulation of intestinal immune responses, we aimed to examine the effect of LjTL2937 on activation patterns of APCs from swine PPs in co-cultures with PIE cells. In addition, we investigated whether LjTL2937 was able to beneficially modulate intestinal immunity of piglets after weaning to improve immune-health status. Stimulation of PIE-APCs co-cultures with LjTL2937 increased the expression of MHC-II, CD80/86, IL-10, and Bcl-3 in CD172a+CD11R1- and CD172a+CD11R1high APCs. In addition, the TL2937 strain caused the upregulation of three negative regulators of TLR4 in PIE cells: MKP-1, Bcl-3 and A20. These changes significantly reduced the inflammatory response triggered by TLR4 activation in PIE-APCs co-cultures. The in vivo experiments using castrated male piglets (crossbreeding (LWD) with Landrace (L), Large Yorkshire (W) and Duroc (D))of 3 weeks of age demonstrated that feeding with LjTL2937 significantly reduced blood complement activity and C reactive protein concentrations while no changes were observed in blood leukocytes, ratio of granulocytes to lymphocyte numbers, macrophages’ activity and antibody levels. In addition, treatment with LjTL2937 significantly improved growth performance and productivity, and increased carcass quality. We demonstrated that the use of immunobiotics strains like LjTL2937, as supplemental additives for piglets feedings, could be used as a strategy to maintain and improve intestinal homeostasis; that is important for the development of the pig and for health and performance throughout the productive life of the animal.

  • immunobiotic Lactobacillus jensenii modulates the toll like receptor 4 induced inflammatory response via negative regulation in porcine antigen presenting cells
    Clinical and Vaccine Immunology, 2012
    Co-Authors: Julio Villena, Takuya Takahashi, Hisashi Aso, Tomoyuki Shimazu, Hitomi Fujie, Yohsuke Tomosada, Rie Suzuki, Eriko Chiba, Shyuichi Ohwada, Yoshihito Suda
    Abstract:

    Previously, we demonstrated that Lactobacillus jensenii TL2937 attenuates the inflammatory response triggered by activation of Toll-like receptor 4 (TLR-4) in porcine intestinal epithelial cells. In view of the critical importance of antigen-presenting cell (APC) polarization in immunoregulation, the objective of the present study was to examine the effect of strain TL2937 on the activation patterns of APCs from swine Peyer's patches (PPs). We demonstrated that direct exposure of porcine APCs to L. jensenii in the absence of inflammatory signals increased expression of interleukin-10 (IL-10) and transforming growth factor β in CD172a(+) APCs and caused them to display tolerogenic properties. In addition, pretreatment of CD172a(+) APCs with L. jensenii resulted in differential modulation of the production of pro- and anti-inflammatory cytokines in response to TLR4 activation. The immunomodulatory effect of strain TL2937 was not related to a downregulation of TLR4 but was related to an upregulation of the expression of three negative regulators of TLRs: single immunoglobulin IL-1-related receptor (SIGIRR), A20, and interleukin-1 receptor-associated kinase M (IRAK-M). Our results also indicated that TLR2 has an important role in the anti-inflammatory activity of L. jensenii TL2937, since anti-TLR2 antibodies blocked the upregulation of SIGIRR and IRAK-M in CD172a(+) APCs and the production of IL-10 in response to TLR4 activation. We performed, for the first time, a precise functional characterization of porcine APCs from PPs, and we demonstrated that CD172a(+) cells were tolerogenic. Our findings demonstrate that adherent cells and isolated CD172a(+) cells harvested from swine PPs were useful for in vitro study of the inflammatory responses in the porcine gut and the immunomodulatory effects of immunobiotic microorganisms.

  • immunobiotic Lactobacillus jensenii elicits anti inflammatory activity in porcine intestinal epithelial cells by modulating negative regulators of the toll like receptor signaling pathway
    Infection and Immunity, 2012
    Co-Authors: Tomoyuki Shimazu, Julio Villena, Yoshihito Suda, Hisashi Aso, Masanori Tohno, Hitomi Fujie, Shoichi Hosoya, Takeshi Shimosato, Yasushi Kawai, Tadao Saito
    Abstract:

    The effect of Lactobacillus jensenii TL2937 on the inflammatory immune response triggered by enterotoxigenic Escherichia coli (ETEC) and lipopolysaccharide (LPS) in a porcine intestinal epitheliocyte cell line (PIE cells) was evaluated. Challenges with ETEC or LPS elicited Toll-like receptor 4 (TLR4)-mediated inflammatory responses in cultured PIE cells, indicating that our cell line may be useful for studying inflammation in the guts of weaning piglets. In addition, we demonstrated that L. jensenii TL2937 attenuated the expression of proinflammatory cytokines and chemokines caused by ETEC or LPS challenge by downregulating TLR4-dependent nuclear factorκB (NF-κB) and mitogen-activated protein kinase (MAPK) activation. Furthermore, we demonstrated that L. jensenii TL2937 stimulation of PIE cells upregulated three negative regulators of TLRs: A20, Bcl-3, and MKP-1, deepening the understanding of an immunobiotic mechanism of action. L. jensenii TL2937-mediated induction of negative regulators of TLRs would have a substantial physiological impact on homeostasis in PIE cells, because excessive TLR inflammatory signaling would be downregulated. These results indicated that PIE cells can be used to study the mechanisms involved in the protective activity of immunobiotics against intestinal inflammatory damage and may provide useful information for the development of new immunologically functional feeds that help to prevent inflammatory intestinal disorders, including weaning-associated intestinal inflammation.

Laurel A Lagenaur - One of the best experts on this subject based on the ideXlab platform.

  • in vivo evaluation of safety and toxicity of a Lactobacillus jensenii producing modified cyanovirin n in a rhesus macaque vaginal challenge model
    PLOS ONE, 2013
    Co-Authors: Beda Brichacek, Laurel A Lagenaur, David Venzon, Dean H. Hamer
    Abstract:

    Sexual transmission of human immunodeficiency virus type 1 (HIV-1) across the cervicovaginal mucosa in women is influenced by many factors including the microbiota and the presence of underlying inflammation. It is important that potential HIV preventative agents do not alter the mucosal environment in a way that enhances HIV acquisition. We examined the impact of a “live” microbicide on the vaginal mucosal environment in a rhesus macaque repeated vaginal simian-HIV (SHIVSF162P3) challenge model. The microbicide contained a human vaginal Lactobacillus jensenii expressing the HIV-1 entry inhibitor, modified Cyanovirin-N (mCV-N), and henceforth called LB-mCV-N. Macaques were colonized vaginally each week with LB-mCV-N and sampled six days after colonization for culturable bacteria, pH and cervical-vaginal cytokines during the duration of the six-week study. We show that macaques that retained the engineered LB-mCV-N strain in their vaginal microbiota, during SHIV challenge, had lower pH, when colonization levels were higher, and had no evidence of inflammatory cytokines. Indeed, Interleukin-13, a mediator of inflammation, was detected less often in LB-mCV-N colonized macaques than in controls and we found higher levels of Interleukin 1 receptor antagonist (IL-1RA) in LB-mCV-N colonized macaques during the SHIV challenge period. We noted an inverse correlation between levels of mucosal IL-1RA and peak plasma viral load, thus higher IL-1RA correlated with lower viral load in LB-mCV-N treated macaques. These data support the use of LB-mCV-N as a safe “live” microbicide and suggest that lactobacilli themselves may positively impact the mucosal environment.

  • demonstration of vaginal colonization with gusa expressing Lactobacillus jensenii following oral delivery in rhesus macaques
    Research in Microbiology, 2011
    Co-Authors: Laurel A Lagenaur, Dean H. Hamer, Peter P Lee, Brigitte E Sandersbeer
    Abstract:

    The vaginal microbiome, which harbors beneficial Lactobacillus strains, is believed to be a major host defense mechanism for preventing infections of the urogenital tract. It has been suggested that the gastrointestinal tract serves as a reservoir for lactobacilli that colonize the vagina. Using rhesus macaques, we examined whether oral delivery of human vaginal Lactobacillus jensenii 1153-1646, a GusA-producing strain, would result in colonization of the rectum and the vagina. Lactobacilli were identified from the vagina tracts of three macaques on the basis of β-glucuronidase enzyme production, 16S rRNA gene sequence and DNA homology using a repetitive sequence-based polymerase chain reaction.

  • engineered vaginal Lactobacillus strain for mucosal delivery of the human immunodeficiency virus inhibitor cyanovirin n
    Antimicrobial Agents and Chemotherapy, 2006
    Co-Authors: Laurel A Lagenaur, Kirsten Essenmacher, Courtney L Frazierparker, Daniel Tsai, Thomas P Parks, Dean H. Hamer, David A. Simpson, Qiang Xu
    Abstract:

    Women are at significant risk of human immunodeficiency virus (HIV) infection, with the cervicovaginal mucosa serving as a major portal for virus entry. Female-initiated preventatives, including topical microbicides, are urgently needed to help curtail the HIV/AIDS pandemic. Here we report on the development of a novel, live microbicide that employs a natural vaginal strain of Lactobacillus jensenii engineered to deliver the potent HIV inhibitor cyanovirin-N (CV-N). To facilitate efficient expression of CV-N by this bacterium, the L. jensenii 1153 genome was sequenced, allowing identification of native regulatory elements and sites for the chromosomal integration of heterologous genes. A CV-N expression cassette was optimized and shown to produce high levels of structurally intact CV-N when expressed in L. jensenii. Lactobacillus-derived CV-N was capable of inhibiting CCR5-tropic HIVBaL infectivity in vitro with a 50% inhibitory concentration of 0.3 nM. The CV-N expression cassette was stably integrated as a single copy into the bacterial chromosome and resolved from extraneous plasmid DNA without adversely affecting the bacterial phenotype. This bacterial strain was capable of colonizing the vagina and producing full-length CV-N when administered intravaginally to mice during estrus phase. The CV-N-producing Lactobacillus was genetically stable when propagated in vitro and in vivo. This work represents a major step towards the development of an inexpensive yet durable protein-based microbicide to block the heterosexual transmission of HIV in women.

  • vaginal lactobacilli for mucosal delivery of the anti hiv microbicide cyanovirin n cv n
    Retrovirology, 2005
    Co-Authors: Qiang Xu, Laurel A Lagenaur, Kirsten Essenmacher, Daniel Tsai, Courtney Parker, Chiahwa Chang, Dean H. Hamer, David A. Simpson, Thomas P Parks
    Abstract:

    Results A human vaginal isolate of Lactobacillus jensenii was engineered, by stable integration of an optimized expression cassette into the bacterial genome, to secrete high levels of the highly potent HIV inhibitor, CV-N. The L. jenseniiexpressed CV-N dramatically decreases infectivity of CCR5-tropic HIVBaL and CXCR4-tropic HIVIIIB in vitro. We further demonstrate that this strain is genetically stable and can transiently colonize animal vaginal mucosa, while retaining important characteristics of the native bacterial phenotype.

  • inhibition of hiv infectivity by a natural human isolate of Lactobacillus jensenii engineered to express functional two domain cd4
    Proceedings of the National Academy of Sciences of the United States of America, 2003
    Co-Authors: Theresa L Chang, Laurel A Lagenaur, Chiahwa Chang, David A. Simpson, Qiang Xu, Patrick K Martin, Gary K Schoolnik, David D Ho, Sharon L Hillier, Mark Holodniy
    Abstract:

    The predominant mode of HIV transmission worldwide is via heterosexual contact, with the cervico-vaginal mucosa being the main portal of entry in women. The cervico-vaginal mucosa is naturally colonized with commensal bacteria, primarily lactobacilli. To address the urgent need for female-controlled approaches to block the heterosexual transmission of HIV, we have engineered natural human vaginal isolates of Lactobacillus jensenii to secrete two-domain CD4 (2D CD4) proteins. The secreted 2D CD4 recognized a conformation-dependent anti-CD4 antibody and bound HIV type 1 (HIV-1) gp120, suggesting that the expressed proteins adopted a native conformation. Single-cycle infection assays using HIV-1HxB2 carrying a luciferase reporter gene demonstrated that Lactobacillus-derived 2D CD4 inhibited HIV-1 entry into target cells in a dose-dependent manner. Importantly, coincubation of the engineered bacteria with recombinant HIV-1HxB2 reporter virus led to a significant decrease in virus infectivity of HeLa cells expressing CD4–CXCR4–CCR5. Engineered lactobacilli also caused a modest, but statistically significant, decrease in infectivity of a primary isolate, HIV-1JR-FL. This represents an important first step toward the development of engineered commensal bacteria within the vaginal microflora to inhibit heterosexual transmission of HIV.