Larsen Syndrome

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 498 Experts worldwide ranked by ideXlab platform

Kirsten Krohgsorensen - One of the best experts on this subject based on the ideXlab platform.

  • clinical diagnosis of Larsen Syndrome stickler Syndrome and loeys dietz Syndrome in a 19 year old male a case report
    BMC Medical Genetics, 2018
    Co-Authors: N Riise, B Lindberg, Mari Ann Kulseth, S O Fredwall, Rigmor Lundby, Mette E Estensen, Liv Drolsum, E Merckoll, Kirsten Krohgsorensen
    Abstract:

    Larsen Syndrome is a hereditary disorder characterized by osteochondrodysplasia, congenital large-joint dislocations, and craniofacial abnormalities. The autosomal dominant type is caused by mutations in the gene that encodes the connective tissue protein, filamin B (FLNB). Loeys-Dietz Syndrome (LDS) is an autosomal dominant connective tissue disorder characterized by arterial aneurysms, dissections and tortuosity, and skeletal, including craniofacial, manifestations. Mutations in five genes involved in the transforming growth factor beta (TGF-β) signaling pathway cause five types of LDS. Stickler Syndrome is a genetically heterogeneous arthro-ophthalmopathy caused by defects in collagen, exhibiting a wide specter of manifestations in connective tissue. A rare case is reported that was diagnosed with all these three hereditary connective tissue disorders. A 19 year-old, Norwegian male with a clinical diagnosis of Larsen Syndrome and with healthy, non-consanguineous parents attended a reference center for rare connective tissue disorders. Findings at birth were hypotonia, joint hypermobility, hyperextended knees, adductovarus of the feet, cervical kyphosis, craniofacial abnormalities, and an umbilical hernia. From toddlerhood, he required a hearing aid due to combined conductive and sensorineural hearing loss. Eye examination revealed hyperopia, astigmatism, and exotropia. At 10 years of age, he underwent emergency surgery for rupture of an ascending aortic aneurysm. At 19 years of age, a diagnostic re-evaluation was prompted by the findings of more distal aortic dilation, tortuosity of precerebral arteries, and skeletal findings. High throughput sequencing of 34 genes for hereditary connective tissue disorders did not identify any mutation in FLNB, but did identify a de novo missense mutation in TGFBR2 and a nonsense mutation in COL2A1 that was also present in his unaffected father. The diagnosis was revised to LDS Type 2. The patient also fulfills the proposed criteria for Stickler Syndrome with bifid uvula, hearing loss, and a known mutation in COL2A1. LDS should be considered in patients with a clinical diagnosis of Larsen Syndrome, in particular in the presence of arterial aneurysms or tortuosity. Due to genetic heterogeneity and extensive overlap of clinical manifestations, genetic high throughput sequencing analysis is particularly useful for the differential diagnosis of hereditary connective tissue disorders.

Liv Drolsum - One of the best experts on this subject based on the ideXlab platform.

  • clinical diagnosis of Larsen Syndrome stickler Syndrome and loeys dietz Syndrome in a 19 year old male a case report
    BMC Medical Genetics, 2018
    Co-Authors: N Riise, B Lindberg, Mari Ann Kulseth, S O Fredwall, Rigmor Lundby, Mette E Estensen, Liv Drolsum, E Merckoll, Kirsten Krohgsorensen
    Abstract:

    Larsen Syndrome is a hereditary disorder characterized by osteochondrodysplasia, congenital large-joint dislocations, and craniofacial abnormalities. The autosomal dominant type is caused by mutations in the gene that encodes the connective tissue protein, filamin B (FLNB). Loeys-Dietz Syndrome (LDS) is an autosomal dominant connective tissue disorder characterized by arterial aneurysms, dissections and tortuosity, and skeletal, including craniofacial, manifestations. Mutations in five genes involved in the transforming growth factor beta (TGF-β) signaling pathway cause five types of LDS. Stickler Syndrome is a genetically heterogeneous arthro-ophthalmopathy caused by defects in collagen, exhibiting a wide specter of manifestations in connective tissue. A rare case is reported that was diagnosed with all these three hereditary connective tissue disorders. A 19 year-old, Norwegian male with a clinical diagnosis of Larsen Syndrome and with healthy, non-consanguineous parents attended a reference center for rare connective tissue disorders. Findings at birth were hypotonia, joint hypermobility, hyperextended knees, adductovarus of the feet, cervical kyphosis, craniofacial abnormalities, and an umbilical hernia. From toddlerhood, he required a hearing aid due to combined conductive and sensorineural hearing loss. Eye examination revealed hyperopia, astigmatism, and exotropia. At 10 years of age, he underwent emergency surgery for rupture of an ascending aortic aneurysm. At 19 years of age, a diagnostic re-evaluation was prompted by the findings of more distal aortic dilation, tortuosity of precerebral arteries, and skeletal findings. High throughput sequencing of 34 genes for hereditary connective tissue disorders did not identify any mutation in FLNB, but did identify a de novo missense mutation in TGFBR2 and a nonsense mutation in COL2A1 that was also present in his unaffected father. The diagnosis was revised to LDS Type 2. The patient also fulfills the proposed criteria for Stickler Syndrome with bifid uvula, hearing loss, and a known mutation in COL2A1. LDS should be considered in patients with a clinical diagnosis of Larsen Syndrome, in particular in the presence of arterial aneurysms or tortuosity. Due to genetic heterogeneity and extensive overlap of clinical manifestations, genetic high throughput sequencing analysis is particularly useful for the differential diagnosis of hereditary connective tissue disorders.

Francesco T Mangano - One of the best experts on this subject based on the ideXlab platform.

  • management of severe cervical kyphosis in a patient with Larsen Syndrome case report
    Journal of Neurosurgery, 2008
    Co-Authors: Marci Madera, Alvin H. Crawford, Francesco T Mangano
    Abstract:

    Larsen Syndrome is a rare genetic disorder of the connective tissue that is characterized by multiple joint dislocations, distinctive deformities of the hands and feet, characteristic facial features, kyphoscoliosis, and segmentation anomalies of the vertebrae. Diverse treatment options, including conservative observation and surgical correction, have been reported for patients who present with cervical spine pathophysiology. Differences in surgical approaches, timing of the correction, and pre- or postoperative bracing have been reported. According to the authors, the present case is the first report of a pediatric patient with Larsen Syndrome in whom an asymptomatic cervical instability was treated before neurological deterioration with synchronous anterior decompression and fixation, posterior fusion and fixation, and halo placement. A review of the literature on similar patients reveals the variety of practices associated with a diagnosis of Larsen Syndrome.

Hatem Zayed - One of the best experts on this subject based on the ideXlab platform.

  • Deciphering the Role of Filamin B Calponin-Homology Domain in Causing the Larsen Syndrome, Boomerang Dysplasia, and Atelosteogenesis Type I Spectrum Disorders via a Computational Approach.
    Molecules (Basel Switzerland), 2020
    Co-Authors: Udhaya Kumar S, Srivarshini Sankar, Salma Younes, Thirumal Kumar D, Muneera Naseer Ahmad, Sarah Samer Okashah, Balu Kamaraj, Abeer Mohammed Al-subaie, George Priya Doss C, Hatem Zayed
    Abstract:

    Filamins (FLN) are a family of actin-binding proteins involved in regulating the cytoskeleton and signaling phenomenon by developing a network with F-actin and FLN-binding partners. The FLN family comprises three conserved isoforms in mammals: FLNA, FLNB, and FLNC. FLNB is a multidomain monomer protein with domains containing an actin-binding N-terminal domain (ABD 1–242), encompassing two calponin-homology domains (assigned CH1 and CH2). Primary variants in FLNB mostly occur in the domain (CH2) and surrounding the hinge-1 region. The four autosomal dominant disorders that are associated with FLNB variants are Larsen Syndrome, atelosteogenesis type I (AOI), atelosteogenesis type III (AOIII), and boomerang dysplasia (BD). Despite the intense clustering of FLNB variants contributing to the LS-AO-BD disorders, the genotype-phenotype correlation is still enigmatic. In silico prediction tools and molecular dynamics simulation (MDS) approaches have offered the potential for variant classification and pathogenicity predictions. We retrieved 285 FLNB missense variants from the UniProt, ClinVar, and HGMD databases in the current study. Of these, five and 39 variants were located in the CH1 and CH2 domains, respectively. These variants were subjected to various pathogenicity and stability prediction tools, evolutionary and conservation analyses, and biophysical and physicochemical properties analyses. Molecular dynamics simulation (MDS) was performed on the three candidate variants in the CH2 domain (W148R, F161C, and L171R) that were predicted to be the most pathogenic. The MDS analysis results showed that these three variants are highly compact compared to the native protein, suggesting that they could affect the protein on the structural and functional levels. The computational approach demonstrates the differences between the FLNB mutants and the wild type in a structural and functional context. Our findings expand our knowledge on the genotype-phenotype correlation in FLNB-related LS-AO-BD disorders on the molecular level, which may pave the way for optimizing drug therapy by integrating precision medicine.

  • structural analysis of g1691s variant in the human filamin b gene responsible for Larsen Syndrome a comparative computational approach
    Journal of Cellular Biochemistry, 2017
    Co-Authors: P Sneha, Kumar Thirumal D, Himani Tanwar, R Siva, George Priya C Doss, Hatem Zayed
    Abstract:

    Larsen Syndrome (LRS) is a rare genetic disease associated with variable manifestations including skeletal malformations, dislocations of the large joints, and notable changes in facial and limb features. Genetic variants in the Filamin B (FLNB) gene are associated with the development of LRS. We searched two literature databases (OMIM and PubMed) and three gene variant databases (HGMD, UniProt, & dbSNP) to capture all the possible variants associated with LRS phenotype, which may have an impact on the FLNB function. Our search yielded 77 variants that might impact the FLNB protein function in patients with LRS. We performed rigorous computational analysis such as conservational, biochemical, pathogenicity, and structural computational analyses to understand the deleterious effect of the G1691S variant. Further, the structural changes of the G1691S variant was compared with a null variant (G1691A) and the native protein through a molecular dynamic simulation study of 50 ns. We found that the variant G1691S was highly deleterious and destabilize the protein when compared to the native and variant G1691A. This might be due to the physicochemical changes in the variant G1691S when compared to the native and variant G1691A. The destabilization was further supported by transformation of bend to coil in variant G1691S whereas bend was retained in native and variant G1691A through molecular dynamics analysis. Our study shed light on the importance of computational methods to understand the molecular nature of genetic variants and structural insights on the function of the FLNB protein. J. Cell. Biochem. 118: 1900-1910, 2017. © 2017 Wiley Periodicals, Inc.

N Riise - One of the best experts on this subject based on the ideXlab platform.

  • clinical diagnosis of Larsen Syndrome stickler Syndrome and loeys dietz Syndrome in a 19 year old male a case report
    BMC Medical Genetics, 2018
    Co-Authors: N Riise, B Lindberg, Mari Ann Kulseth, S O Fredwall, Rigmor Lundby, Mette E Estensen, Liv Drolsum, E Merckoll, Kirsten Krohgsorensen
    Abstract:

    Larsen Syndrome is a hereditary disorder characterized by osteochondrodysplasia, congenital large-joint dislocations, and craniofacial abnormalities. The autosomal dominant type is caused by mutations in the gene that encodes the connective tissue protein, filamin B (FLNB). Loeys-Dietz Syndrome (LDS) is an autosomal dominant connective tissue disorder characterized by arterial aneurysms, dissections and tortuosity, and skeletal, including craniofacial, manifestations. Mutations in five genes involved in the transforming growth factor beta (TGF-β) signaling pathway cause five types of LDS. Stickler Syndrome is a genetically heterogeneous arthro-ophthalmopathy caused by defects in collagen, exhibiting a wide specter of manifestations in connective tissue. A rare case is reported that was diagnosed with all these three hereditary connective tissue disorders. A 19 year-old, Norwegian male with a clinical diagnosis of Larsen Syndrome and with healthy, non-consanguineous parents attended a reference center for rare connective tissue disorders. Findings at birth were hypotonia, joint hypermobility, hyperextended knees, adductovarus of the feet, cervical kyphosis, craniofacial abnormalities, and an umbilical hernia. From toddlerhood, he required a hearing aid due to combined conductive and sensorineural hearing loss. Eye examination revealed hyperopia, astigmatism, and exotropia. At 10 years of age, he underwent emergency surgery for rupture of an ascending aortic aneurysm. At 19 years of age, a diagnostic re-evaluation was prompted by the findings of more distal aortic dilation, tortuosity of precerebral arteries, and skeletal findings. High throughput sequencing of 34 genes for hereditary connective tissue disorders did not identify any mutation in FLNB, but did identify a de novo missense mutation in TGFBR2 and a nonsense mutation in COL2A1 that was also present in his unaffected father. The diagnosis was revised to LDS Type 2. The patient also fulfills the proposed criteria for Stickler Syndrome with bifid uvula, hearing loss, and a known mutation in COL2A1. LDS should be considered in patients with a clinical diagnosis of Larsen Syndrome, in particular in the presence of arterial aneurysms or tortuosity. Due to genetic heterogeneity and extensive overlap of clinical manifestations, genetic high throughput sequencing analysis is particularly useful for the differential diagnosis of hereditary connective tissue disorders.