Lumbar Enlargement

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 231 Experts worldwide ranked by ideXlab platform

Alexandre Cesar Santos De Rezende - One of the best experts on this subject based on the ideXlab platform.

  • Investigation of neuroprotective action of ciliary neurotrophic factor (CNTF) fused to a protein transduction domain (PTD)
    [s.n.], 2018
    Co-Authors: Alexandre Cesar Santos De Rezende
    Abstract:

    Orientador: Francesco LangoneTese (doutorado) - Universidade Estadual de Campinas, Instituto de BiologiaResumo: O fator neurotrófico ciliar (CNTF) despertou grande interesse com a descoberta do seu efeito neuroprotetor sobre motoneurônios após secção de nervos periféricos em ratos neonatos e camundongos adultos. Contudo, seus efeitos colaterais de perda de peso e caquexia impedem seu uso clínico. Uma via alternativa muito promissora, no sentido de eliminar estes efeitos colaterais, parece ser a administração do CNTF conjugado com peptídeos que possuem domínio de translocação de proteínas (PTD-protein transduction domain). Previamente, mostramos que o CNTF conjugado a um PTD derivado da proteína tat do vírus HIV-1 (TAT-CNTF) também tem efeito protetor sobre motoneurônios e não produziu efeitos colaterais no tratamento, por 5 dias, de ratos neonatos (P2-P7) que sofreram secção do nervo isquiático. O presente trabalho teve como objetivo investigar se a administração da TAT-CNTF por tempos mais prolongados seria capaz de manter a sobrevivência de motoneurônios e neurônios sensoriais, bem como de estimular a regeneração axonal, sem a ocorrência dos efeitos colaterais do CNTF. Desta forma, ratos Wistar neonatos (P2) receberam tratamento subcutâneo com CNTF (1,2mg/g/dia) durante 5 dias, TATCNTF (1,2mg/g/dia) ou PBS durante 5 ou 15 dias. Ao final do período de tratamento os animais foram sacrificados por decapitação, sendo coletado para posterior análise o sangue e gorduras marrom interescapular, branca retroperitonial e branca epididimal. Um outro grupo de animais tive o nervo isquiático esquerdo esmagado em P2 e recebeu o mesmo tratamento. No período entre 20 e 60 dias de vida foi realizada a avaliação da recuperação funcional motora por meio de Walking Track Test, e da recuperação funcional sensitiva através da medida do limiar da resposta de retirada da pata a um estímulo elétrico. No 30º ou 60º dia de vida foi realizada marcação retrógrada de neurônios cujos axônios compõem o nervo isquiático utilizando-se Amina Dextrano Biotinilado (BDA). Após 7 dias, os animais foram sacrificados, sendo coletada a intumescência lombar, os gânglios sensoriais L4 e L5 e o nervo isquiático para análise histológica. As análises dos níveis plasmáticos de glicose, triglicérides e ácidos graxos revelaram que o tratamento com TAT-CNTF ou CNTF por igual período (5 dias) produziu modificações no metabolismo energético em relação aos ratos controle (PBS), contudo diferiram quanto à intensidade dos efeitos produzidos. O tratamento prolongado com TAT-CNTF (15 dias) produziu significantes alterações nas concentrações plasmáticas de triglicérides e de colesterol. Entretanto, o tratamento com TAT-CNTF (5 ou 15 dias) produziu efeitos reduzidos sobre os tecidos adiposos quando comparados ao tratamento com CNTF. Os ratos do grupo TAT-CNTF apresentaram peso corporal significativamente menor que aqueles do grupo PBS a partir do 9º dia de tratamento, porém o grupo CNTF apresentou menor peso a partir do 2º dia. Em ambos tratamentos houve reversão desse efeito sobre o peso corporal, porém esta ocorreu mais precocemente nos ratos do grupo TAT-CNTF (P25) quando comparados ao grupo CNTF (P32). A recuperação funcional motora e sensorial dos grupos CNTF e TAT-CNTF foi 50% superior ao grupo controle. Os grupos CNTF e TAT-CNTF também apresentaram maior número de neurônios sensoriais e motores BDA positivos, além de maior número de axônios mielínicos no nervo isquiático quando comparados ao grupo controle. Nossos resultados mostraram que o tratamento com TAT-CNTF, mesmo por períodos mais longos, promoveu a sobrevivência e regeneração axonal de motoneurônios e neurônios sensitivos sem a ocorrência dos efeitos colaterais produzidos pelo tratamento com CNTF. Além disso, tais propriedades da TAT-CNTF contribuíram significativamente para a recuperação funcional motora e sensorial após lesões nervosas periféricas.Abstract: Ciliary neurotrophic factor (CNTF) is known as a neuroprotective agent on motoneurons after peripheral nerve section in neonatal rats and adult mice. However, side effects like weight loss and caquexia have limited its clinical use. A promising approach for the avoidance of such side effects is the fusion of a protein transduction domain (PTD) with CNTF. Previously we showed that CNTF fused with HIV-1 PTD (TAT-CNTF) also had protective effect on motoneurons and did not produce side effects in a 5 days treatment of sciatic nerve transected neonatal rats (P2-P7). The aim of the present work was investigate if the TAT-CNTF administration for long time was capable to support the motoneurons and sensory neurons survival, as well as to stimulate the axonal regeneration, without CNTF side effects. Thus, neonatal Wistar rats (P2) were subcutaneously treated with CNTF (1.2mg/g/day) for 5 days, TAT-CNTF (1.2mg/g/day) or PBS during 5 or 15 days. By the end of treatment rats were killed by decaptation and blood, intrascapular brown adipose tissue and retroperitonial and epididimal white adipose tissue were collected for further analysis. Another group of animals had the left sciatic nerve crushed (NCE) in P2 and received the same treatment. From 20 to 60 days of age a Walking Track Test was performed in order to evaluate the motor function recovery, and the threshold for paw withdraw was used as a measure of sensitive functional recovery. The retrograde labeling of sciatic nerve neurons using Biotinilated Dextran Amine (BDA) was performed at 30 or 60 days of age. Rats were killed after 7 days and the Lumbar Enlargement, L4 and L5 dorsal root ganglia and the sciatic nerve were collected for histological analysis. The analysis glucose, triglycerides and fatty acid plasmatic levels demonstrated that 5 days TAT-CNTF or CNTF treatment induced changes in energy metabolism compared to control rats, however the effects of these treatments had different intensities. The long term treatment with TAT-CNTF (15 days) induced important changes in triglycerides and cholesterol plasmatic levels. However TAT-CNTF treatment (5 or 15 days) had reduced effects on adipose tissue when compared to CNTF. After the 9th day of treatment the TAT-CNTF group had a smaller body weight when compared to the PBS group, on the other hand the CNTF group had a smaller body weight after the 2nd day compared to the PBS group. In both treatments (CNTF and TATCNTF) there was a reversion of the body weight effect, however this was earlier in the TAT-CNTF group (P25) than on the CNTF group (P32). The motor and sensorial functional recovery of CNTF and TAT-CNTF groups was 50% greater than the control group. CNTF and TAT-CNTF groups also displayed a greater number of BDA positive motor and sensory neurons, and more myelinic axons in the sciatic nerve compared to the control group. Our results demonstrate that TAT-CNTF long term treatment was able to promote the survival and axonal regeneration of motor and sensory neurons without important CNTF related side effects. Moreover, TAT-CNTF properties had significant contribution for the motor and sensory functional recovery after peripheral nerve lesion.DoutoradoBiologia CelularDoutor em Biologia Celular e Estrutura

  • Investigation of neuroprotective action of ciliary neurotrophic factor (CNTF) fused to a protein transduction domain (PTD)
    2017
    Co-Authors: Alexandre Cesar Santos De Rezende
    Abstract:

    Resumo: O fator neurotrófico ciliar (CNTF) despertou grande interesse com a descoberta do seu efeito neuroprotetor sobre motoneurônios após secção de nervos periféricos em ratos neonatos e camundongos adultos. Contudo, seus efeitos colaterais de perda de peso e caquexia impedem seu uso clínico. Uma via alternativa muito promissora, no sentido de eliminar estes efeitos colaterais, parece ser a administração do CNTF conjugado com peptídeos que possuem domínio de translocação de proteínas (PTD-protein transduction domain). Previamente, mostramos que o CNTF conjugado a um PTD derivado da proteína tat do vírus HIV-1 (TAT-CNTF) também tem efeito protetor sobre motoneurônios e não produziu efeitos colaterais no tratamento, por 5 dias, de ratos neonatos (P2-P7) que sofreram secção do nervo isquiático. O presente trabalho teve como objetivo investigar se a administração da TAT-CNTF por tempos mais prolongados seria capaz de manter a sobrevivência de motoneurônios e neurônios sensoriais, bem como de estimular a regeneração axonal, sem a ocorrência dos efeitos colaterais do CNTF. Desta forma, ratos Wistar neonatos (P2) receberam tratamento subcutâneo com CNTF (1,2mg/g/dia) durante 5 dias, TATCNTF (1,2mg/g/dia) ou PBS durante 5 ou 15 dias. Ao final do período de tratamento os animais foram sacrificados por decapitação, sendo coletado para posterior análise o sangue e gorduras marrom interescapular, branca retroperitonial e branca epididimal. Um outro grupo de animais tive o nervo isquiático esquerdo esmagado em P2 e recebeu o mesmo tratamento. No período entre 20 e 60 dias de vida foi realizada a avaliação da recuperação funcional motora por meio de Walking Track Test, e da recuperação funcional sensitiva através da medida do limiar da resposta de retirada da pata a um estímulo elétrico. No 30º ou 60º dia de vida foi realizada marcação retrógrada de neurônios cujos axônios compõem o nervo isquiático utilizando-se Amina Dextrano Biotinilado (BDA). Após 7 dias, os animais foram sacrificados, sendo coletada a intumescência lombar, os gânglios sensoriais L4 e L5 e o nervo isquiático para análise histológica. As análises dos níveis plasmáticos de glicose, triglicérides e ácidos graxos revelaram que o tratamento com TAT-CNTF ou CNTF por igual período (5 dias) produziu modificações no metabolismo energético em relação aos ratos controle (PBS), contudo diferiram quanto à intensidade dos efeitos produzidos. O tratamento prolongado com TAT-CNTF (15 dias) produziu significantes alterações nas concentrações plasmáticas de triglicérides e de colesterol. Entretanto, o tratamento com TAT-CNTF (5 ou 15 dias) produziu efeitos reduzidos sobre os tecidos adiposos quando comparados ao tratamento com CNTF. Os ratos do grupo TAT-CNTF apresentaram peso corporal significativamente menor que aqueles do grupo PBS a partir do 9º dia de tratamento, porém o grupo CNTF apresentou menor peso a partir do 2º dia. Em ambos tratamentos houve reversão desse efeito sobre o peso corporal, porém esta ocorreu mais precocemente nos ratos do grupo TAT-CNTF (P25) quando comparados ao grupo CNTF (P32). A recuperação funcional motora e sensorial dos grupos CNTF e TAT-CNTF foi 50% superior ao grupo controle. Os grupos CNTF e TAT-CNTF também apresentaram maior número de neurônios sensoriais e motores BDA positivos, além de maior número de axônios mielínicos no nervo isquiático quando comparados ao grupo controle. Nossos resultados mostraram que o tratamento com TAT-CNTF, mesmo por períodos mais longos, promoveu a sobrevivência e regeneração axonal de motoneurônios e neurônios sensitivos sem a ocorrência dos efeitos colaterais produzidos pelo tratamento com CNTF. Além disso, tais propriedades da TAT-CNTF contribuíram significativamente para a recuperação funcional motora e sensorial após lesões nervosas periféricas ;;Abstract: Ciliary neurotrophic factor (CNTF) is known as a neuroprotective agent on motoneurons after peripheral nerve section in neonatal rats and adult mice. However, side effects like weight loss and caquexia have limited its clinical use. A promising approach for the avoidance of such side effects is the fusion of a protein transduction domain (PTD) with CNTF. Previously we showed that CNTF fused with HIV-1 PTD (TAT-CNTF) also had protective effect on motoneurons and did not produce side effects in a 5 days treatment of sciatic nerve transected neonatal rats (P2-P7). The aim of the present work was investigate if the TAT-CNTF administration for long time was capable to support the motoneurons and sensory neurons survival, as well as to stimulate the axonal regeneration, without CNTF side effects. Thus, neonatal Wistar rats (P2) were subcutaneously treated with CNTF (1.2mg/g/day) for 5 days, TAT-CNTF (1.2mg/g/day) or PBS during 5 or 15 days. By the end of treatment rats were killed by decaptation and blood, intrascapular brown adipose tissue and retroperitonial and epididimal white adipose tissue were collected for further analysis. Another group of animals had the left sciatic nerve crushed (NCE) in P2 and received the same treatment. From 20 to 60 days of age a Walking Track Test was performed in order to evaluate the motor function recovery, and the threshold for paw withdraw was used as a measure of sensitive functional recovery. The retrograde labeling of sciatic nerve neurons using Biotinilated Dextran Amine (BDA) was performed at 30 or 60 days of age. Rats were killed after 7 days and the Lumbar Enlargement, L4 and L5 dorsal root ganglia and the sciatic nerve were collected for histological analysis. The analysis glucose, triglycerides and fatty acid plasmatic levels demonstrated that 5 days TAT-CNTF or CNTF treatment induced changes in energy metabolism compared to control rats, however the effects of these treatments had different intensities. The long term treatment with TAT-CNTF (15 days) induced important changes in triglycerides and cholesterol plasmatic levels. However TAT-CNTF treatment (5 or 15 days) had reduced effects on adipose tissue when compared to CNTF. After the 9th day of treatment the TAT-CNTF group had a smaller body weight when compared to the PBS group, on the other hand the CNTF group had a smaller body weight after the 2nd day compared to the PBS group. In both treatments (CNTF and TATCNTF) there was a reversion of the body weight effect, however this was earlier in the TAT-CNTF group (P25) than on the CNTF group (P32). The motor and sensorial functional recovery of CNTF and TAT-CNTF groups was 50% greater than the control group. CNTF and TAT-CNTF groups also displayed a greater number of BDA positive motor and sensory neurons, and more myelinic axons in the sciatic nerve compared to the control group. Our results demonstrate that TAT-CNTF long term treatment was able to promote the survival and axonal regeneration of motor and sensory neurons without important CNTF related side effects. Moreover, TAT-CNTF properties had significant contribution for the motor and sensory functional recovery after peripheral nerve lesion

  • bax and bcl 2 expression and tunel labeling in Lumbar Enlargement of neonatal rats after sciatic axotomy and melatonin treatment
    Brain Research, 2006
    Co-Authors: Fabio Rogerio, Hamilton Jordao, Andre Schwambach Vieira, Carla Cristina Judice Maria, Alexandre Cesar Santos De Rezende, Goncalo Amarante Guimaraes Pereira, Francesco Langone
    Abstract:

    Peripheral axotomy in neonatal rats induces neuronal death. We studied the anti-apoptotic protein Bcl-2 and cell death promoter Bax in spinal cord of neonatal rats after sciatic transection and treatment with melatonin, a neuroprotective substance. Pups were unilaterally axotomized at P2 and received melatonin (1 mg/kg; sc) or vehicle 1 h prior to lesion, immediately after, at 1 h, 2 h and then once daily. Rats were sacrificed at 3 h, 6 h, 24 h, 72 h and 5 days postaxotomy. Intact animals were used as controls. Lumbar Enlargement was processed for Nissl staining, immunohistochemistry and RT-PCR for Bax or Bcl-2 and TUNEL reaction. Motoneurons (MN) of lesioned (L) and normal (N) sides were counted, and MN survival ratio (MSR=L/N) was calculated. Bax and Bcl-2 showed cytoplasmic immunoreactivity (IR). Bax IR was noticeable in small cells but less evident in MN. In unlesioned pups, some Bax-positive small cells (B+) and TUNEL-positive nuclei (T+) were mainly seen in the dorsal horn. In lesioned animals given vehicle, Bax mRNA levels and numbers of B+ and T+ were increased in comparison with intact controls at 24 h postaxotomy. The basal IR for Bax in MN was not changed by axotomy. Bcl-2 IR was noted in all cells and, like Bcl-2 mRNA, was unaltered after lesion. Melatonin reduced MN loss at 24 h, 72 h and 5 days and T+ at 24 h after lesion but did not interfere with Bax or Bcl-2 expression. These results suggest that (1) sciatic transection at P2 increases Bax mRNA and the amount of B+ and T+ in the Lumbar Enlargement, (2) Bax IR in immature MN is not altered by axotomy and (3) melatonin protects MN and dorsal horn cells through a mechanism independent of Bax and Bcl-2.

Michele D Basso - One of the best experts on this subject based on the ideXlab platform.

  • Lumbar myeloid cell trafficking into locomotor networks after thoracic spinal cord injury
    Experimental Neurology, 2016
    Co-Authors: Christopher N Hansen, Diana M Norden, Timothy D Faw, Rochelle J Deibert, Eric S Wohleb, John F Sheridan, Jonathan P Godbout, Michele D Basso
    Abstract:

    Abstract Spinal cord injury (SCI) promotes inflammation along the neuroaxis that jeopardizes plasticity, intrinsic repair and recovery. While inflammation at the injury site is well-established, less is known within remote spinal networks. The presence of bone marrow-derived immune (myeloid) cells in these areas may further impede functional recovery. Previously, high levels of the gelatinase, matrix metalloproteinase-9 (MMP-9) occurred within the Lumbar Enlargement after thoracic SCI and impeded activity-dependent recovery. Since SCI-induced MMP-9 potentially increases vascular permeability, myeloid cell infiltration may drive inflammatory toxicity in locomotor networks. Therefore, we examined neurovascular reactivity and myeloid cell infiltration in the Lumbar cord after thoracic SCI. We show evidence of region-specific recruitment of myeloid cells into the Lumbar but not cervical region. Myeloid infiltration occurred with concomitant increases in chemoattractants (CCL2) and cell adhesion molecules (ICAM-1) around Lumbar vasculature 24 h and 7 days post injury. Bone marrow GFP chimeric mice established robust infiltration of bone marrow-derived myeloid cells into the Lumbar gray matter 24 h after SCI. This cell infiltration occurred when the blood-spinal cord barrier was intact, suggesting active recruitment across the endothelium. Myeloid cells persisted as ramified macrophages at 7 days post injury in parallel with increased inhibitory GAD67 labeling. Importantly, macrophage infiltration required MMP-9.

  • sparing of descending axons rescues interneuron plasticity in the Lumbar cord to allow adaptive learning after thoracic spinal cord injury
    Frontiers in Neural Circuits, 2016
    Co-Authors: Christopher N Hansen, Timothy D Faw, Susan White, John A Buford, James W Grau, Michele D Basso
    Abstract:

    This study evaluated the role of spared axons on structural and behavioral neuroplasticity in the Lumbar Enlargement after a thoracic spinal cord injury (SCI). Previous work has demonstrated that recovery in the presence of spared axons after an incomplete lesion increases behavioral output after a subsequent complete spinal cord transection (TX). This suggests that spared axons direct adaptive changes in below-level neuronal networks of the Lumbar cord. In response to spared fibers, we postulate that Lumbar neuron networks support behavioral gains by preventing aberrant plasticity. As such, the present study measured histological and functional changes in the isolated Lumbar cord after complete TX or incomplete contusion (SCI). To measure functional plasticity in the Lumbar cord, we used an established instrumental learning paradigm (ILP). In this paradigm, neural circuits within isolated Lumbar segments demonstrate learning by an increase in flexion duration that reduces exposure to a noxious leg shock. We employed this model using a proof-of-principle design to evaluate the role of sparing on Lumbar learning and plasticity early (7 days) or late (42 days) after midthoracic SCI in a rodent model. Early after SCI or TX at 7 days, spinal learning was unattainable regardless of whether the animal recovered with or without axonal substrate. Failed learning occurred alongside measures of cell soma atrophy and aberrant dendritic spine expression within interneuron populations responsible for sensorimotor integration and learning. Alternatively, exposure of the Lumbar cord to a small amount of spared axons for 6 weeks produced near-normal learning late after SCI. This coincided with greater cell soma volume and fewer aberrant dendritic spines on interneurons. Thus, an opportunity to influence activity-based learning in locomotor networks depends on spared axons limiting maladaptive plasticity. Together, this work identifies a time dependent interaction between spared axonal systems and adaptive plasticity in locomotor networks and highlights a critical window for activity-based rehabilitation.

  • elevated mmp 9 in the Lumbar cord early after thoracic spinal cord injury impedes motor relearning in mice
    The Journal of Neuroscience, 2013
    Co-Authors: Christopher N Hansen, Rochelle J Deibert, Lesley C Fisher, Lyn B Jakeman, Haoqian Zhang, Linda J Noblehaeusslein, Susan White, Michele D Basso
    Abstract:

    Spinal cord injury results in distant pathology around putative locomotor networks that may jeopardize the recovery of locomotion. We previously showed that activated microglia and increased cytokine expression extend at least 10 segments below the injury to influence sensory function. Matrix metalloproteinase-9 (MMP-9) is a potent regulator of acute neuroinflammation. Whether MMP-9 is produced remote to the injury or influences locomotor plasticity remains unexamined. Therefore, we characterized the Lumbar Enlargement after a T9 spinal cord injury in C57BL/6 (wild-type [WT]) and MMP-9-null (knock-out [KO]) mice. Within 24 h, resident microglia displayed an activated phenotype alongside increased expression of progelatinase MMP-3 in WT mice. By 7 d, increases in active MMP-9 around Lumbar vasculature and production of proinflammatory TNF-α were evident. Deletion of MMP-9 attenuated remote microglial activation and restored TNF-α expression to homeostatic levels. To determine whether MMP-9 impedes locomotor plasticity, we delivered Lumbar-focused treadmill training in WT and KO mice during early (2–9 d) or late (35–42 d) phases of recovery. Robust behavioral improvements were observed by 7 d, when only trained KO mice stepped in the open field. Locomotor improvements were retained for 4 weeks as identified using state of the art mouse kinematics. Neither training nor MMP-9 depletion alone promoted recovery. The same intervention delivered late was ineffective, suggesting that lesion site sparing is insufficient to facilitate activity-based training and recovery. Our work suggests that by attenuating remote mechanisms of inflammation, acute treadmill training can harness endogenous spinal plasticity to promote robust recovery.

Akihiko Matsumine - One of the best experts on this subject based on the ideXlab platform.

  • distribution and polarization of microglia and macrophages at injured sites and the Lumbar Enlargement after spinal cord injury
    Neuroscience Letters, 2020
    Co-Authors: Hideaki Nakajima, Kazuya Honjoh, Shuji Watanabe, Arisa Kubota, Akihiko Matsumine
    Abstract:

    Spinal cord injury (SCI) causes loss of locomotor function and chronic neuropathic pain (NeP). Hematogenous macrophages and activated microglia are key monocytic lineage cell types in the response to SCI, and each has M1- and M2-phenotypes. To understand the roles of these cells in neuronal regeneration and chronic NeP after SCI, differences in distribution and phenotypes of activated microglia and infiltrated macrophages after SCI were examined at the injured site and the Lumbar Enlargement, as a remote region. Chimeric mice were used for differentiating activated microglia from hematogenous macrophages. The prevalences of activated microglia and infiltrating macrophages increased at day 14 after SCI, at the time of most severe pain hypersensitivity, with mainly M1-type hematogenous macrophages at the injured site and M2-type activated microglia at the Lumbar Enlargement. Peak expression of TNF-α, an M1-induced cytokine, occurred on day 4 post-SCI at the injured site, but not until day 14 at the Lumbar Enlargement. Expression of IL-4, a M2-induced cytokine, peaked at 4 days after SCI at both sites. These results suggest different roles of activated microglia and hematogenous macrophages, including both phenotypes of each cell, in neuronal regeneration and chronic NeP after SCI at the injured site and Lumbar Enlargement. The prevalence of the M1 over the M2 phenotype at the injured site until the subacute phase after SCI may be partially responsible for the lack of functional recovery and chronic NeP after SCI. Activation of M2-type microglia at the Lumbar Enlargement in response to inflammatory cytokines from the injured site might be important in chronic below-level pain. These findings are useful for establishment of a therapeutic target for prevention of motor deterioration and NeP in the time-dependent response to SCI.

  • relationship of inflammatory cytokines from m1 type microglia macrophages at the injured site and Lumbar Enlargement with neuropathic pain after spinal cord injury in the ccl21 knockout plt mouse
    Frontiers in Cellular Neuroscience, 2019
    Co-Authors: Kazuya Honjoh, Hideaki Nakajima, Shuji Watanabe, Takayuki Hirai, Akihiko Matsumine
    Abstract:

    Spinal cord injury (SCI) causes loss of normal sensation and often leads to debilitating neuropathic pain (NeP). Chronic NeP develops at or below the SCI lesion in as many as 80% of patients with SCI and may be induced by modulators of neuronal excitability released from activated microglia and macrophages. In the inflammatory response after SCI, different microglia/macrophage populations that are classically activated (M1 phenotype) or alternatively activated (M2 phenotype) have become of great interest. Chemokines have also recently attracted attention in neuron-microglia communication. CCL21 is a chemokine that activates microglia in the central nervous system (CNS) and is expressed only in neurons with an insult or mechanical injury. In this study using an SCI model in mutant (plt) mice with deficient CCL21 expression, we assessed post-SCI NeP and expression of microglia/macrophages and inflammatory cytokines at the injured site and Lumbar Enlargement. SCI-induced hypersensitivities to mechanical and thermal stimulation were relieved in plt mice compared with those in wild-type (C57BL/6) mice, although there was no difference in motor function. Immunohistochemistry and flow cytometry analysis showed that the phenotype of microglia/macrophages was M1 type-dominant in both types of mice at the lesion site and Lumbar Enlargement. A decrease of M1-type microglia/macrophages was seen in plt mice compared with wild-type, while the number of M2-type microglia/macrophages did not differ between these mice. In immunoblot analysis, expression of M1-induced cytokines [tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ)] was decreased in plt mice, while that of M2-induced cytokines interleukin-4 (IL-4, IL-10) did not differ in the two types of mice. The results of this study indicate that suppression of expression of inflammatory cytokines by decreasing the number of M1-type microglia/macrophages at the injured site and Lumbar Enlargement is associated with provision of an environment for reduction of NeP. These findings may be useful for the design of new therapies to alleviate NeP after SCI.

Christopher N Hansen - One of the best experts on this subject based on the ideXlab platform.

  • Lumbar myeloid cell trafficking into locomotor networks after thoracic spinal cord injury
    Experimental Neurology, 2016
    Co-Authors: Christopher N Hansen, Diana M Norden, Timothy D Faw, Rochelle J Deibert, Eric S Wohleb, John F Sheridan, Jonathan P Godbout, Michele D Basso
    Abstract:

    Abstract Spinal cord injury (SCI) promotes inflammation along the neuroaxis that jeopardizes plasticity, intrinsic repair and recovery. While inflammation at the injury site is well-established, less is known within remote spinal networks. The presence of bone marrow-derived immune (myeloid) cells in these areas may further impede functional recovery. Previously, high levels of the gelatinase, matrix metalloproteinase-9 (MMP-9) occurred within the Lumbar Enlargement after thoracic SCI and impeded activity-dependent recovery. Since SCI-induced MMP-9 potentially increases vascular permeability, myeloid cell infiltration may drive inflammatory toxicity in locomotor networks. Therefore, we examined neurovascular reactivity and myeloid cell infiltration in the Lumbar cord after thoracic SCI. We show evidence of region-specific recruitment of myeloid cells into the Lumbar but not cervical region. Myeloid infiltration occurred with concomitant increases in chemoattractants (CCL2) and cell adhesion molecules (ICAM-1) around Lumbar vasculature 24 h and 7 days post injury. Bone marrow GFP chimeric mice established robust infiltration of bone marrow-derived myeloid cells into the Lumbar gray matter 24 h after SCI. This cell infiltration occurred when the blood-spinal cord barrier was intact, suggesting active recruitment across the endothelium. Myeloid cells persisted as ramified macrophages at 7 days post injury in parallel with increased inhibitory GAD67 labeling. Importantly, macrophage infiltration required MMP-9.

  • sparing of descending axons rescues interneuron plasticity in the Lumbar cord to allow adaptive learning after thoracic spinal cord injury
    Frontiers in Neural Circuits, 2016
    Co-Authors: Christopher N Hansen, Timothy D Faw, Susan White, John A Buford, James W Grau, Michele D Basso
    Abstract:

    This study evaluated the role of spared axons on structural and behavioral neuroplasticity in the Lumbar Enlargement after a thoracic spinal cord injury (SCI). Previous work has demonstrated that recovery in the presence of spared axons after an incomplete lesion increases behavioral output after a subsequent complete spinal cord transection (TX). This suggests that spared axons direct adaptive changes in below-level neuronal networks of the Lumbar cord. In response to spared fibers, we postulate that Lumbar neuron networks support behavioral gains by preventing aberrant plasticity. As such, the present study measured histological and functional changes in the isolated Lumbar cord after complete TX or incomplete contusion (SCI). To measure functional plasticity in the Lumbar cord, we used an established instrumental learning paradigm (ILP). In this paradigm, neural circuits within isolated Lumbar segments demonstrate learning by an increase in flexion duration that reduces exposure to a noxious leg shock. We employed this model using a proof-of-principle design to evaluate the role of sparing on Lumbar learning and plasticity early (7 days) or late (42 days) after midthoracic SCI in a rodent model. Early after SCI or TX at 7 days, spinal learning was unattainable regardless of whether the animal recovered with or without axonal substrate. Failed learning occurred alongside measures of cell soma atrophy and aberrant dendritic spine expression within interneuron populations responsible for sensorimotor integration and learning. Alternatively, exposure of the Lumbar cord to a small amount of spared axons for 6 weeks produced near-normal learning late after SCI. This coincided with greater cell soma volume and fewer aberrant dendritic spines on interneurons. Thus, an opportunity to influence activity-based learning in locomotor networks depends on spared axons limiting maladaptive plasticity. Together, this work identifies a time dependent interaction between spared axonal systems and adaptive plasticity in locomotor networks and highlights a critical window for activity-based rehabilitation.

  • elevated mmp 9 in the Lumbar cord early after thoracic spinal cord injury impedes motor relearning in mice
    The Journal of Neuroscience, 2013
    Co-Authors: Christopher N Hansen, Rochelle J Deibert, Lesley C Fisher, Lyn B Jakeman, Haoqian Zhang, Linda J Noblehaeusslein, Susan White, Michele D Basso
    Abstract:

    Spinal cord injury results in distant pathology around putative locomotor networks that may jeopardize the recovery of locomotion. We previously showed that activated microglia and increased cytokine expression extend at least 10 segments below the injury to influence sensory function. Matrix metalloproteinase-9 (MMP-9) is a potent regulator of acute neuroinflammation. Whether MMP-9 is produced remote to the injury or influences locomotor plasticity remains unexamined. Therefore, we characterized the Lumbar Enlargement after a T9 spinal cord injury in C57BL/6 (wild-type [WT]) and MMP-9-null (knock-out [KO]) mice. Within 24 h, resident microglia displayed an activated phenotype alongside increased expression of progelatinase MMP-3 in WT mice. By 7 d, increases in active MMP-9 around Lumbar vasculature and production of proinflammatory TNF-α were evident. Deletion of MMP-9 attenuated remote microglial activation and restored TNF-α expression to homeostatic levels. To determine whether MMP-9 impedes locomotor plasticity, we delivered Lumbar-focused treadmill training in WT and KO mice during early (2–9 d) or late (35–42 d) phases of recovery. Robust behavioral improvements were observed by 7 d, when only trained KO mice stepped in the open field. Locomotor improvements were retained for 4 weeks as identified using state of the art mouse kinematics. Neither training nor MMP-9 depletion alone promoted recovery. The same intervention delivered late was ineffective, suggesting that lesion site sparing is insufficient to facilitate activity-based training and recovery. Our work suggests that by attenuating remote mechanisms of inflammation, acute treadmill training can harness endogenous spinal plasticity to promote robust recovery.

Hideaki Nakajima - One of the best experts on this subject based on the ideXlab platform.

  • distribution and polarization of microglia and macrophages at injured sites and the Lumbar Enlargement after spinal cord injury
    Neuroscience Letters, 2020
    Co-Authors: Hideaki Nakajima, Kazuya Honjoh, Shuji Watanabe, Arisa Kubota, Akihiko Matsumine
    Abstract:

    Spinal cord injury (SCI) causes loss of locomotor function and chronic neuropathic pain (NeP). Hematogenous macrophages and activated microglia are key monocytic lineage cell types in the response to SCI, and each has M1- and M2-phenotypes. To understand the roles of these cells in neuronal regeneration and chronic NeP after SCI, differences in distribution and phenotypes of activated microglia and infiltrated macrophages after SCI were examined at the injured site and the Lumbar Enlargement, as a remote region. Chimeric mice were used for differentiating activated microglia from hematogenous macrophages. The prevalences of activated microglia and infiltrating macrophages increased at day 14 after SCI, at the time of most severe pain hypersensitivity, with mainly M1-type hematogenous macrophages at the injured site and M2-type activated microglia at the Lumbar Enlargement. Peak expression of TNF-α, an M1-induced cytokine, occurred on day 4 post-SCI at the injured site, but not until day 14 at the Lumbar Enlargement. Expression of IL-4, a M2-induced cytokine, peaked at 4 days after SCI at both sites. These results suggest different roles of activated microglia and hematogenous macrophages, including both phenotypes of each cell, in neuronal regeneration and chronic NeP after SCI at the injured site and Lumbar Enlargement. The prevalence of the M1 over the M2 phenotype at the injured site until the subacute phase after SCI may be partially responsible for the lack of functional recovery and chronic NeP after SCI. Activation of M2-type microglia at the Lumbar Enlargement in response to inflammatory cytokines from the injured site might be important in chronic below-level pain. These findings are useful for establishment of a therapeutic target for prevention of motor deterioration and NeP in the time-dependent response to SCI.

  • relationship of inflammatory cytokines from m1 type microglia macrophages at the injured site and Lumbar Enlargement with neuropathic pain after spinal cord injury in the ccl21 knockout plt mouse
    Frontiers in Cellular Neuroscience, 2019
    Co-Authors: Kazuya Honjoh, Hideaki Nakajima, Shuji Watanabe, Takayuki Hirai, Akihiko Matsumine
    Abstract:

    Spinal cord injury (SCI) causes loss of normal sensation and often leads to debilitating neuropathic pain (NeP). Chronic NeP develops at or below the SCI lesion in as many as 80% of patients with SCI and may be induced by modulators of neuronal excitability released from activated microglia and macrophages. In the inflammatory response after SCI, different microglia/macrophage populations that are classically activated (M1 phenotype) or alternatively activated (M2 phenotype) have become of great interest. Chemokines have also recently attracted attention in neuron-microglia communication. CCL21 is a chemokine that activates microglia in the central nervous system (CNS) and is expressed only in neurons with an insult or mechanical injury. In this study using an SCI model in mutant (plt) mice with deficient CCL21 expression, we assessed post-SCI NeP and expression of microglia/macrophages and inflammatory cytokines at the injured site and Lumbar Enlargement. SCI-induced hypersensitivities to mechanical and thermal stimulation were relieved in plt mice compared with those in wild-type (C57BL/6) mice, although there was no difference in motor function. Immunohistochemistry and flow cytometry analysis showed that the phenotype of microglia/macrophages was M1 type-dominant in both types of mice at the lesion site and Lumbar Enlargement. A decrease of M1-type microglia/macrophages was seen in plt mice compared with wild-type, while the number of M2-type microglia/macrophages did not differ between these mice. In immunoblot analysis, expression of M1-induced cytokines [tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ)] was decreased in plt mice, while that of M2-induced cytokines interleukin-4 (IL-4, IL-10) did not differ in the two types of mice. The results of this study indicate that suppression of expression of inflammatory cytokines by decreasing the number of M1-type microglia/macrophages at the injured site and Lumbar Enlargement is associated with provision of an environment for reduction of NeP. These findings may be useful for the design of new therapies to alleviate NeP after SCI.