Management Hierarchy

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 228 Experts worldwide ranked by ideXlab platform

Durán Vera Inés - One of the best experts on this subject based on the ideXlab platform.

  • Diseño de procesos cíclicos de adsorción para captura de CO2 en el contexto de una planta de gestión de residuos
    2019
    Co-Authors: Durán Vera Inés
    Abstract:

    Tesis con mención internacionalLas industrias de gestión y tratamiento de residuos sólidos deben afrontar nuevos retos en el contexto de la transición hacia una economía verde a la que se enfrenta la sociedad actual. El reciclado y la reutilización de los residuos son las opciones prioritarias en la jerarquía de gestión de la Unión Europea. Cuando esto no es posible es preferible, tanto desde el punto de vista medioambiental como económico, recuperar el contenido energético de los residuos en vez de depositarlos en vertedero. La digestión anaerobia para la obtención de biogás y la valorización energética, mediante incineración, son las dos estrategias más interesantes y con mayor crecimiento en los últimos años. La incineración de residuos permite obtener calor y/o electricidad, pero genera grandes cantidades de CO₂. Por otro lado, una manera alternativa para poder procesar la fracción orgánica de residuos municipales es la digestión anaerobia. El biogás procedente de este proceso es una importante fuente renovable de metano. La presencia de CO₂ en el biogás reduce su valor energético, por lo que su separación presenta un gran interés. Con el fin de reducir al máximo el impacto de sus actividades, resulta esencial la separación de CO₂ de las distintas corrientes gaseosas generadas en el proceso de gestión integral de residuos. La presente Tesis Doctoral se enmarca dentro de la temática de captura de CO₂ mediante adsorción con sólidos, en una instalación de gestión de residuos. El trabajo desarrollado abarca, tanto la preparación del material adsorbente y su evaluación, como el diseño del proceso de adsorción y, todo ello, manteniendo las premisas de sostenibilidad. La primera etapa se ha centrado en la preparación del material adsorbente. Se ha propuesto la producción de carbones activados usando precursores biomásicos de bajo coste mediante activación física. Se ha estudiado la posibilidad de emplear serrín de pino y distintas variedades de microalgas y se ha evaluado la influencia de la carbonización hidrotermal o la oxidación, según el precursor, como tratamientos previos. Con objeto de realizar un primer cribado respecto a su potencial como adsorbentes de CO2, se ha evaluado la capacidad de adsorción de los materiales preparados en condiciones estáticas, en termobalanza. A partir de los datos experimentales se ha estudiado también el mecanismo de transferencia de materia durante el proceso de adsorción mediante el modelo difusional intraparticular. En una segunda etapa se ha evaluado el comportamiento de los adsorbentes en condiciones dinámicas, en un dispositivo de lecho fijo, mediante ciclos múltiples de adsorción y desorción. Para ello se han utilizado adsorbentes preparados a partir de serrín de pino. Se han determinado las capacidades máximas de captura de CO2 (curvas de ruptura), tanto en mezclas binarias CO2/N2 como CO2/CH4, en distintas condiciones de presión y temperatura. Puesto que ambas corrientes, incineración y biogás, presentan contenidos en vapor de agua significativos, se ha evaluado el efecto de su co-adsorción con los otros componentes gaseosos. La evaluación dinámica se ha completado con la realización de experimentos cíclicos en condiciones próximas a las reales en un proceso industrial, es decir, sin saturación del lecho, para su aplicación en una instalación de incineración de residuos. La tercera etapa se ha centrado en el diseño y la optimización de un proceso cíclico de adsorción y desorción; ha sido necesario analizar y evaluar múltiples parámetros: número de columnas, configuración de las etapas, presión y temperatura en las condiciones de operación, estrategias de regeneración del adsorbente, etc. Estos parámetros, junto con las propiedades del adsorbente, determinan tanto la pureza como la recuperación del producto (CO2 en este caso). Los datos experimentales de equilibrio, cinética y propiedades físicas del lecho de adsorción obtenidos previamente han sido empleados para el desarrollo de modelos numéricos, basados en balances de materia y energía, aplicables a la separación de CO₂. Para ello se ha utilizado el software Aspen Adsorption™. Se ha validado el modelo con los resultados experimentales obtenidos en el lecho fijo, lo que ha permitido su uso posterior en la simulación del proceso de adsorción-desorción de CO2 empleando otras configuraciones. The solid waste Management and treatment industry is facing new challenges as part of the transition to a green economy in today’s society. Waste recycling and reuse are the measures of prior concern for the Management Hierarchy established by the European Union. In cases where this is not feasible, it is preferable, both from an environmental and economic point of view, to recover energy from waste instead of disposing of it in a landfill. Anaerobic digestion to obtain biogas and energy recovery through incineration have become two of the most promising and fastest-growing strategies in recent years. On the one hand, waste incineration produces heat and/or electricity; however, it also generates large amounts of CO₂. On the other hand, anaerobic digestion is an alternative route for treating the organic fraction of municipal waste. Biogas from this process is an important renewable source of methane. The presence of CO₂ in biogas reduces its energy content. Therefore, its separation is of paramount importance. In order to minimize the impact of an integrated waste Management process, it is essential to separate CO₂ from the different gas streams. This doctoral dissertation focuses on CO2 capture, by means of adsorption on solid sorbents, in a waste Management facility. The study carried out encompasses both the preparation of the adsorbent material and its evaluation, as well as the design of the adsorption process. The sustainability of the whole process played a key role in the design of the research. The first stage focuses on the preparation of the adsorbent material. The production of activated carbons from low-cost biomass precursors by physical activation was proposed. The possibility of using pine sawdust and different species of microalgae was studied and the influence of pre-treatments such as hydrothermal carbonization or oxidation, depending on the precursor, was assessed. In order to perform a first screening regarding their potential as CO2 adsorbents, the adsorption capacity of the activated carbons was evaluated under static conditions by means of a thermogravimetric analyzer. Based on the experimental data gathered, the mass transfer mechanism involved in the adsorption of CO2 was studied using the intraparticle diffusional model. In a second phase, the performance of the adsorbents under dynamic conditions was tested in a fixed-bed unit over consecutive adsorption−desorption cycles. For this purpose, the adsorbents prepared from pine sawdust were selected. The maximum CO2 capture capacities (breakthrough curves) were determined in both CO2/N2 and CO2/CH4 binary mixtures at different pressure and temperature conditions. Since both gaseous streams, incineration flue gas and biogas, contain significant amounts of water vapor, the effect of its co-adsorption with other gaseous components was evaluated. The dynamic evaluation was completed with a series of cyclic experiments in conditions close to the real ones encountered in an industrial process, i.e., avoiding saturation of the bed, for its application in a waste incineration plant. The third stage consists in the design and optimization of a cyclic process of adsorption and desorption. This required the analysis and evaluation of multiple parameters: the number of columns, the configuration of steps, the operating pressure and temperature, regeneration strategies, etc. These parameters, together with the properties of the adsorbent, determine both the degree of purity and the recovery of the product (CO2 in this case). The experimental data of adsorption equilibrium, kinetics and the physical properties of the adsorbent bed were employed to develop numerical models based on mass, momentum and energy balances, relevant to CO2 separation. For this purpose, the commercial software Aspen Adsorption™ was used. The model was validated against the experimental results obtained in the fixed-bed unit, which allows it to be used in the simulation of the CO2 adsorption-desorption process with other configurations

  • Diseño de procesos cíclicos de adsorción para la captura de CO2 en el contexto de una planta de gestión de residuos
    2019
    Co-Authors: Durán Vera Inés
    Abstract:

    Tesis doctoral presentada en el Departamento de Energía de la Universidad de Oviedo, 2019[EN] The solid waste Management and treatment industry is facing new challenges as part of the transition to a green economy in today’s society. Waste recycling and reuse are the measures of prior concern for the Management Hierarchy established by the European Union. In cases where this is not feasible, it is preferable, both from an environmental and economic point of view, to recover energy from waste instead of disposing of it in a landfill. Anaerobic digestion to obtain biogas and energy recovery through incineration have become two of the most promising and fastest-growing strategies in recent years. On the one hand, waste incineration produces heat and/or electricity; however, it also generates large amounts of CO₂. On the other hand, anaerobic digestion is an alternative route for treating the organic fraction of municipal waste. Biogas from this process is an important renewable source of methane. The presence of CO₂ in biogas reduces its energy content. Therefore, its separation is of paramount importance. In order to minimize the impact of an integrated waste Management process, it is essential to separate CO₂ from the different gas streams. This doctoral dissertation focuses on CO2 capture, by means of adsorption on solid sorbents, in a waste Management facility. The study carried out encompasses both the preparation of the adsorbent material and its evaluation, as well as the design of the adsorption process. The sustainability of the whole process played a key role in the design of the research.The first stage focuses on the preparation of the adsorbent material. The production of activated carbons from low-cost biomass precursors by physical activation was proposed. The possibility of using pine sawdust and different species of microalgae was studied and the influence of pre-treatments such as hydrothermal carbonization or oxidation, depending on the precursor, was assessed.In order to perform a first screening regarding their potential as CO2 adsorbents, the adsorption capacity of the activated carbons was evaluated under static conditions by means of a thermogravimetric analyzer. Based on the experimental data gathered, the mass transfer mechanism involved in the adsorption of CO2 was studied using the intraparticle diffusional model. In a second phase, the performance of the adsorbents under dynamic conditions was tested in a fixed-bed unit over consecutive adsorption−desorption cycles. For this purpose, the adsorbents prepared from pine sawdust were selected. The maximum CO2 capture capacities (breakthrough curves) were determined in both CO2/N2 and CO2/CH4 binary mixtures at different pressure and temperature conditions. Since both gaseous streams, incineration flue gas and biogas, contain significant amounts of water vapor, the effect of its co-adsorption with other gaseous components was evaluated.The dynamic evaluation was completed with a series of cyclic experiments in conditions close to the real ones encountered in an industrial process, i.e., avoiding saturation of the bed, for its application in a waste incineration plant. The third stage consists in the design and optimization of a cyclic process of adsorption and desorption. This required the analysis and evaluation of multiple parameters: the number of columns, the configuration of steps, the operating pressure and temperature, regeneration strategies, etc. These parameters, together with the properties of the adsorbent, determine both the degree of purity and the recovery of the product (CO2 in this case). The experimental data of adsorption equilibrium, kinetics and the physical properties of the adsorbent bed were employed to develop numerical models based on mass, momentum and energy balances, relevant to CO2 separation. For this purpose, the commercial software Aspen Adsorption™ was used. The model was validated against the experimental results obtained in the fixed-bed unit, which allows it to be used in the simulation of the CO2 adsorption-desorption process with other configurations.[ES] Las industrias de gestión y tratamiento de residuos sólidos deben afrontar nuevos retos en el contexto de la transición hacia una economía verde a la que se enfrenta la sociedad actual. El reciclado y la reutilización de los residuos son las opciones prioritarias en la jerarquía de gestión de la Unión Europea. Cuando esto no es posible, es preferible, tanto desde el punto de vista medioambiental como económico, recuperar el contenido energético de los residuos en vez de depositarlos en vertedero. La digestión anaerobia para la obtención de biogás y la valorización energética, mediante incineración, son las dos estrategias más interesantes y con mayor crecimiento en los últimos años. La incineración de residuos permite obtener calor y/o electricidad, pero genera grandes cantidades de CO₂. Por otro lado, una manera alternativa para poder procesar la fracción orgánica de residuos municipales es la digestión anaerobia. El biogás procedente de este proceso es una importante fuente renovable de metano. La presencia de CO₂ en el biogás reduce su valor energético, por lo que su separación presenta un gran interés. Con el fin de reducir al máximo el impacto de sus actividades, resulta esencial la separación de CO₂ de las distintas corrientes gaseosas generadas en el proceso de gestión integral de residuos. La presente Tesis Doctoral se enmarca dentro de la temática de captura de CO₂ mediante adsorción con sólidos, en una instalación de gestión de residuos. El trabajo desarrollado abarca, tanto la preparación del material adsorbente y su evaluación, como el diseño del proceso de adsorción y, todo ello, manteniendo las premisas de sostenibilidad.La primera etapa se ha centrado en la preparación del material adsorbente. Se ha propuesto la producción de carbones activados usando precursores biomásicos de bajo coste mediante activación física. Se ha estudiado la posibilidad de emplear serrín de pino y distintas variedades de microalgas y se ha evaluado la influencia de la carbonización hidrotermal o la oxidación, según el precursor, como tratamientos previos. Con objeto de realizar un primer cribado respecto a su potencial como adsorbentes de CO2, se ha evaluado la capacidad de adsorción de los materiales preparados en condiciones estáticas en termobalanza. A partir de los datos experimentales se ha estudiado también el mecanismo de transferencia de materia, durante el proceso de adsorción, mediante el modelo difusional intraparticular. En una segunda etapa se ha evaluado el comportamiento de los adsorbentes en condiciones dinámicas, en un dispositivo de lecho fijo, mediante ciclos múltiples de adsorción y desorción. Para ello se han utilizado adsorbentes preparados a partir de serrín de pino. Se han determinado las capacidades máximas de captura de CO2 (curvas de ruptura), tanto en mezclas binarias CO2/N2 como CO2/CH4, en distintas condiciones de presión y temperatura. Puesto que ambas corrientes, incineración y biogás, presentan contenidos en vapor de agua significativos, se ha evaluado el efecto de su co-adsorción con los otros componentes gaseosos.La evaluación dinámica se ha completado con la realización de experimentos cíclicos en condiciones próximas a las reales en un proceso industrial, es decir, sin saturación del lecho, para su aplicación en una instalación de incineración de residuos. La tercera etapa se ha centrado en el diseño y la optimización de un proceso cíclico de adsorción y desorción; ha sido necesario analizar y evaluar múltiples parámetros: número de columnas, configuración de las etapas, presión y temperatura en las condiciones de operación, estrategias de regeneración del adsorbente, etc. Estos parámetros, junto con las propiedades del adsorbente, determinan tanto la pureza como la recuperación del producto (CO2 en este caso).Los datos experimentales de equilibrio y cinética y las propiedades físicas del lecho de adsorción obtenidos previamente han sido empleados para el desarrollo de modelos numéricos, basados en balances de materia y energía, aplicables a la separación de CO₂. Para ello se ha utilizado el software Aspen Adsorption™. Se ha validado el modelo con los resultados experimentales obtenidos en el lecho fijo, lo que ha permitido su uso posterior en la simulación del proceso de adsorción-desorción de CO2 empleando otras configuraciones.Peer reviewe

Changxin Wang - One of the best experts on this subject based on the ideXlab platform.

  • construction and demolition waste Management contributing factors coupled with reduce reuse and recycle strategies for effective waste Management a review
    Journal of Cleaner Production, 2020
    Co-Authors: Kamyar Kabirifar, Mohammad Mojtahedi, Changxin Wang
    Abstract:

    Abstract Construction and demolition waste (C&DW) as a direct consequence of rapid urbanization is increasing around the world. C&DW generation has been identified as one of the major issues in the construction industry due to its direct impacts on the environment as well as the efficiency of construction industry. It is estimated that an overall of 35% of C&DW is landfilled globally, therefore, effective C&DW Management is crucial in order to minimize detrimental impacts of C&DW for the environment. As the industry cannot continue to practice if the resources on which it depends are depleted, C&DW Management needs to be implemented in an effective way. Despite considering many well-developed strategies for C&DW Management, the outputs of the implementation of these strategies is far from optimum. The main reason of this inefficiency is due to inadequate understanding of principal factors, which play a vital role in C&DW Management. Therefore, the aim of this research is to critically scrutinize the concept of C&DW and its managerial issues in a systematic way to come up with the effective C&DW Management. In order to achieve this aim, and based on a systematic review of 97 research papers relevant to effective C&DW Management, this research considers two main categories as fundamental factors affecting C&DW Management namely, C&DW Management Hierarchy including reduce, reuse, and recycle strategies, and effective C&DW Management contributing factors, including C&DW Management from sustainability perspective, C&DW stakeholders’ attitudes, C&DW project life cycle, and C&DW Management tools. Subsequently, these factors are discussed in detail and findings are scrutinized in order to clarify current and future practices of C&DW Management from both academic and practical perspectives.

Avila Del Pozo, Ander - One of the best experts on this subject based on the ideXlab platform.

  • Advanced power-electronic converters based on GaN semiconductors
    2019
    Co-Authors: Avila Del Pozo, Ander
    Abstract:

    Tesis con mención internacionalLas industrias de gestión y tratamiento de residuos sólidos deben afrontar nuevos retos en el contexto de la transición hacia una economía verde a la que se enfrenta la sociedad actual. El reciclado y la reutilización de los residuos son las opciones prioritarias en la jerarquía de gestión de la Unión Europea. Cuando esto no es posible es preferible, tanto desde el punto de vista medioambiental como económico, recuperar el contenido energético de los residuos en vez de depositarlos en vertedero. La digestión anaerobia para la obtención de biogás y la valorización energética, mediante incineración, son las dos estrategias más interesantes y con mayor crecimiento en los últimos años. La incineración de residuos permite obtener calor y/o electricidad, pero genera grandes cantidades de CO₂. Por otro lado, una manera alternativa para poder procesar la fracción orgánica de residuos municipales es la digestión anaerobia. El biogás procedente de este proceso es una importante fuente renovable de metano. La presencia de CO₂ en el biogás reduce su valor energético, por lo que su separación presenta un gran interés. Con el fin de reducir al máximo el impacto de sus actividades, resulta esencial la separación de CO₂ de las distintas corrientes gaseosas generadas en el proceso de gestión integral de residuos. La presente Tesis Doctoral se enmarca dentro de la temática de captura de CO₂ mediante adsorción con sólidos, en una instalación de gestión de residuos. El trabajo desarrollado abarca, tanto la preparación del material adsorbente y su evaluación, como el diseño del proceso de adsorción y, todo ello, manteniendo las premisas de sostenibilidad. La primera etapa se ha centrado en la preparación del material adsorbente. Se ha propuesto la producción de carbones activados usando precursores biomásicos de bajo coste mediante activación física. Se ha estudiado la posibilidad de emplear serrín de pino y distintas variedades de microalgas y se ha evaluado la influencia de la carbonización hidrotermal o la oxidación, según el precursor, como tratamientos previos. Con objeto de realizar un primer cribado respecto a su potencial como adsorbentes de CO2, se ha evaluado la capacidad de adsorción de los materiales preparados en condiciones estáticas, en termobalanza. A partir de los datos experimentales se ha estudiado también el mecanismo de transferencia de materia durante el proceso de adsorción mediante el modelo difusional intraparticular. En una segunda etapa se ha evaluado el comportamiento de los adsorbentes en condiciones dinámicas, en un dispositivo de lecho fijo, mediante ciclos múltiples de adsorción y desorción. Para ello se han utilizado adsorbentes preparados a partir de serrín de pino. Se han determinado las capacidades máximas de captura de CO2 (curvas de ruptura), tanto en mezclas binarias CO2/N2 como CO2/CH4, en distintas condiciones de presión y temperatura. Puesto que ambas corrientes, incineración y biogás, presentan contenidos en vapor de agua significativos, se ha evaluado el efecto de su co-adsorción con los otros componentes gaseosos. La evaluación dinámica se ha completado con la realización de experimentos cíclicos en condiciones próximas a las reales en un proceso industrial, es decir, sin saturación del lecho, para su aplicación en una instalación de incineración de residuos. La tercera etapa se ha centrado en el diseño y la optimización de un proceso cíclico de adsorción y desorción; ha sido necesario analizar y evaluar múltiples parámetros: número de columnas, configuración de las etapas, presión y temperatura en las condiciones de operación, estrategias de regeneración del adsorbente, etc. Estos parámetros, junto con las propiedades del adsorbente, determinan tanto la pureza como la recuperación del producto (CO2 en este caso). Los datos experimentales de equilibrio, cinética y propiedades físicas del lecho de adsorción obtenidos previamente han sido empleados para el desarrollo de modelos numéricos, basados en balances de materia y energía, aplicables a la separación de CO₂. Para ello se ha utilizado el software Aspen Adsorption™. Se ha validado el modelo con los resultados experimentales obtenidos en el lecho fijo, lo que ha permitido su uso posterior en la simulación del proceso de adsorción-desorción de CO2 empleando otras configuraciones. The solid waste Management and treatment industry is facing new challenges as part of the transition to a green economy in today’s society. Waste recycling and reuse are the measures of prior concern for the Management Hierarchy established by the European Union. In cases where this is not feasible, it is preferable, both from an environmental and economic point of view, to recover energy from waste instead of disposing of it in a landfill. Anaerobic digestion to obtain biogas and energy recovery through incineration have become two of the most promising and fastest-growing strategies in recent years. On the one hand, waste incineration produces heat and/or electricity; however, it also generates large amounts of CO₂. On the other hand, anaerobic digestion is an alternative route for treating the organic fraction of municipal waste. Biogas from this process is an important renewable source of methane. The presence of CO₂ in biogas reduces its energy content. Therefore, its separation is of paramount importance. In order to minimize the impact of an integrated waste Management process, it is essential to separate CO₂ from the different gas streams. This doctoral dissertation focuses on CO2 capture, by means of adsorption on solid sorbents, in a waste Management facility. The study carried out encompasses both the preparation of the adsorbent material and its evaluation, as well as the design of the adsorption process. The sustainability of the whole process played a key role in the design of the research. The first stage focuses on the preparation of the adsorbent material. The production of activated carbons from low-cost biomass precursors by physical activation was proposed. The possibility of using pine sawdust and different species of microalgae was studied and the influence of pre-treatments such as hydrothermal carbonization or oxidation, depending on the precursor, was assessed. In order to perform a first screening regarding their potential as CO2 adsorbents, the adsorption capacity of the activated carbons was evaluated under static conditions by means of a thermogravimetric analyzer. Based on the experimental data gathered, the mass transfer mechanism involved in the adsorption of CO2 was studied using the intraparticle diffusional model. In a second phase, the performance of the adsorbents under dynamic conditions was tested in a fixed-bed unit over consecutive adsorption−desorption cycles. For this purpose, the adsorbents prepared from pine sawdust were selected. The maximum CO2 capture capacities (breakthrough curves) were determined in both CO2/N2 and CO2/CH4 binary mixtures at different pressure and temperature conditions. Since both gaseous streams, incineration flue gas and biogas, contain significant amounts of water vapor, the effect of its co-adsorption with other gaseous components was evaluated. The dynamic evaluation was completed with a series of cyclic experiments in conditions close to the real ones encountered in an industrial process, i.e., avoiding saturation of the bed, for its application in a waste incineration plant. The third stage consists in the design and optimization of a cyclic process of adsorption and desorption. This required the analysis and evaluation of multiple parameters: the number of columns, the configuration of steps, the operating pressure and temperature, regeneration strategies, etc. These parameters, together with the properties of the adsorbent, determine both the degree of purity and the recovery of the product (CO2 in this case). The experimental data of adsorption equilibrium, kinetics and the physical properties of the adsorbent bed were employed to develop numerical models based on mass, momentum and energy balances, relevant to CO2 separation. For this purpose, the commercial software Aspen Adsorption™ was used. The model was validated against the experimental results obtained in the fixed-bed unit, which allows it to be used in the simulation of the CO2 adsorption-desorption process with other configurations

Rod Noble - One of the best experts on this subject based on the ideXlab platform.

  • uk construction site safety discourses of enforcement and engagement
    Construction Management and Economics, 2013
    Co-Authors: Fred Sherratt, Peter Farrell, Rod Noble
    Abstract:

    Developments in safety Management on large UK construction sites have seen a paradigm shift from enforcement-based systems to safety-culture programmes, which seek to engage with the workforce to create fully cooperative and safety-conscious sites. Founded in social constructionism, recent research sought out the master discourses of safety on large UK construction sites through the examination of safety signage, talk around safety and safety documentation. Two of the most prominent discourses of safety on sites were found to be safety as enforcement and safety as engagement, reflecting the change in safety Management strategies. These discourses were found to be interrelated in their constructions of safety, yet also varied in their associations with practice, responsibility, social interactions and the Management Hierarchy of the sites. These findings develop the current understanding of safety found on sites, with relation to the hierarchical structures of safety Management and the discourses of enforcement and engagement in practice. The findings have significance for the safety practices of large UK contractors in developing and improving their safety-culture programmes, as well as suggesting potential new directions in the academic research of safety in construction.

Kamyar Kabirifar - One of the best experts on this subject based on the ideXlab platform.

  • construction and demolition waste Management contributing factors coupled with reduce reuse and recycle strategies for effective waste Management a review
    Journal of Cleaner Production, 2020
    Co-Authors: Kamyar Kabirifar, Mohammad Mojtahedi, Changxin Wang
    Abstract:

    Abstract Construction and demolition waste (C&DW) as a direct consequence of rapid urbanization is increasing around the world. C&DW generation has been identified as one of the major issues in the construction industry due to its direct impacts on the environment as well as the efficiency of construction industry. It is estimated that an overall of 35% of C&DW is landfilled globally, therefore, effective C&DW Management is crucial in order to minimize detrimental impacts of C&DW for the environment. As the industry cannot continue to practice if the resources on which it depends are depleted, C&DW Management needs to be implemented in an effective way. Despite considering many well-developed strategies for C&DW Management, the outputs of the implementation of these strategies is far from optimum. The main reason of this inefficiency is due to inadequate understanding of principal factors, which play a vital role in C&DW Management. Therefore, the aim of this research is to critically scrutinize the concept of C&DW and its managerial issues in a systematic way to come up with the effective C&DW Management. In order to achieve this aim, and based on a systematic review of 97 research papers relevant to effective C&DW Management, this research considers two main categories as fundamental factors affecting C&DW Management namely, C&DW Management Hierarchy including reduce, reuse, and recycle strategies, and effective C&DW Management contributing factors, including C&DW Management from sustainability perspective, C&DW stakeholders’ attitudes, C&DW project life cycle, and C&DW Management tools. Subsequently, these factors are discussed in detail and findings are scrutinized in order to clarify current and future practices of C&DW Management from both academic and practical perspectives.