Mycobacterium butyricum

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 180 Experts worldwide ranked by ideXlab platform

Heike L Rittner - One of the best experts on this subject based on the ideXlab platform.

  • Mycobacteria Attenuate Nociceptive Responses by Formyl Peptide Receptor Triggered Opioid Peptide Release from Neutrophils
    2016
    Co-Authors: Heike L Rittner, Dagmar Hackel, Andrea Stolz, Michael Schaefer, Shaaban Mousa, Christoph Stein, Er Brack
    Abstract:

    In inflammation, pain is regulated by a balance of pro- and analgesic mediators. Analgesic mediators include opioid peptides which are secreted by neutrophils at the site of inflammation, leading to activation of opioid receptors on peripheral sensory neurons. In humans, local opioids and opioid peptides significantly downregulate postoperative as well as arthritic pain. In rats, inflammatory pain is induced by intraplantar injection of heat inactivated Mycobacterium butyricum, a component of complete Freund’s adjuvant. We hypothesized that mycobacterially derived formyl peptide receptor (FPR) and/or toll like receptor (TLR) agonists could activate neutrophils, leading to opioid peptide release and inhibition of inflammatory pain. In complete Freund’s adjuvant-induced inflammation, thermal and mechanical nociceptive thresholds of the paw were quantified (Hargreaves and Randall-Selitto methods, respectively). Withdrawal time to heat was decreased following systemic neutrophil depletion as well as local injection of opioid receptor antagonists or anti-opioid peptide (i.e. Met-enkephalin, b-endorphin) antibodies indicating an increase in pain. In vitro, opioid peptide release from human and rat neutrophils was measured by radioimmunoassay. Met-enkephalin release was triggered by Mycobacterium butyricum and formyl peptides but not by TLR-2 or TLR-4 agonists. Mycobacterium butyricum induced a rise in intracellular calcium as determined by FURA loading and calcium imaging. Opioid peptide release was blocked by intracellular calcium chelation as well as phosphoinositol-3-kinase inhibition. The FPR antagonists Boc-FLFLF and cyclosporine H reduced opioid peptid

  • recruitment of opioid peptide containing neutrophils is independent of formyl peptide receptors
    Journal of Neuroimmunology, 2011
    Co-Authors: A Stolz, Dagmar Hackel, Heike L Rittner, Shaaban A Mousa
    Abstract:

    Abstract In complete Freund's adjuvans (CFA) inflammation opioid containing neutrophils release opioid peptides upon stimulation and mediate peripheral analgesia. Neutrophil migration is regulated partially by chemokines, but other mediators e.g. formyl peptides could also contribute. In vitro , formyl peptides but not Mycobacterium butyricum (CFA component) induced migration of neutrophils. In contrast, local formyl peptide injection did not induce leukocyte recruitment in vivo due to insufficient up-regulation of adhesion molecule expression. Furthermore, leukocyte recruitment and peripheral opioid-mediated analgesia were unaffected by systemic formyl peptide receptor blockade in CFA inflammation. Thus, while formyl peptides do not regulate migration they directly stimulate opioid peptide release.

  • mycobacteria attenuate nociceptive responses by formyl peptide receptor triggered opioid peptide release from neutrophils
    PLOS Pathogens, 2009
    Co-Authors: Dagmar Hackel, Heike L Rittner, Shaaban A Mousa, Philipp Voigt, Andrea Stolz, Dominika Labuz, Michael Schafer, Michael Schaefer
    Abstract:

    In inflammation, pain is regulated by a balance of pro- and analgesic mediators. Analgesic mediators include opioid peptides which are secreted by neutrophils at the site of inflammation, leading to activation of opioid receptors on peripheral sensory neurons. In humans, local opioids and opioid peptides significantly downregulate postoperative as well as arthritic pain. In rats, inflammatory pain is induced by intraplantar injection of heat inactivated Mycobacterium butyricum, a component of complete Freund's adjuvant. We hypothesized that mycobacterially derived formyl peptide receptor (FPR) and/or toll like receptor (TLR) agonists could activate neutrophils, leading to opioid peptide release and inhibition of inflammatory pain. In complete Freund's adjuvant-induced inflammation, thermal and mechanical nociceptive thresholds of the paw were quantified (Hargreaves and Randall-Selitto methods, respectively). Withdrawal time to heat was decreased following systemic neutrophil depletion as well as local injection of opioid receptor antagonists or anti-opioid peptide (i.e. Met-enkephalin, β-endorphin) antibodies indicating an increase in pain. In vitro, opioid peptide release from human and rat neutrophils was measured by radioimmunoassay. Met-enkephalin release was triggered by Mycobacterium butyricum and formyl peptides but not by TLR-2 or TLR-4 agonists. Mycobacterium butyricum induced a rise in intracellular calcium as determined by FURA loading and calcium imaging. Opioid peptide release was blocked by intracellular calcium chelation as well as phosphoinositol-3-kinase inhibition. The FPR antagonists Boc-FLFLF and cyclosporine H reduced opioid peptide release in vitro and increased inflammatory pain in vivo while TLR 2/4 did not appear to be involved. In summary, mycobacteria activate FPR on neutrophils, resulting in tonic secretion of opioid peptides from neutrophils and in a decrease in inflammatory pain. Future therapeutic strategies may aim at selective FPR agonists to boost endogenous analgesia.

  • Mycobacteria attenuate nociceptive responses by formyl peptide receptor triggered opioid peptide release from neutrophils.
    Public Library of Science (PLoS), 2009
    Co-Authors: Heike L Rittner, Dagmar Hackel, Philipp Voigt, Andrea Stolz, Dominika Labuz, Michael Schafer, Michael Schaefer, Shaaban Mousa, Christoph Stein, Alexander Brack
    Abstract:

    In inflammation, pain is regulated by a balance of pro- and analgesic mediators. Analgesic mediators include opioid peptides which are secreted by neutrophils at the site of inflammation, leading to activation of opioid receptors on peripheral sensory neurons. In humans, local opioids and opioid peptides significantly downregulate postoperative as well as arthritic pain. In rats, inflammatory pain is induced by intraplantar injection of heat inactivated Mycobacterium butyricum, a component of complete Freund's adjuvant. We hypothesized that mycobacterially derived formyl peptide receptor (FPR) and/or toll like receptor (TLR) agonists could activate neutrophils, leading to opioid peptide release and inhibition of inflammatory pain. In complete Freund's adjuvant-induced inflammation, thermal and mechanical nociceptive thresholds of the paw were quantified (Hargreaves and Randall-Selitto methods, respectively). Withdrawal time to heat was decreased following systemic neutrophil depletion as well as local injection of opioid receptor antagonists or anti-opioid peptide (i.e. Met-enkephalin, beta-endorphin) antibodies indicating an increase in pain. In vitro, opioid peptide release from human and rat neutrophils was measured by radioimmunoassay. Met-enkephalin release was triggered by Mycobacterium butyricum and formyl peptides but not by TLR-2 or TLR-4 agonists. Mycobacterium butyricum induced a rise in intracellular calcium as determined by FURA loading and calcium imaging. Opioid peptide release was blocked by intracellular calcium chelation as well as phosphoinositol-3-kinase inhibition. The FPR antagonists Boc-FLFLF and cyclosporine H reduced opioid peptide release in vitro and increased inflammatory pain in vivo while TLR 2/4 did not appear to be involved. In summary, mycobacteria activate FPR on neutrophils, resulting in tonic secretion of opioid peptides from neutrophils and in a decrease in inflammatory pain. Future therapeutic strategies may aim at selective FPR agonists to boost endogenous analgesia

Dagmar Hackel - One of the best experts on this subject based on the ideXlab platform.

  • Mycobacteria Attenuate Nociceptive Responses by Formyl Peptide Receptor Triggered Opioid Peptide Release from Neutrophils
    2016
    Co-Authors: Heike L Rittner, Dagmar Hackel, Andrea Stolz, Michael Schaefer, Shaaban Mousa, Christoph Stein, Er Brack
    Abstract:

    In inflammation, pain is regulated by a balance of pro- and analgesic mediators. Analgesic mediators include opioid peptides which are secreted by neutrophils at the site of inflammation, leading to activation of opioid receptors on peripheral sensory neurons. In humans, local opioids and opioid peptides significantly downregulate postoperative as well as arthritic pain. In rats, inflammatory pain is induced by intraplantar injection of heat inactivated Mycobacterium butyricum, a component of complete Freund’s adjuvant. We hypothesized that mycobacterially derived formyl peptide receptor (FPR) and/or toll like receptor (TLR) agonists could activate neutrophils, leading to opioid peptide release and inhibition of inflammatory pain. In complete Freund’s adjuvant-induced inflammation, thermal and mechanical nociceptive thresholds of the paw were quantified (Hargreaves and Randall-Selitto methods, respectively). Withdrawal time to heat was decreased following systemic neutrophil depletion as well as local injection of opioid receptor antagonists or anti-opioid peptide (i.e. Met-enkephalin, b-endorphin) antibodies indicating an increase in pain. In vitro, opioid peptide release from human and rat neutrophils was measured by radioimmunoassay. Met-enkephalin release was triggered by Mycobacterium butyricum and formyl peptides but not by TLR-2 or TLR-4 agonists. Mycobacterium butyricum induced a rise in intracellular calcium as determined by FURA loading and calcium imaging. Opioid peptide release was blocked by intracellular calcium chelation as well as phosphoinositol-3-kinase inhibition. The FPR antagonists Boc-FLFLF and cyclosporine H reduced opioid peptid

  • recruitment of opioid peptide containing neutrophils is independent of formyl peptide receptors
    Journal of Neuroimmunology, 2011
    Co-Authors: A Stolz, Dagmar Hackel, Heike L Rittner, Shaaban A Mousa
    Abstract:

    Abstract In complete Freund's adjuvans (CFA) inflammation opioid containing neutrophils release opioid peptides upon stimulation and mediate peripheral analgesia. Neutrophil migration is regulated partially by chemokines, but other mediators e.g. formyl peptides could also contribute. In vitro , formyl peptides but not Mycobacterium butyricum (CFA component) induced migration of neutrophils. In contrast, local formyl peptide injection did not induce leukocyte recruitment in vivo due to insufficient up-regulation of adhesion molecule expression. Furthermore, leukocyte recruitment and peripheral opioid-mediated analgesia were unaffected by systemic formyl peptide receptor blockade in CFA inflammation. Thus, while formyl peptides do not regulate migration they directly stimulate opioid peptide release.

  • mycobacteria attenuate nociceptive responses by formyl peptide receptor triggered opioid peptide release from neutrophils
    PLOS Pathogens, 2009
    Co-Authors: Dagmar Hackel, Heike L Rittner, Shaaban A Mousa, Philipp Voigt, Andrea Stolz, Dominika Labuz, Michael Schafer, Michael Schaefer
    Abstract:

    In inflammation, pain is regulated by a balance of pro- and analgesic mediators. Analgesic mediators include opioid peptides which are secreted by neutrophils at the site of inflammation, leading to activation of opioid receptors on peripheral sensory neurons. In humans, local opioids and opioid peptides significantly downregulate postoperative as well as arthritic pain. In rats, inflammatory pain is induced by intraplantar injection of heat inactivated Mycobacterium butyricum, a component of complete Freund's adjuvant. We hypothesized that mycobacterially derived formyl peptide receptor (FPR) and/or toll like receptor (TLR) agonists could activate neutrophils, leading to opioid peptide release and inhibition of inflammatory pain. In complete Freund's adjuvant-induced inflammation, thermal and mechanical nociceptive thresholds of the paw were quantified (Hargreaves and Randall-Selitto methods, respectively). Withdrawal time to heat was decreased following systemic neutrophil depletion as well as local injection of opioid receptor antagonists or anti-opioid peptide (i.e. Met-enkephalin, β-endorphin) antibodies indicating an increase in pain. In vitro, opioid peptide release from human and rat neutrophils was measured by radioimmunoassay. Met-enkephalin release was triggered by Mycobacterium butyricum and formyl peptides but not by TLR-2 or TLR-4 agonists. Mycobacterium butyricum induced a rise in intracellular calcium as determined by FURA loading and calcium imaging. Opioid peptide release was blocked by intracellular calcium chelation as well as phosphoinositol-3-kinase inhibition. The FPR antagonists Boc-FLFLF and cyclosporine H reduced opioid peptide release in vitro and increased inflammatory pain in vivo while TLR 2/4 did not appear to be involved. In summary, mycobacteria activate FPR on neutrophils, resulting in tonic secretion of opioid peptides from neutrophils and in a decrease in inflammatory pain. Future therapeutic strategies may aim at selective FPR agonists to boost endogenous analgesia.

  • Mycobacteria attenuate nociceptive responses by formyl peptide receptor triggered opioid peptide release from neutrophils.
    Public Library of Science (PLoS), 2009
    Co-Authors: Heike L Rittner, Dagmar Hackel, Philipp Voigt, Andrea Stolz, Dominika Labuz, Michael Schafer, Michael Schaefer, Shaaban Mousa, Christoph Stein, Alexander Brack
    Abstract:

    In inflammation, pain is regulated by a balance of pro- and analgesic mediators. Analgesic mediators include opioid peptides which are secreted by neutrophils at the site of inflammation, leading to activation of opioid receptors on peripheral sensory neurons. In humans, local opioids and opioid peptides significantly downregulate postoperative as well as arthritic pain. In rats, inflammatory pain is induced by intraplantar injection of heat inactivated Mycobacterium butyricum, a component of complete Freund's adjuvant. We hypothesized that mycobacterially derived formyl peptide receptor (FPR) and/or toll like receptor (TLR) agonists could activate neutrophils, leading to opioid peptide release and inhibition of inflammatory pain. In complete Freund's adjuvant-induced inflammation, thermal and mechanical nociceptive thresholds of the paw were quantified (Hargreaves and Randall-Selitto methods, respectively). Withdrawal time to heat was decreased following systemic neutrophil depletion as well as local injection of opioid receptor antagonists or anti-opioid peptide (i.e. Met-enkephalin, beta-endorphin) antibodies indicating an increase in pain. In vitro, opioid peptide release from human and rat neutrophils was measured by radioimmunoassay. Met-enkephalin release was triggered by Mycobacterium butyricum and formyl peptides but not by TLR-2 or TLR-4 agonists. Mycobacterium butyricum induced a rise in intracellular calcium as determined by FURA loading and calcium imaging. Opioid peptide release was blocked by intracellular calcium chelation as well as phosphoinositol-3-kinase inhibition. The FPR antagonists Boc-FLFLF and cyclosporine H reduced opioid peptide release in vitro and increased inflammatory pain in vivo while TLR 2/4 did not appear to be involved. In summary, mycobacteria activate FPR on neutrophils, resulting in tonic secretion of opioid peptides from neutrophils and in a decrease in inflammatory pain. Future therapeutic strategies may aim at selective FPR agonists to boost endogenous analgesia

Àngels Franch - One of the best experts on this subject based on the ideXlab platform.

  • Cocoa intake attenuates oxidative stress associated with rat adjuvant arthritis
    Pharmacological research, 2012
    Co-Authors: Sara Ramos-romero, Àngels Franch, Francisco J. Pérez-cano, Emma Ramiro-puig, Margarida Castell
    Abstract:

    Cocoa contains flavonoids with antioxidant properties. The aim of this study was to ascertain the effect of cocoa intake on oxidative stress associated with a model of chronic inflammation such as adjuvant arthritis. Female Wistar rats were fed with a 5% or 10% cocoa-enriched diet or were given p.o. a quercetin suspension every other day for 10 days. Arthritis was induced by a heat-killed Mycobacterium butyricum suspension. Reactive oxygen species (ROS) produced by macrophages, and splenic superoxide dismutase (total, cytoplasmic and mitochondrial) and catalase activities were determined. Clinically, joint swelling in arthritic rats was not reduced by antioxidants; however, the 5% cocoa diet and quercetin administration reduced ROS production. Moreover, the 5% cocoa diet normalized the activities of superoxide dismutase and catalase. In conclusion, a cocoa diet reduces the oxidative stress associated with a chronic inflammatory pathology, although it was not enough to attenuate joint swelling.

  • Administration of a nondepleting anti-CD4 monoclonal antibody (W3/25) prevents adjuvant arthritis, even upon rechallenge: parallel administration of a depleting anti-CD8 monoclonal antibody (OX8) does not modify the effect of W3/25.
    Cellular immunology, 1995
    Co-Authors: Carme Pelegrí, Margarida Castell, Marı́ Paz Morante, Cristina Castellote, Àngels Franch
    Abstract:

    The aim of this study was to determine the effects of the anti-CD4 monoclonal antibody (mAb) W3/25, found to be nondepleting, on the onset of rat adjuvant arthritis (AA), and, in addition, to ascertain whether depletion of CD8+ cells during the same period could interfere with those effects. Female Wistar rats in which AA had been induced were treated with W3/25 and/or OX8 (anti-rat CD8) mAb during the latency period of arthritis. W3/25 alone or in combination with OX8 prevented the inflammatory process of AA. When the protected groups were rechallenged with a second dose of Mycobacterium butyricum no arthritis was observed. Protected and nonprotected arthritic animals developed the same anti-mycobacteria antibody levels as the arthritic control group. This study indicates that a nondepleting anti-CD4 mAb can prevent AA, while CD8+ lymphocytes do not appear relevant for the development of AA and do not seem to have a regulatory role for CD4+ cells.

  • Adjuvant arthritis pretreatment with type II collagen and Mycobacterium butyricum.
    Immunobiology, 1992
    Co-Authors: Àngels Franch, Salvador Franch, Cristina Franch, Margarida Franch
    Abstract:

    A treatment previous to adjuvant arthritis induction has been performed with type II collagen (CII) or Mycobacterium butyricum (Mb), which is the inducer of the pathology. Pretreatment was administered in two different ways: a) subcutaneously or intradermally 14 days before arthritis induction, and b) intravenously 3 days before induction. In order to relate the change in inflammation to the corresponding antigen immune response, serum antibodies and delayed type hypersensitivity (DTH) against CII or Mb were studied. Pretreatment with s.c. CII 14 days before induction produced slight protection against arthritis and significantly delayed its onset; systemic inflammation showed good positive correlation with anti-CII antibodies. The CII administered i.v. 3 days before arthritic challenge did not significantly modify the inflammatory process. The use of i.d. subarthritogenic doses of Mb 14 days before induction protected a high percentage of the animals from the posterior arthritic challenge; this protection was accompanied by high anti-Mb antibody titers and DTH reaction. When Mb was given i.v. 3 days before induction, a partial protection of inflammation was observed; arthritis was milder and its onset was delayed. These changes were accompanied by reduced humoral and cellular response to Mb.

Michael Schaefer - One of the best experts on this subject based on the ideXlab platform.

  • Mycobacteria Attenuate Nociceptive Responses by Formyl Peptide Receptor Triggered Opioid Peptide Release from Neutrophils
    2016
    Co-Authors: Heike L Rittner, Dagmar Hackel, Andrea Stolz, Michael Schaefer, Shaaban Mousa, Christoph Stein, Er Brack
    Abstract:

    In inflammation, pain is regulated by a balance of pro- and analgesic mediators. Analgesic mediators include opioid peptides which are secreted by neutrophils at the site of inflammation, leading to activation of opioid receptors on peripheral sensory neurons. In humans, local opioids and opioid peptides significantly downregulate postoperative as well as arthritic pain. In rats, inflammatory pain is induced by intraplantar injection of heat inactivated Mycobacterium butyricum, a component of complete Freund’s adjuvant. We hypothesized that mycobacterially derived formyl peptide receptor (FPR) and/or toll like receptor (TLR) agonists could activate neutrophils, leading to opioid peptide release and inhibition of inflammatory pain. In complete Freund’s adjuvant-induced inflammation, thermal and mechanical nociceptive thresholds of the paw were quantified (Hargreaves and Randall-Selitto methods, respectively). Withdrawal time to heat was decreased following systemic neutrophil depletion as well as local injection of opioid receptor antagonists or anti-opioid peptide (i.e. Met-enkephalin, b-endorphin) antibodies indicating an increase in pain. In vitro, opioid peptide release from human and rat neutrophils was measured by radioimmunoassay. Met-enkephalin release was triggered by Mycobacterium butyricum and formyl peptides but not by TLR-2 or TLR-4 agonists. Mycobacterium butyricum induced a rise in intracellular calcium as determined by FURA loading and calcium imaging. Opioid peptide release was blocked by intracellular calcium chelation as well as phosphoinositol-3-kinase inhibition. The FPR antagonists Boc-FLFLF and cyclosporine H reduced opioid peptid

  • mycobacteria attenuate nociceptive responses by formyl peptide receptor triggered opioid peptide release from neutrophils
    PLOS Pathogens, 2009
    Co-Authors: Dagmar Hackel, Heike L Rittner, Shaaban A Mousa, Philipp Voigt, Andrea Stolz, Dominika Labuz, Michael Schafer, Michael Schaefer
    Abstract:

    In inflammation, pain is regulated by a balance of pro- and analgesic mediators. Analgesic mediators include opioid peptides which are secreted by neutrophils at the site of inflammation, leading to activation of opioid receptors on peripheral sensory neurons. In humans, local opioids and opioid peptides significantly downregulate postoperative as well as arthritic pain. In rats, inflammatory pain is induced by intraplantar injection of heat inactivated Mycobacterium butyricum, a component of complete Freund's adjuvant. We hypothesized that mycobacterially derived formyl peptide receptor (FPR) and/or toll like receptor (TLR) agonists could activate neutrophils, leading to opioid peptide release and inhibition of inflammatory pain. In complete Freund's adjuvant-induced inflammation, thermal and mechanical nociceptive thresholds of the paw were quantified (Hargreaves and Randall-Selitto methods, respectively). Withdrawal time to heat was decreased following systemic neutrophil depletion as well as local injection of opioid receptor antagonists or anti-opioid peptide (i.e. Met-enkephalin, β-endorphin) antibodies indicating an increase in pain. In vitro, opioid peptide release from human and rat neutrophils was measured by radioimmunoassay. Met-enkephalin release was triggered by Mycobacterium butyricum and formyl peptides but not by TLR-2 or TLR-4 agonists. Mycobacterium butyricum induced a rise in intracellular calcium as determined by FURA loading and calcium imaging. Opioid peptide release was blocked by intracellular calcium chelation as well as phosphoinositol-3-kinase inhibition. The FPR antagonists Boc-FLFLF and cyclosporine H reduced opioid peptide release in vitro and increased inflammatory pain in vivo while TLR 2/4 did not appear to be involved. In summary, mycobacteria activate FPR on neutrophils, resulting in tonic secretion of opioid peptides from neutrophils and in a decrease in inflammatory pain. Future therapeutic strategies may aim at selective FPR agonists to boost endogenous analgesia.

  • Mycobacteria attenuate nociceptive responses by formyl peptide receptor triggered opioid peptide release from neutrophils.
    Public Library of Science (PLoS), 2009
    Co-Authors: Heike L Rittner, Dagmar Hackel, Philipp Voigt, Andrea Stolz, Dominika Labuz, Michael Schafer, Michael Schaefer, Shaaban Mousa, Christoph Stein, Alexander Brack
    Abstract:

    In inflammation, pain is regulated by a balance of pro- and analgesic mediators. Analgesic mediators include opioid peptides which are secreted by neutrophils at the site of inflammation, leading to activation of opioid receptors on peripheral sensory neurons. In humans, local opioids and opioid peptides significantly downregulate postoperative as well as arthritic pain. In rats, inflammatory pain is induced by intraplantar injection of heat inactivated Mycobacterium butyricum, a component of complete Freund's adjuvant. We hypothesized that mycobacterially derived formyl peptide receptor (FPR) and/or toll like receptor (TLR) agonists could activate neutrophils, leading to opioid peptide release and inhibition of inflammatory pain. In complete Freund's adjuvant-induced inflammation, thermal and mechanical nociceptive thresholds of the paw were quantified (Hargreaves and Randall-Selitto methods, respectively). Withdrawal time to heat was decreased following systemic neutrophil depletion as well as local injection of opioid receptor antagonists or anti-opioid peptide (i.e. Met-enkephalin, beta-endorphin) antibodies indicating an increase in pain. In vitro, opioid peptide release from human and rat neutrophils was measured by radioimmunoassay. Met-enkephalin release was triggered by Mycobacterium butyricum and formyl peptides but not by TLR-2 or TLR-4 agonists. Mycobacterium butyricum induced a rise in intracellular calcium as determined by FURA loading and calcium imaging. Opioid peptide release was blocked by intracellular calcium chelation as well as phosphoinositol-3-kinase inhibition. The FPR antagonists Boc-FLFLF and cyclosporine H reduced opioid peptide release in vitro and increased inflammatory pain in vivo while TLR 2/4 did not appear to be involved. In summary, mycobacteria activate FPR on neutrophils, resulting in tonic secretion of opioid peptides from neutrophils and in a decrease in inflammatory pain. Future therapeutic strategies may aim at selective FPR agonists to boost endogenous analgesia

Shaaban A Mousa - One of the best experts on this subject based on the ideXlab platform.

  • recruitment of opioid peptide containing neutrophils is independent of formyl peptide receptors
    Journal of Neuroimmunology, 2011
    Co-Authors: A Stolz, Dagmar Hackel, Heike L Rittner, Shaaban A Mousa
    Abstract:

    Abstract In complete Freund's adjuvans (CFA) inflammation opioid containing neutrophils release opioid peptides upon stimulation and mediate peripheral analgesia. Neutrophil migration is regulated partially by chemokines, but other mediators e.g. formyl peptides could also contribute. In vitro , formyl peptides but not Mycobacterium butyricum (CFA component) induced migration of neutrophils. In contrast, local formyl peptide injection did not induce leukocyte recruitment in vivo due to insufficient up-regulation of adhesion molecule expression. Furthermore, leukocyte recruitment and peripheral opioid-mediated analgesia were unaffected by systemic formyl peptide receptor blockade in CFA inflammation. Thus, while formyl peptides do not regulate migration they directly stimulate opioid peptide release.

  • mycobacteria attenuate nociceptive responses by formyl peptide receptor triggered opioid peptide release from neutrophils
    PLOS Pathogens, 2009
    Co-Authors: Dagmar Hackel, Heike L Rittner, Shaaban A Mousa, Philipp Voigt, Andrea Stolz, Dominika Labuz, Michael Schafer, Michael Schaefer
    Abstract:

    In inflammation, pain is regulated by a balance of pro- and analgesic mediators. Analgesic mediators include opioid peptides which are secreted by neutrophils at the site of inflammation, leading to activation of opioid receptors on peripheral sensory neurons. In humans, local opioids and opioid peptides significantly downregulate postoperative as well as arthritic pain. In rats, inflammatory pain is induced by intraplantar injection of heat inactivated Mycobacterium butyricum, a component of complete Freund's adjuvant. We hypothesized that mycobacterially derived formyl peptide receptor (FPR) and/or toll like receptor (TLR) agonists could activate neutrophils, leading to opioid peptide release and inhibition of inflammatory pain. In complete Freund's adjuvant-induced inflammation, thermal and mechanical nociceptive thresholds of the paw were quantified (Hargreaves and Randall-Selitto methods, respectively). Withdrawal time to heat was decreased following systemic neutrophil depletion as well as local injection of opioid receptor antagonists or anti-opioid peptide (i.e. Met-enkephalin, β-endorphin) antibodies indicating an increase in pain. In vitro, opioid peptide release from human and rat neutrophils was measured by radioimmunoassay. Met-enkephalin release was triggered by Mycobacterium butyricum and formyl peptides but not by TLR-2 or TLR-4 agonists. Mycobacterium butyricum induced a rise in intracellular calcium as determined by FURA loading and calcium imaging. Opioid peptide release was blocked by intracellular calcium chelation as well as phosphoinositol-3-kinase inhibition. The FPR antagonists Boc-FLFLF and cyclosporine H reduced opioid peptide release in vitro and increased inflammatory pain in vivo while TLR 2/4 did not appear to be involved. In summary, mycobacteria activate FPR on neutrophils, resulting in tonic secretion of opioid peptides from neutrophils and in a decrease in inflammatory pain. Future therapeutic strategies may aim at selective FPR agonists to boost endogenous analgesia.