N-Methyl-D-Aspartic Acid

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 309 Experts worldwide ranked by ideXlab platform

Lih-chu Chiou - One of the best experts on this subject based on the ideXlab platform.

  • The antiallodynic action target of intrathecal gabapentin: Ca2+ channels, KATP channels or N-Methyl-D-Aspartic Acid receptors?
    Anesthesia & Analgesia, 2020
    Co-Authors: Jen-kun Cheng, Jia Rung Yang, Chien Chuan Chen, Lih-chu Chiou
    Abstract:

    : Gabapentin is a novel analgesic whose mechanism of action is not known. We investigated in a postoperative pain model whether adenosine triphosphate (ATP)-sensitive K+ (K(ATP)) channels, N-Methyl-D-Aspartic Acid (NMDA) receptors, and Ca2+ channels are involved in the antiallodynic effect of intrathecal gabapentin. Mechanical allodynia was induced by a paw incision in isoflurane-anesthetized rats. Withdrawal thresholds to von Frey filament stimulation near the incision site were measured before and after incision and after intrathecal drug administration. The antiallodynic effect of gabapentin (100 mug) was not affected by intrathecal pretreatment with antagonists of K(ATP) channels, NMDA receptors or gamma-aminobutyric Acid (GABA)(A) receptors. K(ATP) channel openers and GABA(A) receptor agonist, per se, had little effect on the postincision allodynic response. The Ca2+ channel blocker of N-type (omega-conotoxin GVIA, 0.1-3 microg), but not of P/Q-type (omega-agatoxin IVA), L-type (verapamil, diltiazem or nimodipine), or T-type (mibefradil), attenuated the incision-induced allodynia, as did gabapentin. Both the antiallodynic effects of gabapentin and omega-conotoxin GVIA were attenuated by Bay K 8644, an L-type Ca2+ channel activator. These results provide correlative evidence to support the contention that N-type Ca2+ channels, but not K(ATP) channels or NMDA or GABA(A) receptors, might be involved in the antiallodynic effect of intrathecal gabapentin.

  • The antiallodynic action target of intrathecal gabapentin: Ca 2+ channels, K ATP channels or N-Methyl-D-Aspartic Acid receptors?
    Anesthesia and Analgesia, 2006
    Co-Authors: Jen-kun Cheng, Jia Rung Yang, Chien Chuan Chen, Lih-chu Chiou
    Abstract:

    Gabapentin is a novel analgesic whose mechanism of action is not known. We investigated in a postoperative pain model whether adenosine triphosphate (ATP)-sensitive K+ (K(ATP)) channels, N-Methyl-D-Aspartic Acid (NMDA) receptors, and Ca2+ channels are involved in the antiallodynic effect of intrathecal gabapentin. Mechanical allodynia was induced by a paw incision in isoflurane-anesthetized rats. Withdrawal thresholds to von Frey filament stimulation near the incision site were measured before and after incision and after intrathecal drug administration. The antiallodynic effect of gabapentin (100 mug) was not affected by intrathecal pretreatment with antagonists of K(ATP) channels, NMDA receptors or gamma-aminobutyric Acid (GABA)(A) receptors. K(ATP) channel openers and GABA(A) receptor agonist, per se, had little effect on the postincision allodynic response. The Ca2+ channel blocker of N-type (omega-conotoxin GVIA, 0.1-3 microg), but not of P/Q-type (omega-agatoxin IVA), L-type (verapamil, diltiazem or nimodipine), or T-type (mibefradil), attenuated the incision-induced allodynia, as did gabapentin. Both the antiallodynic effects of gabapentin and omega-conotoxin GVIA were attenuated by Bay K 8644, an L-type Ca2+ channel activator. These results provide correlative evidence to support the contention that N-type Ca2+ channels, but not K(ATP) channels or NMDA or GABA(A) receptors, might be involved in the antiallodynic effect of intrathecal gabapentin.

Jen-kun Cheng - One of the best experts on this subject based on the ideXlab platform.

  • The antiallodynic action target of intrathecal gabapentin: Ca2+ channels, KATP channels or N-Methyl-D-Aspartic Acid receptors?
    Anesthesia & Analgesia, 2020
    Co-Authors: Jen-kun Cheng, Jia Rung Yang, Chien Chuan Chen, Lih-chu Chiou
    Abstract:

    : Gabapentin is a novel analgesic whose mechanism of action is not known. We investigated in a postoperative pain model whether adenosine triphosphate (ATP)-sensitive K+ (K(ATP)) channels, N-Methyl-D-Aspartic Acid (NMDA) receptors, and Ca2+ channels are involved in the antiallodynic effect of intrathecal gabapentin. Mechanical allodynia was induced by a paw incision in isoflurane-anesthetized rats. Withdrawal thresholds to von Frey filament stimulation near the incision site were measured before and after incision and after intrathecal drug administration. The antiallodynic effect of gabapentin (100 mug) was not affected by intrathecal pretreatment with antagonists of K(ATP) channels, NMDA receptors or gamma-aminobutyric Acid (GABA)(A) receptors. K(ATP) channel openers and GABA(A) receptor agonist, per se, had little effect on the postincision allodynic response. The Ca2+ channel blocker of N-type (omega-conotoxin GVIA, 0.1-3 microg), but not of P/Q-type (omega-agatoxin IVA), L-type (verapamil, diltiazem or nimodipine), or T-type (mibefradil), attenuated the incision-induced allodynia, as did gabapentin. Both the antiallodynic effects of gabapentin and omega-conotoxin GVIA were attenuated by Bay K 8644, an L-type Ca2+ channel activator. These results provide correlative evidence to support the contention that N-type Ca2+ channels, but not K(ATP) channels or NMDA or GABA(A) receptors, might be involved in the antiallodynic effect of intrathecal gabapentin.

  • The antiallodynic action target of intrathecal gabapentin: Ca 2+ channels, K ATP channels or N-Methyl-D-Aspartic Acid receptors?
    Anesthesia and Analgesia, 2006
    Co-Authors: Jen-kun Cheng, Jia Rung Yang, Chien Chuan Chen, Lih-chu Chiou
    Abstract:

    Gabapentin is a novel analgesic whose mechanism of action is not known. We investigated in a postoperative pain model whether adenosine triphosphate (ATP)-sensitive K+ (K(ATP)) channels, N-Methyl-D-Aspartic Acid (NMDA) receptors, and Ca2+ channels are involved in the antiallodynic effect of intrathecal gabapentin. Mechanical allodynia was induced by a paw incision in isoflurane-anesthetized rats. Withdrawal thresholds to von Frey filament stimulation near the incision site were measured before and after incision and after intrathecal drug administration. The antiallodynic effect of gabapentin (100 mug) was not affected by intrathecal pretreatment with antagonists of K(ATP) channels, NMDA receptors or gamma-aminobutyric Acid (GABA)(A) receptors. K(ATP) channel openers and GABA(A) receptor agonist, per se, had little effect on the postincision allodynic response. The Ca2+ channel blocker of N-type (omega-conotoxin GVIA, 0.1-3 microg), but not of P/Q-type (omega-agatoxin IVA), L-type (verapamil, diltiazem or nimodipine), or T-type (mibefradil), attenuated the incision-induced allodynia, as did gabapentin. Both the antiallodynic effects of gabapentin and omega-conotoxin GVIA were attenuated by Bay K 8644, an L-type Ca2+ channel activator. These results provide correlative evidence to support the contention that N-type Ca2+ channels, but not K(ATP) channels or NMDA or GABA(A) receptors, might be involved in the antiallodynic effect of intrathecal gabapentin.

Carl L Faingold - One of the best experts on this subject based on the ideXlab platform.

  • audiogenic seizure susceptibility is induced by termination of continuous infusion of γ aminobutyric Acid or an n methyl d aspartic Acid antagonist into the inferior colliculus
    Experimental Neurology, 2001
    Co-Authors: Li Yang, Cheng Long, Carl L Faingold
    Abstract:

    Abstract The inferior colliculus (IC) is strongly implicated in seizure initiation in a genetic form of audiogenic seizures (AGS) and in AGS observed during ethanol withdrawal (ETX). Ethanol is known to block the actions of excitatory amino Acids (EAA) and enhance the actions of γ-aminobutyric Acid (GABA) in several brain areas, including the IC. The present study investigated the effects on susceptibility to AGS following withdrawal from continuous blockade of N -methyl- d -aspartic Acid (NMDA) receptors or continuous activation of GABA receptors in the IC. This involved infusion of GABA (1 M) or a competitive NMDA antagonist, dl -2-amino-7-phosphonoheptanoic Acid (AP7, 1 mM), at 0.25 μl/h for 7 days using an Alzet osmotic minipump. Following abrupt termination of the infusion, AGS susceptibility began at 30 min. The incidence of AGS was 38.9 and 56.3% following GABA and AP7 withdrawal, respectively. The AGS behaviors observed during withdrawal, which included wild running and bouncing clonus, were very similar to those evoked by acoustic stimuli during ETX. AGS susceptibility lasted for several hours and in 13% of animals persisted for up to 6 months. The current results support diminished GABAergic and elevated glutamatergic function in the IC as the critical mechanisms and sites for AGS initiation. The present study, coupled with previous evidence that chronic ethanol exposure reduced GABA-mediated inhibition and enhanced EAA-mediated excitation, suggests that these amino Acid receptor-mediated alterations in the IC are key elements in initiating AGS during ethanol withdrawal.

Jari Koistinaho - One of the best experts on this subject based on the ideXlab platform.

  • spreading depression and focal brain ischemia induce cyclooxygenase 2 in cortical neurons through n methyl d aspartic Acid receptors and phospholipase a2
    Proceedings of the National Academy of Sciences of the United States of America, 1997
    Co-Authors: Susanna Miettinen, Francesca R Fusco, Juha Yrjanheikki, Riitta Keinanen, Reina Roivainen, Matti Narhi, Timo Hirvonen, Tomas Hokfelt, Jari Koistinaho
    Abstract:

    Repetitive spreading depression (SD) waves, involving depolarization of neurons and astrocytes and up-regulation of glucose consumption, is thought to lower the threshold of neuronal death during and immediately after ischemia. Using rat models for SD and focal ischemia we investigated the expression of cyclooxygenase-1 (COX-1), the constitutive form, and cyclooxygenase-2 (COX-2), the inducible form of a key enzyme in prostaglandin biosynthesis and the target enzymes for nonsteroidal anti-inflammatory drugs. Whereas COX-1 mRNA levels were undetectable and uninducible, COX-2 mRNA and protein levels were rapidly increased in the cortex, especially in layers 2 and 3 after SD and transient focal ischemia. The cortical induction was reduced by MK-801, an N-Methyl-D-Aspartic Acid-receptor antagonist, and by dexamethasone and quinacrine, phospholipase A2 (PLA2) inhibiting compounds. MK-801 acted by blocking SD whereas treatment with PLA2 inhibitors preserved the wave propagation. NBQX, an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/kainate-receptor antagonist, did not affect the SD-induced COX-2 expression, whereas COX-inhibitors indomethacin and diclofenac, as well as a NO synthase-inhibitor, NG-nitro-l-arginine methyl ester, tended to enhance the COX-2 mRNA expression. In addition, ischemia induced COX-2 expression in the hippocampal and perifocal striatal neurons and in endothelial cells. Thus, COX-2 is transiently induced after SD and focal ischemia by activation of N-Methyl-D-Aspartic Acid-receptors and PLA2, most prominently in cortical neurons that are at a high risk to die after focal brain ischemia.

Chien Chuan Chen - One of the best experts on this subject based on the ideXlab platform.

  • The antiallodynic action target of intrathecal gabapentin: Ca2+ channels, KATP channels or N-Methyl-D-Aspartic Acid receptors?
    Anesthesia & Analgesia, 2020
    Co-Authors: Jen-kun Cheng, Jia Rung Yang, Chien Chuan Chen, Lih-chu Chiou
    Abstract:

    : Gabapentin is a novel analgesic whose mechanism of action is not known. We investigated in a postoperative pain model whether adenosine triphosphate (ATP)-sensitive K+ (K(ATP)) channels, N-Methyl-D-Aspartic Acid (NMDA) receptors, and Ca2+ channels are involved in the antiallodynic effect of intrathecal gabapentin. Mechanical allodynia was induced by a paw incision in isoflurane-anesthetized rats. Withdrawal thresholds to von Frey filament stimulation near the incision site were measured before and after incision and after intrathecal drug administration. The antiallodynic effect of gabapentin (100 mug) was not affected by intrathecal pretreatment with antagonists of K(ATP) channels, NMDA receptors or gamma-aminobutyric Acid (GABA)(A) receptors. K(ATP) channel openers and GABA(A) receptor agonist, per se, had little effect on the postincision allodynic response. The Ca2+ channel blocker of N-type (omega-conotoxin GVIA, 0.1-3 microg), but not of P/Q-type (omega-agatoxin IVA), L-type (verapamil, diltiazem or nimodipine), or T-type (mibefradil), attenuated the incision-induced allodynia, as did gabapentin. Both the antiallodynic effects of gabapentin and omega-conotoxin GVIA were attenuated by Bay K 8644, an L-type Ca2+ channel activator. These results provide correlative evidence to support the contention that N-type Ca2+ channels, but not K(ATP) channels or NMDA or GABA(A) receptors, might be involved in the antiallodynic effect of intrathecal gabapentin.

  • The antiallodynic action target of intrathecal gabapentin: Ca 2+ channels, K ATP channels or N-Methyl-D-Aspartic Acid receptors?
    Anesthesia and Analgesia, 2006
    Co-Authors: Jen-kun Cheng, Jia Rung Yang, Chien Chuan Chen, Lih-chu Chiou
    Abstract:

    Gabapentin is a novel analgesic whose mechanism of action is not known. We investigated in a postoperative pain model whether adenosine triphosphate (ATP)-sensitive K+ (K(ATP)) channels, N-Methyl-D-Aspartic Acid (NMDA) receptors, and Ca2+ channels are involved in the antiallodynic effect of intrathecal gabapentin. Mechanical allodynia was induced by a paw incision in isoflurane-anesthetized rats. Withdrawal thresholds to von Frey filament stimulation near the incision site were measured before and after incision and after intrathecal drug administration. The antiallodynic effect of gabapentin (100 mug) was not affected by intrathecal pretreatment with antagonists of K(ATP) channels, NMDA receptors or gamma-aminobutyric Acid (GABA)(A) receptors. K(ATP) channel openers and GABA(A) receptor agonist, per se, had little effect on the postincision allodynic response. The Ca2+ channel blocker of N-type (omega-conotoxin GVIA, 0.1-3 microg), but not of P/Q-type (omega-agatoxin IVA), L-type (verapamil, diltiazem or nimodipine), or T-type (mibefradil), attenuated the incision-induced allodynia, as did gabapentin. Both the antiallodynic effects of gabapentin and omega-conotoxin GVIA were attenuated by Bay K 8644, an L-type Ca2+ channel activator. These results provide correlative evidence to support the contention that N-type Ca2+ channels, but not K(ATP) channels or NMDA or GABA(A) receptors, might be involved in the antiallodynic effect of intrathecal gabapentin.