Nav1.9

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 52101 Experts worldwide ranked by ideXlab platform

Stephen G Waxman - One of the best experts on this subject based on the ideXlab platform.

  • status of peripheral sodium channel blockers for non addictive pain treatment
    Nature Reviews Neurology, 2020
    Co-Authors: Matthew Alsaloum, Grant P. Higerd, Philip R. Effraim, Stephen G Waxman
    Abstract:

    The effective and safe treatment of pain is an unmet health-care need. Current medications used for pain management are often only partially effective, carry dose-limiting adverse effects and are potentially addictive, highlighting the need for improved therapeutic agents. Most common pain conditions originate in the periphery, where dorsal root ganglion and trigeminal ganglion neurons feed pain information into the CNS. Voltage-gated sodium (NaV) channels drive neuronal excitability and three subtypes - NaV1.7, NaV1.8 and Nav1.9 - are preferentially expressed in the peripheral nervous system, suggesting that their inhibition might treat pain while avoiding central and cardiac adverse effects. Genetic and functional studies of human pain disorders have identified NaV1.7, NaV1.8 and Nav1.9 as mediators of pain and validated them as targets for pain treatment. Consequently, multiple NaV1.7-specific and NaV1.8-specific blockers have undergone clinical trials, with others in preclinical development, and the targeting of Nav1.9, although hampered by technical constraints, might also be moving ahead. In this Review, we summarize the clinical and preclinical literature describing compounds that target peripheral NaV channels and discuss the challenges and future prospects for the field. Although the potential of peripheral NaV channel inhibition for the treatment of pain has yet to be realized, this remains a promising strategy to achieve non-addictive analgesia for multiple pain conditions.

  • Nav1.9 expression in magnocellular neurosecretory cells of supraoptic nucleus
    Experimental Neurology, 2014
    Co-Authors: Dymtro Vasylyev, Sulayman D Dib-hajj, Stephen G Waxman
    Abstract:

    Abstract Osmoregulation in mammals is tightly controlled by the release of vasopressin and oxytocin from magnocellular neurosecretory cells (MSC) of the supraoptic nucleus (SON). The release of vasopressin and oxytocin in the neurohypophysis by axons of MSC is regulated by bursting activity of these neurons, which is influenced by multiple sources, including intrinsic membrane properties, paracrine contributions of glial cells, and extrinsic synaptic inputs. Previous work has shown that bursting activity of MSC is tetrodotoxin (TTX)-sensitive, and that TTX-S sodium channels Nav1.2, Nav1.6 and Nav1.7 are expressed by MSC and upregulated in response to osmotic challenge in rats. The TTX-resistant sodium channels, NaV1.8 and Nav1.9, are preferentially expressed, at relatively high levels, in peripheral neurons, where their properties are linked to repetitive firing and subthreshold electrogenesis, respectively, and are often referred to as “peripheral” sodium channels. Both sodium channels have been implicated in pain pathways, and are under study as potential therapeutic targets for pain medications which might be expected to have minimal CNS side effects. We show here, however, that Nav1.9 is expressed by vasopressin- and oxytocin-producing MSC of the rat supraoptic nucleus (SON). We also show that cultured MSC exhibit sodium currents that have characteristics of Nav1.9 channels. In contrast, Nav1.8 is not detectable in the SON. These results suggest that Nav1.9 may contribute to the firing pattern of MSC of the SON, and that careful assessment of hypothalamic function be performed as Nav1.9 blocking agents are studied as potential pain therapies.

  • noncanonical roles of voltage gated sodium channels
    Neuron, 2013
    Co-Authors: Joel A Black, Stephen G Waxman
    Abstract:

    The Hodgkin-Huxley formulation, at its 60th anniversary, remains a bastion of neuroscience. Sodium channels Nav1.1-Nav1.3 and Nav1.6-Nav1.9 support electrogenesis in neurons and are often considered "neuronal," whereas Nav1.4 and Nav1.5 drive electrogenesis in skeletal and cardiac muscle. These channels are, however, expressed in cell types that are not considered electrically excitable. Here, we discuss sodium channel expression in diverse nonexcitable cell types, including astrocytes, NG2 cells, microglia, macrophages, and cancer cells, and review evidence of noncanonical roles, including regulation of effector functions such as phagocytosis, motility, Na(+)/K(+)-ATPase activity, and metastatic activity. Armed with powerful techniques for monitoring channel activity and for real-time assessment of [Na(+)]i and [Ca(2+)]i, neuroscientists are poised to expand the understanding of noncanonical roles of sodium channels in healthy and diseased tissues.

  • a sodium channel mutation linked to epilepsy increases ramp and persistent current of nav1 3 and induces hyperexcitability in hippocampal neurons
    Experimental Neurology, 2010
    Co-Authors: Mark Estacion, Andreas Gasser, Sulayman D Dibhajj, Stephen G Waxman
    Abstract:

    article i nfo Voltage-gated sodium channelopathies underlie many excitability disorders. Genes SCN1A, SCN2A and SCN9A, which encode pore-forming α-subunits NaV1.1, NaV1.2 and NaV1.7, are clustered on human chromosome 2, and mutations in these genes have been shown to underlie epilepsy, migraine, and somatic pain disorders. SCN3A, the gene which encodes NaV1.3, is part of this cluster, but until recently was not associated with any mutation. A charge-neutralizing mutation, K345Q, in the NaV1.3 DI/S5-6 linker has recently been identified in a patient with cryptogenic partial epilepsy. Pathogenicity of the NaV1.3/K354Q mutation has been inferred from the conservation of this residue in all sodium channels and its absence from control alleles, but functional analysis has been limited to the corresponding substitution in the cardiac muscle sodium channel NaV1.5. Since identical mutations may produce different effects within different sodium channel isoforms, we assessed the K354Q mutation within its native NaV1.3 channel and studied the effect of the mutant NaV1.3/K354Q channels on hippocampal neuron excitability. We show here that the K354Q mutation enhances the persistent and ramp currents of NaV1.3, reduces current threshold and produces spontaneous firing and paroxysmal depolarizing shift-like complexes in hippocampal neurons. Our data provide a pathophysiological basis for the pathogenicity of the first epilepsy-linked mutation within NaV1.3 channels and hippocampal neurons.

  • A sodium channel mutation linked to epilepsy increases ramp and persistent current of Nav1.3 and induces hyperexcitability in hippocampal neurons
    Experimental Neurology, 2010
    Co-Authors: Mark Estacion, Andreas Gasser, Sulayman D Dib-hajj, Stephen G Waxman
    Abstract:

    Abstract Voltage-gated sodium channelopathies underlie many excitability disorders. Genes SCN1A, SCN2A and SCN9A, which encode pore-forming α-subunits NaV1.1, NaV1.2 and NaV1.7, are clustered on human chromosome 2, and mutations in these genes have been shown to underlie epilepsy, migraine, and somatic pain disorders. SCN3A, the gene which encodes NaV1.3, is part of this cluster, but until recently was not associated with any mutation. A charge-neutralizing mutation, K345Q, in the NaV1.3 DI/S5-6 linker has recently been identified in a patient with cryptogenic partial epilepsy. Pathogenicity of the NaV1.3/K354Q mutation has been inferred from the conservation of this residue in all sodium channels and its absence from control alleles, but functional analysis has been limited to the corresponding substitution in the cardiac muscle sodium channel NaV1.5. Since identical mutations may produce different effects within different sodium channel isoforms, we assessed the K354Q mutation within its native NaV1.3 channel and studied the effect of the mutant NaV1.3/K354Q channels on hippocampal neuron excitability. We show here that the K354Q mutation enhances the persistent and ramp currents of NaV1.3, reduces current threshold and produces spontaneous firing and paroxysmal depolarizing shift-like complexes in hippocampal neurons. Our data provide a pathophysiological basis for the pathogenicity of the first epilepsy-linked mutation within NaV1.3 channels and hippocampal neurons.

Jan Tytgat - One of the best experts on this subject based on the ideXlab platform.

  • Differential effects of the recombinant toxin PnTx4(5-5) from the spider Phoneutria nigriventer on mammalian and insect sodium channels
    Biochimie, 2015
    Co-Authors: Ana Luiza B. Paiva, Alessandra Matavel, Marta N. Cordeiro, Marcelo R.v. Diniz, Steve Peigneur, Jan Tytgat, Maria Elena De Lima
    Abstract:

    Abstract The toxin PnTx4(5-5) from the spider Phoneutria nigriventer is extremely toxic/lethal to insects but has no macroscopic behavioral effects observed in mice after intracerebral injection. Nevertheless, it was demonstrated that it inhibits the N-methyl- d -aspartate (NMDA) - subtype of glutamate receptors of cultured rat hippocampal neurons. PnTx4(5-5) has 63% identity to PnTx4(6-1), another insecticidal toxin from P. nigriventer, which can slow down the sodium current inactivation in insect central nervous system, but has no effect on Nav1.2 and Nav1.4 rat sodium channels. Here, we have cloned and heterologous expressed the toxin PnTx4(5-5) in Escherichia coli. The recombinant toxin rPnTx4(5-5) was tested on the sodium channel NavBg from the cockroach Blatella germanica and on mammalian sodium channels Nav1.2-1.6, all expressed in Xenopus leavis oocytes. We showed that the toxin has different affinity and mode of action on insect and mammalian sodium channels. The most remarkable effect was on NavBg, where rPnTx4(5-5) strongly slowed down channel inactivation (EC50 = 212.5 nM), and at 1 μM caused an increase on current peak amplitude of 105.2 ± 3.1%. Interestingly, the toxin also inhibited sodium current on all the mammalian channels tested, with the higher current inhibition on Nav1.3 (38.43 ± 8.04%, IC50 = 1.5 μM). Analysis of activation curves on Nav1.3 and Nav1.5 showed that the toxin shifts channel activation to more depolarized potentials, which can explain the sodium current inhibition. Furthermore, the toxin also slightly slowed down sodium inactivation on Nav1.3 and Nav1.6 channels. As far as we know, this is the first araneomorph toxin described which can shift the sodium channel activation to more depolarized potentials and also slows down channel inactivation.

  • Electrophysiological characterization of the first Tityus serrulatus alpha-like toxin, Ts5: Evidence of a pro-inflammatory toxin on macrophages
    Biochimie, 2015
    Co-Authors: Manuela Berto Pucca, Felipe A. Cerni, Karina Furlan Zoccal, Karla De Castro Figueiredo Bordon, Camila Takeno Cologna, Steve Peigneur, Lúcia Helena Faccioli, Jan Tytgat, Eliane Candiani Arantes
    Abstract:

    Abstract Tityus serrulatus (Ts) venom is composed of mainly neurotoxins specific for voltage-gated K+ and Na+ channels, which are expressed in many cells such as macrophages. Macrophages are the first line of defense invasion and they participate in the inflammatory response of Ts envenoming. However, little is known about the effect of Ts toxins on macrophage activation. This study investigated the effect of Ts5 toxin on different sodium channels as well as its role on the macrophage immunomodulation. The electrophysiological assays showed that Ts5 inhibits the rapid inactivation of the mammalian sodium channels Nav1.2, Nav1.3, Nav1.4, Nav1.5, Nav1.6 and Nav1.7. Interestingly, Ts5 also inhibits the inactivation of the insect Drosophila melanogaster sodium channel (DmNav1), and it is therefore classified as the first Ts α-like toxin. The immunological experiments on macrophages reveal that Ts5 is a pro-inflammatory toxin inducing the cytokine production of tumor necrosis factor (TNF)-α and interleukin (IL)-6. On the basis of recent literature, our study also stresses a possible mechanism responsible for venom-associated molecular patterns (VAMPs) internalization and macrophage activation and moreover we suggest two main pathways of VAMPs signaling: direct and indirect. This work provides useful insights for a better understanding of the involvement of VAMPs in macrophage modulation.

  • investigation of the relationship between the structure and function of ts2 a neurotoxin from tityus serrulatus venom
    FEBS Journal, 2012
    Co-Authors: Camila Takeno Cologna, Steve Peigneur, Jan Tytgat, Joane K Rustiguel, Cristina M Nonato, Eliane Candiani Arantes
    Abstract:

    Scorpion toxins targeting voltage-gated sodium (NaV) channels are peptides that comprise 60–76 amino acid residues cross-linked by four disulfide bridges. These toxins can be divided in two groups (α and β toxins), according to their binding properties and mode of action. The scorpion α-toxin Ts2, previously described as a β-toxin, was purified from the venom of Tityus serrulatus, the most dangerous Brazilian scorpion. In this study, seven mammalian NaV channel isoforms (rNaV1.2, rNaV1.3, rNaV1.4, hNaV1.5, mNaV1.6, rNaV1.7 and rNaV1.8) and one insect NaV channel isoform (DmNaV1) were used to investigate the subtype specificity and selectivity of Ts2. The electrophysiology assays showed that Ts2 inhibits rapid inactivation of NaV1.2, NaV1.3, NaV1.5, NaV1.6 and NaV1.7, but does not affect NaV1.4, NaV1.8 or DmNaV1. Interestingly, Ts2 significantly shifts the voltage dependence of activation of NaV1.3 channels. The 3D structure of this toxin was modeled based on the high sequence identity (72%) shared with Ts1, another T. serrulatus toxin. The overall fold of the Ts2 model consists of three β-strands and one α-helix, and is arranged in a triangular shape forming a cysteine-stabilized α-helix/β-sheet (CSαβ) motif. Database Model data are available in the PMDB under accession number PM0077533.

  • potent modulation of the voltage gated sodium channel nav1 7 by od1 a toxin from the scorpion odonthobuthus doriae
    Molecular Pharmacology, 2006
    Co-Authors: Chantal Maertens, Eva Cuypers, Mehriar Amininasab, Amir Jalali, Hossein Vatanpour, Jan Tytgat
    Abstract:

    Voltage-gated sodium channels are essential for the propagation of action potentials in nociceptive neurons. Nav1.7 is found in peripheral sensory and sympathetic neurons and involved in short-term and inflammatory pain. Nav1.8 and Nav1.3 are major players in nociception and neuropathic pain, respectively. In our effort to identify isoform-specific and high-affinity ligands for these channels, we investigated the effects of OD1, a scorpion toxin isolated from the venom of the scorpion Odonthobuthus doriae. Nav1.3, Nav1.7, and Nav1.8 channels were coexpressed with beta1-subunits in Xenopus laevis oocytes. Na+ currents were recorded with the two-electrode voltage-clamp technique. OD1 modulates Nav1.7 at low nanomolar concentrations: 1) fast inactivation is dramatically impaired, with an EC50 value of 4.5 nM; 2) OD1 substantially increases the peak current at all voltages; and 3) OD1 induces a substantial persistent current. Nav1.8 was not affected by concentrations up to 2 microM, whereas Nav1.3 was sensitive only to concentrations higher than 100 nM. OD1 impairs the inactivation process of Nav1.3 with an EC50 value of 1127 nM. Finally, the effects of OD1 were compared with a classic alpha-toxin, AahII from Androctonus australis Hector and a classic alpha-like toxin, BmK M1 from Buthus martensii Karsch. At a concentration of 50 nM, both toxins affected Nav1.7. Nav1.3 was sensitive to AahII but not to BmK M1, whereas Nav1.8 was affected by neither toxin. In conclusion, the present study shows that the scorpion toxin OD1 is a potent modulator of Nav1.7, with a unique selectivity pattern.

  • four novel tarantula toxins as selective modulators of voltage gated sodium channel subtypes
    Molecular Pharmacology, 2006
    Co-Authors: Frank Bosmans, Lachlan D Rash, Shunyi Zhu, Sylvie Diochot, Michel Lazdunski, Pierre Escoubas, Jan Tytgat
    Abstract:

    Four novel peptide toxins that act on voltage-gated sodium channels have been isolated from tarantula venoms: ceratotoxins 1, 2, and 3 (CcoTx1, CcoTx2, and CcoTx3) from Ceratogyrus cornuatus and phrixotoxin 3 (PaurTx3) from Phrixotrichus auratus. The pharmacological profiles of these new toxins were characterized by electrophysiological measurements on six cloned voltage-gated sodium channel subtypes expressed in Xenopus laevis oocytes (Nav1.1/beta1, Nav1.2/beta1, Nav1.3/beta1, Nav1.4/beta1, Nav1.5/beta1, and Nav1.8/beta1). These novel toxins modulate voltage-gated sodium channels with properties similar to those of typical gating-modifier toxins, both by causing a depolarizing shift in gating kinetics and by blocking the inward component of the sodium current. PaurTx3 is one of the most potent peptide modulators of voltage-gated sodium channels described thus far from spider venom, modulating Nav1.2 with an IC50 value of 0.6 ± 0.1 nM. CcoTx1 and CcoTx2, differing by only one amino acid, are potent modulators of different voltage-gated sodium channel subtypes from the central nervous system, except for Nav1.3, which is only affected by CcoTx2. The potency of CcoTx3 is lower, although this toxin seems to be more selective for the tetrodotoxin-resistant channel subtype Nav1.5/beta1 (IC50 = 447 ± 32 nM). In addition to these results, molecular modeling indicates that subtle differences in toxin surfaces may relate to their different pharmacological profiles. Furthermore, an evolutionary trace analysis of these toxins and other structurally related three-disulfide spider toxins provides clues for the exploration of toxin-channel interaction and future structure-function research.

Yi Dai - One of the best experts on this subject based on the ideXlab platform.

  • re evaluation of the phenotypic changes in l4 dorsal root ganglion neurons after l5 spinal nerve ligation
    Pain, 2012
    Co-Authors: Hiroki Yamanaka, Kimiko Kobayashi, Kan Miyoshi, Masamichi Okubo, Yi Dai
    Abstract:

    The L5 spinal nerve ligation (SNL) is a widely used animal neuropathic pain model. There are conflicting reports regarding the extent of injury to the L4 dorsal root ganglion (DRG) neurons in this model. If a significant number of these neurons were injured, the previously reported phenotypic and electrophysiological changes at this level are in need of re-evaluation by separating the injured neurons and the frankly spared ones. So, we immunostained activating transcription factor 3 (ATF3) and examined the change in expression of transcripts for neuropeptide Y (NPY), brain-derived neurotrophic factor (BDNF) and several voltage-gated sodium channel α-subunits (Nav1.1, Nav1.3, Nav1.6, Nav1.7, Nav1.8, and Nav1.9) in the L4 DRG by comparing signal intensities of individual neurons using in situ hybridization histochemistry. ATF3-immunoreactivity was similarly observed in 4-6% of neuronal nuclei of the SNL and sham-operated ipsilateral L4 DRGs. Comparison between ATF3+ and ATF3- neurons in the SNL L4 DRG revealed that (1) whereas NPY induction occurred in ATF3+ cells, BDNF increased mainly in ATF3- neurons; (2) although ATF3+ neurons had higher Nav1.3 signals than ATF3- neurons, these signals were much lower than those of the L5 DRG neurons; and (3) ATF3+/N52- neurons selectively lost Nav1.8 and Nav1.9 mRNAs. Comparison of the total neuronal populations among naive, SNL, and sham-operated rats revealed no significant differences for all examined Nav mRNAs. Because neuropathic pain behaviors were developed by rats with SNL but not the sham-operation, the small number of injured L4 neurons likely do not contribute to the pathomechanisms of neuropathic pain.

  • comparative study of the distribution of the α subunits of voltage gated sodium channels in normal and axotomized rat dorsal root ganglion neurons
    The Journal of Comparative Neurology, 2008
    Co-Authors: Kimiko Kobayashi, Hiroki Yamanaka, Koichi Obata, Yi Dai
    Abstract:

    We compared the distribution of the alpha-subunit mRNAs of voltage-gated sodium channels Nav1.1-1.3 and Nav1.6-1.9 and a related channel, Nax, in histochemically identified neuronal subpopulations of the rat dorsal root ganglia (DRG). In the naive DRG, the expression of Nav1.1 and Nav1.6 was restricted to A-fiber neurons, and they were preferentially expressed by TrkC neurons, suggesting that proprioceptive neurons possess these channels. Nav1.7, -1.8, and -1.9 mRNAs were more abundant in C-fiber neurons compared with A-fiber ones. Nax was evenly expressed in both populations. Although Nav1.8 and -1.9 were preferentially expressed by TrkA neurons, other alpha-subunits were expressed independently of TrkA expression. Actually, all IB4(+) neurons expressed both Nav1.8 and -1.9, and relatively limited subpopulations of IB4(+) neurons (3% and 12%, respectively) expressed Nav1.1 and/or Nav1.6. These findings provide useful information in interpreting the electrophysiological characteristics of some neuronal subpopulations of naive DRG. After L5 spinal nerve ligation, Nav1.3 mRNA was up-regulated mainly in A-fiber neurons in the ipsilateral L5 DRG. Although previous studies demonstrated that nerve growth factor (NGF) and glial cell-derived neurotrophic factor (GDNF) reversed this up-regulation, the Nav1.3 induction was independent of either TrkA or GFRalpha1 expression, suggesting that the induction of Nav1.3 may be one of the common responses of axotomized DRG neurons without a direct relationship to NGF/GDNF supply.

Xi Zhou - One of the best experts on this subject based on the ideXlab platform.

  • recombinant paurtx 3 a spider toxin inhibits sodium channels and decreases membrane excitability in drg neurons
    Biochemical and Biophysical Research Communications, 2020
    Co-Authors: Minzhi Chen, Shuijiao Peng, Li Wang, Li Yang, Xi Zhou, Yunxiao Zhang, Zhonghua Liu
    Abstract:

    Abstract Voltage-gated sodium channels are critical for the generation and propagation of action potentials. Gating modifier toxins from spider venom can modulate the gating mechanism of sodium channels and thus have potential as drug leads. Here, we established expression of the gating modifier toxin PaurTx-3, a sodium channel inhibitor found in the venom of the spider Phrixotrichus auratus. Whole-cell voltage-clamp recordings indicated that recombinant PaurTx-3 (rPaurTx-3) inhibited Nav1.4, Nav1.5, and Nav1.7 currents with IC50 values of 61 nM, 72 nM, and 25 nM, respectively. Furthermore, rPaurTx-3 irreversibly inhibited Nav1.7 currents, but had 60–70% recovery in Nav1.4 and Nav1.5 after washing with a bath solution. rPaurTx-3 also hyperpolarized the voltage-dependent steady-state inactivation curve and significantly slowed recovery from fast inactivation of Nav1.7. Current-clamp recordings showed that rPaurTx-3 suppressed small DRG neuron activity. The biological activity assay findings for rPaurTx-3 support its potent pharmacological effect in Nav1.7 and small DRG neurons.

  • Spider venom-derived peptide induces hyperalgesia in Nav1.7 knockout mice by activating Nav1.9 channels.
    Nature communications, 2020
    Co-Authors: Xi Zhou, Shuijiao Peng, Li Wang, Luyao Yang, Zhouquan Wang, Zhen Xiao, Qingfeng Zhang, Yazhou Huang
    Abstract:

    The sodium channels Nav1.7, Nav1.8 and Nav1.9 are critical for pain perception in peripheral nociceptors. Loss of function of Nav1.7 leads to congenital insensitivity to pain in humans. Here we show that the spider peptide toxin called HpTx1, first identified as an inhibitor of Kv4.2, restores nociception in Nav1.7 knockout (Nav1.7-KO) mice by enhancing the excitability of dorsal root ganglion neurons. HpTx1 inhibits Nav1.7 and activates Nav1.9 but does not affect Nav1.8. This toxin produces pain in wild-type (WT) and Nav1.7-KO mice, and attenuates nociception in Nav1.9-KO mice, but has no effect in Nav1.8-KO mice. These data indicate that HpTx1-induced hypersensitivity is mediated by Nav1.9 activation and offers pharmacological insight into the relationship of the three Nav channels in pain signalling.

  • spider venom derived peptide induces hyperalgesia in na v 1 7 knockout mice by activating na v 1 9 channels
    Nature Communications, 2020
    Co-Authors: Xi Zhou, Minzhi Chen, Shuijiao Peng, Li Wang, Luyao Yang, Zhouquan Wang, Zhen Xiao, Qingfeng Zhang, Yazhou Huang, Songping Liang
    Abstract:

    The sodium channels Nav1.7, Nav1.8 and Nav1.9 are critical for pain perception in peripheral nociceptors. Loss of function of Nav1.7 leads to congenital insensitivity to pain in humans. Here we show that the spider peptide toxin called HpTx1, first identified as an inhibitor of Kv4.2, restores nociception in Nav1.7 knockout (Nav1.7-KO) mice by enhancing the excitability of dorsal root ganglion neurons. HpTx1 inhibits Nav1.7 and activates Nav1.9 but does not affect Nav1.8. This toxin produces pain in wild-type (WT) and Nav1.7-KO mice, and attenuates nociception in Nav1.9-KO mice, but has no effect in Nav1.8-KO mice. These data indicate that HpTx1-induced hypersensitivity is mediated by Nav1.9 activation and offers pharmacological insight into the relationship of the three Nav channels in pain signalling.

  • a chimeric nav1 8 channel expression system based on hek293t cell line
    Frontiers in Pharmacology, 2018
    Co-Authors: Xi Zhou, Yunxiao Zhang, Dongfang Tang, Songping Liang, Ping Chen, Cheng Tang, Zhonghua Liu
    Abstract:

    Among the nine voltage-gated sodium channel (NaV) subtypes, NaV1.8 is an attractive therapeutic target for pain. The heterologous expression of recombinant NaV1.8 currents is of particular importance for its electrophysiological and pharmacological studies. However, NaV1.8 expresses no or low-level functional currents when transiently transfected into non-neuronal cell lines. The present study aims to explore the molecular determinants limiting its functional expression and accordingly establish a functional NaV1.8 expression system. We conducted screening analysis of the NaV1.8 intracellular loops by constructing NaV chimeric channels and confirmed that the NaV1.8 C-terminus was the only limiting factor. Replacing this sequence with that of NaV1.4, NaV1.5, or NaV1.7 constructed functional channels (NaV1.8/1.4L5, NaV1.8/1.5L5, and NaV1.8/1.7L5, respectively), which expressed high-level NaV1.8-like currents in HEK293T cells. The chimeric channel NaV1.8/1.7L5 displayed much faster inactivation of its macroscopic currents than NaV1.8/1.4L5 and NaV1.8/1.5L5, and it was the most similar to wild-type NaV1.8 expressed in ND7/23 cells. Its currents were very stable during repetitive depolarizations, while its repriming kinetic was different from wild-type NaV1.8. Most importantly, NaV1.8/1.7L5 pharmacologically resembled wild-type NaV1.8 as revealed by testing their susceptibility to two NaV1.8 selective antagonists, APETx-2 and MrVIB. NaV chimeras study showed that at least the domain 2 and domain 4 of NaV1.8 were involved in binding with APETx-2. Our study provided new insights into the function of NaV1.8 intracellular loops, as well as a reliable and convenient expression system which could be useful in NaV1.8 studies.

Sulayman D Dibhajj - One of the best experts on this subject based on the ideXlab platform.

  • a sodium channel mutation linked to epilepsy increases ramp and persistent current of nav1 3 and induces hyperexcitability in hippocampal neurons
    Experimental Neurology, 2010
    Co-Authors: Mark Estacion, Andreas Gasser, Sulayman D Dibhajj, Stephen G Waxman
    Abstract:

    article i nfo Voltage-gated sodium channelopathies underlie many excitability disorders. Genes SCN1A, SCN2A and SCN9A, which encode pore-forming α-subunits NaV1.1, NaV1.2 and NaV1.7, are clustered on human chromosome 2, and mutations in these genes have been shown to underlie epilepsy, migraine, and somatic pain disorders. SCN3A, the gene which encodes NaV1.3, is part of this cluster, but until recently was not associated with any mutation. A charge-neutralizing mutation, K345Q, in the NaV1.3 DI/S5-6 linker has recently been identified in a patient with cryptogenic partial epilepsy. Pathogenicity of the NaV1.3/K354Q mutation has been inferred from the conservation of this residue in all sodium channels and its absence from control alleles, but functional analysis has been limited to the corresponding substitution in the cardiac muscle sodium channel NaV1.5. Since identical mutations may produce different effects within different sodium channel isoforms, we assessed the K354Q mutation within its native NaV1.3 channel and studied the effect of the mutant NaV1.3/K354Q channels on hippocampal neuron excitability. We show here that the K354Q mutation enhances the persistent and ramp currents of NaV1.3, reduces current threshold and produces spontaneous firing and paroxysmal depolarizing shift-like complexes in hippocampal neurons. Our data provide a pathophysiological basis for the pathogenicity of the first epilepsy-linked mutation within NaV1.3 channels and hippocampal neurons.

  • voltage gated sodium channels therapeutic targets for pain
    Pain Medicine, 2009
    Co-Authors: Sulayman D Dibhajj, Joel A Black, Stephen G Waxman
    Abstract:

    Objective. To provide an overview of the role of voltage-gated sodium channels in pathophysiology of acquired and inherited pain states, and of recent developments that validate these channels as therapeutic targets for treating chronic pain. Background. Neuropathic and inflammatory pain conditions are major medical needs worldwide with only partial or low efficacy treatment options currently available. An important role of voltage-gated sodium channels in many different pain states has been established in animal models and, empirically, in humans, where sodium channel blockers partially ameliorate pain. Animal studies have causally linked changes in sodium channel expression and modulation that alter channel gating properties or current density in nociceptor neurons to different pain states. Biophysical and pharmacological studies have identified the sodium channel isoforms Nav1.3, Nav1.7, Nav1.8, and Nav1.9 as particularly important in the pathophysiology of different pain syndromes. Recently, gain-of-function mutations in SCN9A , the gene which encodes Nav1.7, have been linked to two human-inherited pain syndromes, inherited erythromelalgia and paroxysmal extreme pain disorder, while loss-of-function mutations in SCN9A have been linked to complete insensitivity to pain. Studies on firing properties of sensory neurons of dorsal root ganglia demonstrate that the effects of gain-of-function mutations in Nav1.7 on the excitability of these neurons depend on the presence of Nav1.8, which suggests a similar physiological interaction of these two channels in humans carrying the Nav1.7 pain mutation. Conclusions. These studies suggest that isoform-specific blockers of these channels or targeting of their modulators may provide novel approaches to treatment of pain.

  • patterned electrical activity modulates sodium channel expression in sensory neurons
    Journal of Neuroscience Research, 2003
    Co-Authors: Joshua P. Klein, Sulayman D Dibhajj, Elisabetta A Tendi, Douglas R Fields, Stephen G Waxman
    Abstract:

    Peripheral nerve injury induces changes in the level of gene expression for sodium channels Nav1.3, Nav1.8, and Nav1.9 within dorsal root ganglion (DRG) neurons, which may contribute to the development of hyperexcitability, ectopic neuronal discharge, and neuropathic pain. The mechanism of this change in sodium channel expression is unclear. Decreased availability of neurotrophic factors following axotomy contributes to these changes in gene transcription, but the question of whether changes in intrinsic neuronal activity levels alone can trigger changes in the expression of these sodium channels has not been addressed. We examined the effect of electrical stimulation on the expression of Nav1.3, Nav1.8, and Nav1.9 by using cultured embryonic mouse sensory neurons under conditions in which nerve growth factor (NGF) was not limiting. Expression of Nav1.3 was not significantly changed following stimulation. In contrast, we observed activity-dependent down-regulation of Nav1.8 and Nav1.9 mRNA and protein levels after stimulation, as demonstrated by quantitative polymerase chain reaction and immunocytochemistry. These results show that a change in neuronal activity can alter the expression of sodium channel genes in a subtype-specific manner, via a mechanism independent of NGF withdrawal.