Nonstructural Protein 4

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 288 Experts worldwide ranked by ideXlab platform

Robert J. Meagher - One of the best experts on this subject based on the ideXlab platform.

  • Surveillance for Western Equine Encephalitis, St. Louis Encephalitis, and West Nile Viruses Using Reverse Transcription Loop-Mediated Isothermal Amplification.
    PLOS ONE, 2016
    Co-Authors: Sarah S. Wheeler, Cameron Ball, Stanley A. Langevin, Ying Fang, Lark L. Coffey, Robert J. Meagher
    Abstract:

    Collection of mosquitoes and testing for vector-borne viruses is a key surveillance activity that directly influences the vector control efforts of public health agencies, including determining when and where to apply insecticides. Vector control districts in California routinely monitor for three human pathogenic viruses including West Nile virus (WNV), Western equine encephalitis virus (WEEV), and St. Louis encephalitis virus (SLEV). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) offers highly sensitive and specific detection of these three viruses in a single multiplex reaction, but this technique requires costly, specialized equipment that is generally only available in centralized public health laboratories. We report the use of reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect WNV, WEEV, and SLEV RNA extracted from pooled mosquito samples collected in California, including novel primer sets for specific detection of WEEV and SLEV, targeting the Nonstructural Protein 4 (nsP4) gene of WEEV and the 3’ untranslated region (3’-UTR) of SLEV. Our WEEV and SLEV RT-LAMP primers allowed detection of

  • surveillance for western equine encephalitis st louis encephalitis and west nile viruses using reverse transcription loop mediated isothermal amplification
    PLOS ONE, 2016
    Co-Authors: Sarah S. Wheeler, Cameron Ball, Stanley A. Langevin, Ying Fang, Lark L. Coffey, Robert J. Meagher
    Abstract:

    Collection of mosquitoes and testing for vector-borne viruses is a key surveillance activity that directly influences the vector control efforts of public health agencies, including determining when and where to apply insecticides. Vector control districts in California routinely monitor for three human pathogenic viruses including West Nile virus (WNV), Western equine encephalitis virus (WEEV), and St. Louis encephalitis virus (SLEV). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) offers highly sensitive and specific detection of these three viruses in a single multiplex reaction, but this technique requires costly, specialized equipment that is generally only available in centralized public health laboratories. We report the use of reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect WNV, WEEV, and SLEV RNA extracted from pooled mosquito samples collected in California, including novel primer sets for specific detection of WEEV and SLEV, targeting the Nonstructural Protein 4 (nsP4) gene of WEEV and the 3’ untranslated region (3’-UTR) of SLEV. Our WEEV and SLEV RT-LAMP primers allowed detection of <0.1 PFU/reaction of their respective targets in <30 minutes, and exhibited high specificity without cross reactivity when tested against a panel of alphaviruses and flaviviruses. Furthermore, the SLEV primers do not cross-react with WNV, despite both viruses being closely related members of the Japanese encephalitis virus complex. The SLEV and WEEV primers can also be combined in a single RT-LAMP reaction, with discrimination between amplicons by melt curve analysis. Although RT-qPCR is approximately one order of magnitude more sensitive than RT-LAMP for all three targets, the RT-LAMP technique is less instrumentally intensive than RT-qPCR and provides a more cost-effective method of vector-borne virus surveillance.

Wenhai Feng - One of the best experts on this subject based on the ideXlab platform.

  • Aspartic acid at residue 185 modulates the capacity of HP-PRRSV nsp4 to antagonize IFN-I expression.
    Virology, 2020
    Co-Authors: Yu Li, Honglei Wang, Ziding Zhang, Zhongzhou Chen, Wenhai Feng
    Abstract:

    Abstract In a previous study, we have shown that highly-pathogenic PRRSV (HP-PRRSV) Nonstructural Protein 4 (nsp4) antagonizes type I IFN expression induced by poly(I:C). Here, we demonstrated that the mutation of Aspartic acid 185 (Asp185) impaired the ability of nsp4 to inhibit IFN-I production induced by poly(I:C). Subsequently, we verified that all the mutants at the residue 185, regardless of amino acid size (including Cys and Ser) and charge (including Glu and Lys), impaired nsp4 catalytic activity. However, when Asp185 in nsp4 was replaced by a similar structure amino acid Asparagine 185 (Asn185), nsp4 stayed but with a decreased protease activity. Importantly, the recombinant virus with Asn185 mutation in HP-PRRSV-nsp4 exhibited slower replication rate and higher ability to induce IFN-I expression compared with wild-type (wt) HP-PRRSV.

  • Correction: Porcine Reproductive and Respiratory Syndrome Virus Nonstructural Protein 4 Induces Apoptosis Dependent on Its 3C-Like Serine Protease Activity.
    PloS one, 2020
    Co-Authors: Zhitao Ma, Yalan Wang, Haiyan Zhao, Aotian Xu, Yongqiang Wang, Jun Tang, Wenhai Feng
    Abstract:

    [This corrects the article DOI: 10.1371/journal.pone.0069387.].

  • porcine reproductive and respiratory syndrome virus Nonstructural Protein 4 antagonizes beta interferon expression by targeting the nf κb essential modulator
    Journal of Virology, 2014
    Co-Authors: Aotian Xu, Jun Tang, Wenhai Feng, Chen Huang, Qiong Zhang, Zhibin Yu
    Abstract:

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly infectious pathogen that causes severe diseases in pigs and great economic losses to the swine industry worldwide. Type I interferons (IFNs) play a crucial role in antiviral immunity. In the present study, we demonstrated that infection with the highly pathogenic PRRSV strain JXwn06 antagonized type I IFN expression induced by poly(I·C) in both porcine alveolar macrophages (PAMs) and blood monocyte-derived macrophages (BMo). Subsequently, we showed that the inhibition of poly(I·C)-induced IFN-β production by PRRSV was dependent on the blocking of NF-κB signaling pathways. By screening PRRSV Nonstructural and structural Proteins, we demonstrated that Nonstructural Protein 4 (nsp4), a viral 3C-like serine protease, significantly suppressed IFN-β expression. Moreover, we verified that nsp4 inhibited NF-κB activation induced by signaling molecules, including RIG-I, VISA, TRIF, and IKKβ. nsp4 was shown to target the NF-κB essential modulator (NEMO) at the E349-S350 site to mediate its cleavage. Importantly, nsp4 mutants with defective protease activity abolished its ability to cleave NEMO and inhibit IFN-β production. These findings might have implications for our understanding of PRRSV pathogenesis and its mechanisms for evading the host immune response. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) is a major agent of respiratory diseases in pigs. Like many other viruses, PRRSV has evolved a variety of strategies to evade host antiviral innate immunity for survival and propagation. In this study, we show that PRRSV nsp4 is a novel antagonist of the NF-κB signaling pathway, which is responsible for regulating the expression of type I interferons and other crucial cytokines. We then investigated the underlying mechanism used by nsp4 to suppress NF-κB-mediated IFN-β production. We found that nsp4 interfered with the NF-κB signaling pathway through the cleavage of NEMO (a key regulator of NF-κB signaling) at the E349-S350 site, leading to the downregulation of IFN-β production induced by poly(I·C). The data presented here may help us to better understand PRRSV pathogenesis.

  • porcine reproductive and respiratory syndrome virus Nonstructural Protein 4 induces apoptosis dependent on its 3c like serine protease activity
    PLOS ONE, 2013
    Co-Authors: Yalan Wang, Haiyan Zhao, Aotian Xu, Yongqiang Wang, Jun Tang, Wenhai Feng
    Abstract:

    Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease in pigs caused by PRRS virus (PRRSV). Although PRRSV infection-induced cell apoptosis has been established, the related viral Protein is still unknown. Here, we reported that PRRSV Nonstructural Protein 4 (nsp4) was a critical apoptosis inducer. Nsp4 could activate caspase-3, -8, and -9. Using truncated constructs without different domains in nsp4, we demonstrated that the full-length of nsp4 structure was required for its apoptosis-inducing activity. Furthermore, using site-directed mutagenesis to inactivate the 3C-like serine protease activity of nsp4, we showed that nsp4-induced apoptosis was dependent on its serine protease activity. The ability of nsp4 to induce apoptosis was significantly impaired by His39, Asp64, and Ser118 mutations, suggesting that His39, Asp64, and Ser118 were essential for nsp4 to trigger apoptosis. In conclusion, our present work showed that PRRSV nsp4 could induce apoptosis in host cells and might be partially responsible for the apoptosis induced by PRRSV infection. PRRSV 3C-like protease-mediated apoptosis represents the first report in the genus Arterivirus, family Arteriviridae.

Sarah S. Wheeler - One of the best experts on this subject based on the ideXlab platform.

  • Surveillance for Western Equine Encephalitis, St. Louis Encephalitis, and West Nile Viruses Using Reverse Transcription Loop-Mediated Isothermal Amplification.
    PLOS ONE, 2016
    Co-Authors: Sarah S. Wheeler, Cameron Ball, Stanley A. Langevin, Ying Fang, Lark L. Coffey, Robert J. Meagher
    Abstract:

    Collection of mosquitoes and testing for vector-borne viruses is a key surveillance activity that directly influences the vector control efforts of public health agencies, including determining when and where to apply insecticides. Vector control districts in California routinely monitor for three human pathogenic viruses including West Nile virus (WNV), Western equine encephalitis virus (WEEV), and St. Louis encephalitis virus (SLEV). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) offers highly sensitive and specific detection of these three viruses in a single multiplex reaction, but this technique requires costly, specialized equipment that is generally only available in centralized public health laboratories. We report the use of reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect WNV, WEEV, and SLEV RNA extracted from pooled mosquito samples collected in California, including novel primer sets for specific detection of WEEV and SLEV, targeting the Nonstructural Protein 4 (nsP4) gene of WEEV and the 3’ untranslated region (3’-UTR) of SLEV. Our WEEV and SLEV RT-LAMP primers allowed detection of

  • surveillance for western equine encephalitis st louis encephalitis and west nile viruses using reverse transcription loop mediated isothermal amplification
    PLOS ONE, 2016
    Co-Authors: Sarah S. Wheeler, Cameron Ball, Stanley A. Langevin, Ying Fang, Lark L. Coffey, Robert J. Meagher
    Abstract:

    Collection of mosquitoes and testing for vector-borne viruses is a key surveillance activity that directly influences the vector control efforts of public health agencies, including determining when and where to apply insecticides. Vector control districts in California routinely monitor for three human pathogenic viruses including West Nile virus (WNV), Western equine encephalitis virus (WEEV), and St. Louis encephalitis virus (SLEV). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) offers highly sensitive and specific detection of these three viruses in a single multiplex reaction, but this technique requires costly, specialized equipment that is generally only available in centralized public health laboratories. We report the use of reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect WNV, WEEV, and SLEV RNA extracted from pooled mosquito samples collected in California, including novel primer sets for specific detection of WEEV and SLEV, targeting the Nonstructural Protein 4 (nsP4) gene of WEEV and the 3’ untranslated region (3’-UTR) of SLEV. Our WEEV and SLEV RT-LAMP primers allowed detection of <0.1 PFU/reaction of their respective targets in <30 minutes, and exhibited high specificity without cross reactivity when tested against a panel of alphaviruses and flaviviruses. Furthermore, the SLEV primers do not cross-react with WNV, despite both viruses being closely related members of the Japanese encephalitis virus complex. The SLEV and WEEV primers can also be combined in a single RT-LAMP reaction, with discrimination between amplicons by melt curve analysis. Although RT-qPCR is approximately one order of magnitude more sensitive than RT-LAMP for all three targets, the RT-LAMP technique is less instrumentally intensive than RT-qPCR and provides a more cost-effective method of vector-borne virus surveillance.

Lark L. Coffey - One of the best experts on this subject based on the ideXlab platform.

  • Surveillance for Western Equine Encephalitis, St. Louis Encephalitis, and West Nile Viruses Using Reverse Transcription Loop-Mediated Isothermal Amplification.
    PLOS ONE, 2016
    Co-Authors: Sarah S. Wheeler, Cameron Ball, Stanley A. Langevin, Ying Fang, Lark L. Coffey, Robert J. Meagher
    Abstract:

    Collection of mosquitoes and testing for vector-borne viruses is a key surveillance activity that directly influences the vector control efforts of public health agencies, including determining when and where to apply insecticides. Vector control districts in California routinely monitor for three human pathogenic viruses including West Nile virus (WNV), Western equine encephalitis virus (WEEV), and St. Louis encephalitis virus (SLEV). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) offers highly sensitive and specific detection of these three viruses in a single multiplex reaction, but this technique requires costly, specialized equipment that is generally only available in centralized public health laboratories. We report the use of reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect WNV, WEEV, and SLEV RNA extracted from pooled mosquito samples collected in California, including novel primer sets for specific detection of WEEV and SLEV, targeting the Nonstructural Protein 4 (nsP4) gene of WEEV and the 3’ untranslated region (3’-UTR) of SLEV. Our WEEV and SLEV RT-LAMP primers allowed detection of

  • surveillance for western equine encephalitis st louis encephalitis and west nile viruses using reverse transcription loop mediated isothermal amplification
    PLOS ONE, 2016
    Co-Authors: Sarah S. Wheeler, Cameron Ball, Stanley A. Langevin, Ying Fang, Lark L. Coffey, Robert J. Meagher
    Abstract:

    Collection of mosquitoes and testing for vector-borne viruses is a key surveillance activity that directly influences the vector control efforts of public health agencies, including determining when and where to apply insecticides. Vector control districts in California routinely monitor for three human pathogenic viruses including West Nile virus (WNV), Western equine encephalitis virus (WEEV), and St. Louis encephalitis virus (SLEV). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) offers highly sensitive and specific detection of these three viruses in a single multiplex reaction, but this technique requires costly, specialized equipment that is generally only available in centralized public health laboratories. We report the use of reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect WNV, WEEV, and SLEV RNA extracted from pooled mosquito samples collected in California, including novel primer sets for specific detection of WEEV and SLEV, targeting the Nonstructural Protein 4 (nsP4) gene of WEEV and the 3’ untranslated region (3’-UTR) of SLEV. Our WEEV and SLEV RT-LAMP primers allowed detection of <0.1 PFU/reaction of their respective targets in <30 minutes, and exhibited high specificity without cross reactivity when tested against a panel of alphaviruses and flaviviruses. Furthermore, the SLEV primers do not cross-react with WNV, despite both viruses being closely related members of the Japanese encephalitis virus complex. The SLEV and WEEV primers can also be combined in a single RT-LAMP reaction, with discrimination between amplicons by melt curve analysis. Although RT-qPCR is approximately one order of magnitude more sensitive than RT-LAMP for all three targets, the RT-LAMP technique is less instrumentally intensive than RT-qPCR and provides a more cost-effective method of vector-borne virus surveillance.

Ying Fang - One of the best experts on this subject based on the ideXlab platform.

  • Surveillance for Western Equine Encephalitis, St. Louis Encephalitis, and West Nile Viruses Using Reverse Transcription Loop-Mediated Isothermal Amplification.
    PLOS ONE, 2016
    Co-Authors: Sarah S. Wheeler, Cameron Ball, Stanley A. Langevin, Ying Fang, Lark L. Coffey, Robert J. Meagher
    Abstract:

    Collection of mosquitoes and testing for vector-borne viruses is a key surveillance activity that directly influences the vector control efforts of public health agencies, including determining when and where to apply insecticides. Vector control districts in California routinely monitor for three human pathogenic viruses including West Nile virus (WNV), Western equine encephalitis virus (WEEV), and St. Louis encephalitis virus (SLEV). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) offers highly sensitive and specific detection of these three viruses in a single multiplex reaction, but this technique requires costly, specialized equipment that is generally only available in centralized public health laboratories. We report the use of reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect WNV, WEEV, and SLEV RNA extracted from pooled mosquito samples collected in California, including novel primer sets for specific detection of WEEV and SLEV, targeting the Nonstructural Protein 4 (nsP4) gene of WEEV and the 3’ untranslated region (3’-UTR) of SLEV. Our WEEV and SLEV RT-LAMP primers allowed detection of

  • surveillance for western equine encephalitis st louis encephalitis and west nile viruses using reverse transcription loop mediated isothermal amplification
    PLOS ONE, 2016
    Co-Authors: Sarah S. Wheeler, Cameron Ball, Stanley A. Langevin, Ying Fang, Lark L. Coffey, Robert J. Meagher
    Abstract:

    Collection of mosquitoes and testing for vector-borne viruses is a key surveillance activity that directly influences the vector control efforts of public health agencies, including determining when and where to apply insecticides. Vector control districts in California routinely monitor for three human pathogenic viruses including West Nile virus (WNV), Western equine encephalitis virus (WEEV), and St. Louis encephalitis virus (SLEV). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) offers highly sensitive and specific detection of these three viruses in a single multiplex reaction, but this technique requires costly, specialized equipment that is generally only available in centralized public health laboratories. We report the use of reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect WNV, WEEV, and SLEV RNA extracted from pooled mosquito samples collected in California, including novel primer sets for specific detection of WEEV and SLEV, targeting the Nonstructural Protein 4 (nsP4) gene of WEEV and the 3’ untranslated region (3’-UTR) of SLEV. Our WEEV and SLEV RT-LAMP primers allowed detection of <0.1 PFU/reaction of their respective targets in <30 minutes, and exhibited high specificity without cross reactivity when tested against a panel of alphaviruses and flaviviruses. Furthermore, the SLEV primers do not cross-react with WNV, despite both viruses being closely related members of the Japanese encephalitis virus complex. The SLEV and WEEV primers can also be combined in a single RT-LAMP reaction, with discrimination between amplicons by melt curve analysis. Although RT-qPCR is approximately one order of magnitude more sensitive than RT-LAMP for all three targets, the RT-LAMP technique is less instrumentally intensive than RT-qPCR and provides a more cost-effective method of vector-borne virus surveillance.