Panicum virgatum

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 360 Experts worldwide ranked by ideXlab platform

Neal C Stewart - One of the best experts on this subject based on the ideXlab platform.

  • overexpression of mir156 in switchgrass Panicum virgatum l results in various morphological alterations and leads to improved biomass production
    Plant Biotechnology Journal, 2012
    Co-Authors: Ramanjulu Sunkar, Neal C Stewart, Hui Shen, David G J Mann, Chuanen Zhou, Jiyi Zhang, Jessica Matts, Jennifer J Wolf
    Abstract:

    Summary Switchgrass (Panicum virgatum L.) has been developed into a dedicated herbaceous bioenergy crop. Biomass yield is a major target trait for genetic improvement of switchgrass. microRNAs have emerged as a prominent class of gene regulatory factors that has the potential to improve complex traits such as biomass yield. A miR156b precursor was overexpressed in switchgrass. The effects of miR156 overexpression on SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes were revealed by microarray and quantitative RT-PCR analyses. Morphological alterations, biomass yield, saccharification efficiency and forage digestibility of the transgenic plants were characterized. miR156 controls apical dominance and floral transition in switchgrass by suppressing its target SPL genes. Relatively low levels of miR156 overexpression were sufficient to increase biomass yield while producing plants with normal flowering time. Moderate levels of miR156 led to improved biomass but the plants were nonflowering. These two groups of plants produced 58%‐101% more biomass yield compared with the control. However, high miR156 levels resulted in severely stunted growth. The degree of morphological alterations of the transgenic switchgrass depends on miR156 level. Compared with floral transition, a lower miR156 level is required to disrupt apical dominance. The improvement in biomass yield was mainly because of the increase in tiller number. Targeted overexpression of miR156 also improved solubilized sugar yield and forage digestibility, and offered an effective approach for transgene containment.

  • switchgrass Panicum virgatum l cell suspension cultures establishment characterization and application
    Plant Science, 2011
    Co-Authors: Hani Alahmad, Mary R Rudis, Neal C Stewart, Mitra Mazarei, Blake L Joyce
    Abstract:

    a b s t r a c t Switchgrass (Panicum virgatum L.) is a warm-season perennial grass that has received considerable atten- tion as a potential dedicated biofuel and bioproduct feedstock. Genetic improvement of switchgrass is needed for better cellulosic ethanol production, especially to improve cellulose-to-lignin ratios. Cell sus- pension cultures offer an in vitro system for mutant selection, mass propagation, gene transfer, and cell biology. Toward this end, switchgrass cell suspension cultures were initiated from embryogenic callus obtained from genotype Alamo 2. They have been established and characterized with different cell type morphologies: sandy, fine milky, and ultrafine cultures. Characterization includes histological analysis using scanning electron microscopy, and utility using protoplast isolation. A high protoplast isolation rate of up to 10 6 protoplasts/1.0 g of cells was achieved for the fine milky culture, whereas only a few protoplasts were isolated for the sandy and ultrafine cultures. These results indicate that switchgrass cell suspension type sizably impacts the efficiency of protoplast isolation, suggesting its significance in other applications. The establishment of different switchgrass suspension culture cell types provides the opportunity to gain insights into the versatility of the system that would further augment switchgrass biology research. © 2011 Elsevier Ireland Ltd. All rights reserved.

  • an improved tissue culture system for embryogenic callus production and plant regeneration in switchgrass Panicum virgatum l
    Bioenergy Research, 2009
    Co-Authors: Jason N Burris, Blake L Joyce, David G J Mann, Neal C Stewart
    Abstract:

    The increased emphasis on research of dedicated biomass and biofuel crops begs for biotechnology method improvements. For switchgrass (Panicum virgatum L.), one limitation is inefficient tissue culture and transformation systems. The objectives of this study were to investigate the utility of a new medium described here, LP9, for the production and maintenance of switchgrass callus and its regeneration, which also enables genetic transformation. LP9 medium is not based on Murashige and Skoog (MS) medium, the basal medium that all published switchgrass transformation has been performed. We demonstrate an efficient tissue culture system for switchgrass Alamo 2, which yields increased viability of callus and the ability to maintain callus for a duration of over 6 months. This longevity gives a greater useful callus lifetime than for published switchgrass MS-based media. This increased longevity enables greater potential efficiency and throughput for a transformation pipeline. Callus produced on LP9 is categorized as type II callus, which is more friable and easier to multiply, maintain and transfer than type I callus obtained from previously described tissue culture systems.

  • protoplast isolation and transient gene expression in switchgrass Panicum virgatum l
    Biotechnology Journal, 2008
    Co-Authors: Mitra Mazarei, Hani Alahmad, Mary R Rudis, Neal C Stewart
    Abstract:

    Transient assay systems using protoplasts have been utilized in several plant species and are a powerful tool for rapid functional gene analysis and biochemical manipulations. A protoplast system has not been used in switchgrass (Panicum virgatum L.), even though it is a bioenergy crop that has received considerable attention. Here we report the first protocol to isolate large numbers of viable protoplasts from both leaves and roots of two switchgrass genotypes. Furthermore, we demonstrate transient expression of PEG-mediated DNA uptake in the isolated protoplasts by measuring the activity of β-glucuronidase (GUS) reporter gene driven by either the Cauliflower mosaic virus (CaMV) 35S promoter or the maize ubiquitin 1 promoter. Protoplast transformation with either the 35S or the ubiquitin promoter resulted in an increase in GUS activity compared to the untransformed controls; however, the extent of GUS activity was considerably higher for the ubiquitin promoter than for the 35S promoter. Collectively, our results indicate an efficient protoplast isolation and transient assay system that can be used to facilitate gene expression studies in switchgrass.

Mitra Mazarei - One of the best experts on this subject based on the ideXlab platform.

  • Functional Analysis of Cellulose Synthase CesA4 and CesA6 Genes in Switchgrass (Panicum virgatum) by Overexpression and RNAi-Mediated Gene Silencing
    Frontiers Media S.A., 2018
    Co-Authors: Mitra Mazarei, Holly L Baxter, Ajaya K. Biswal, Keonhee Kim, Xianzhi Meng
    Abstract:

    Switchgrass (Panicum virgatum L.) is a leading lignocellulosic bioenergy feedstock. Cellulose is a major component of the plant cell walls and the primary substrate for saccharification. Accessibility of cellulose to enzymatic breakdown into fermentable sugars is limited by the presence of lignin in the plant cell wall. In this study, putatively novel switchgrass secondary cell wall cellulose synthase PvCesA4 and primary cell wall PvCesA6 genes were identified and their functional role in cellulose synthesis and cell wall composition was examined by overexpression and knockdown of the individual genes in switchgrass. The endogenous expression of PvCesA4 and PvCesA6 genes varied among including roots, leaves, stem, and reproductive tissues. Increasing or decreasing PvCesA4 and PvCesA6 expression to extreme levels in the transgenic lines resulted in decreased biomass production. PvCesA6-overexpressing lines had reduced lignin content and syringyl/guaiacyl lignin monomer ratio accompanied by increased sugar release efficiency, suggesting an impact of PvCesA6 expression levels on lignin biosynthesis. Cellulose content and cellulose crystallinity were decreased, while xylan content was increased in PvCesA4 and PvCesA6 overexpression or knockdown lines. The increase in xylan content suggests that the amount of non-cellulosic cell wall polysaccharide was modified in these plants. Taken together, the results show that the manipulation of the cellulose synthase genes alters the cell wall composition and availability of cellulose as a bioprocessing substrate

  • identification and overexpression of a knotted1 like transcription factor in switchgrass Panicum virgatum l for lignocellulosic feedstock improvement
    Frontiers in Plant Science, 2016
    Co-Authors: Mitra Mazarei, Robert W. Sykes, Jiyi Zhang, Wegi A Wuddineh, Geoffrey B Turner, Stephen R Decker
    Abstract:

    High biomass production and wide adaptation has made switchgrass (Panicum virgatum L.) an important candidate lignocellulosic bioenergy crop. One major limitation of this and other lignocellulosic feedstocks is the recalcitrance of complex carbohydrates to hydrolysis for conversion to biofuels. Lignin is the major contributor to recalcitrance as it limits the accessibility of cell wall carbohydrates to enzymatic breakdown into fermentable sugars. Therefore, genetic manipulation of the lignin biosynthesis pathway is one strategy to reduce recalcitrance. Here, we identified a switchgrass Knotted1 transcription factor, PvKN1, with the aim of genetically engineering switchgrass for reduced biomass recalcitrance for biofuel production. Gene expression of the endogenous PvKN1 gene was observed to be highest in young inflorescences and stems. Ectopic overexpression of PvKN1 in switchgrass altered growth, especially in early developmental stages. Transgenic lines had reduced expression of most lignin biosynthetic genes accompanied by a reduction in lignin content suggesting the involvement of PvKN1 in the broad regulation of the lignin biosynthesis pathway. Moreover, the reduced expression of the Gibberellin 20-oxidase (GA20ox) gene in tandem with the increased expression of Gibberellin 2-oxidase (GA2ox) genes in transgenic PvKN1 lines suggest that PvKN1 may exert regulatory effects via modulation of GA signalling. Furthermore, overexpression of PvKN1 altered the expression of cellulose and hemicellulose biosynthetic genes and increased sugar release efficiency in transgenic lines. Our results demonstrated that switchgrass PvKN1 is a putative ortholog of maize KN1 that is linked to plant lignification and cell wall and development traits as a major regulatory gene. Therefore, targeted overexpression of PvKN1 in bioenergy feedstocks may provide one feasible strategy for reducing biomass recalcitrance and simultaneously improving plant growth characteristics.

  • gateway compatible vectors for high throughput gene functional analysis in switchgrass Panicum virgatum l and other monocot species
    Plant Biotechnology Journal, 2012
    Co-Authors: David G J Mann, Mitra Mazarei, Peter R Lafayette, Laura L Abercrombie, Zachary R King, Mathew Halter
    Abstract:

    Summary Switchgrass (Panicum virgatum L.) is a C4 perennial grass and has been identified as a potential bioenergy crop for cellulosic ethanol because of its rapid growth rate, nutrient use efficiency and widespread distribution throughout North America. The improvement of bioenergy feedstocks is needed to make cellulosic ethanol economically feasible, and genetic engineering of switchgrass is a promising approach towards this goal. A crucial component of creating transgenic switchgrass is having the capability of transforming the explants with DNA sequences of interest using vector constructs. However, there are limited options with the monocot plant vectors currently available. With this in mind, a versatile set of Gateway- compatible destination vectors (termed pANIC) was constructed to be used in monocot plants for transgenic crop improvement. The pANIC vectors can be used for transgene overexpres- sion or RNAi-mediated gene suppression. The pANIC vector set includes vectors that can be utilized for particle bombardment or Agrobacterium-mediated transformation. All the vectors contain (i) a Gateway cassette for overexpression or silencing of the target sequence, (ii) a plant selection cassette and (iii) a visual reporter cassette. The pANIC vector set was function- ally validated in switchgrass and rice and allows for high-throughput screening of sequences of interest in other monocot species as well.

  • switchgrass Panicum virgatum l cell suspension cultures establishment characterization and application
    Plant Science, 2011
    Co-Authors: Hani Alahmad, Mary R Rudis, Neal C Stewart, Mitra Mazarei, Blake L Joyce
    Abstract:

    a b s t r a c t Switchgrass (Panicum virgatum L.) is a warm-season perennial grass that has received considerable atten- tion as a potential dedicated biofuel and bioproduct feedstock. Genetic improvement of switchgrass is needed for better cellulosic ethanol production, especially to improve cellulose-to-lignin ratios. Cell sus- pension cultures offer an in vitro system for mutant selection, mass propagation, gene transfer, and cell biology. Toward this end, switchgrass cell suspension cultures were initiated from embryogenic callus obtained from genotype Alamo 2. They have been established and characterized with different cell type morphologies: sandy, fine milky, and ultrafine cultures. Characterization includes histological analysis using scanning electron microscopy, and utility using protoplast isolation. A high protoplast isolation rate of up to 10 6 protoplasts/1.0 g of cells was achieved for the fine milky culture, whereas only a few protoplasts were isolated for the sandy and ultrafine cultures. These results indicate that switchgrass cell suspension type sizably impacts the efficiency of protoplast isolation, suggesting its significance in other applications. The establishment of different switchgrass suspension culture cell types provides the opportunity to gain insights into the versatility of the system that would further augment switchgrass biology research. © 2011 Elsevier Ireland Ltd. All rights reserved.

  • protoplast isolation and transient gene expression in switchgrass Panicum virgatum l
    Biotechnology Journal, 2008
    Co-Authors: Mitra Mazarei, Hani Alahmad, Mary R Rudis, Neal C Stewart
    Abstract:

    Transient assay systems using protoplasts have been utilized in several plant species and are a powerful tool for rapid functional gene analysis and biochemical manipulations. A protoplast system has not been used in switchgrass (Panicum virgatum L.), even though it is a bioenergy crop that has received considerable attention. Here we report the first protocol to isolate large numbers of viable protoplasts from both leaves and roots of two switchgrass genotypes. Furthermore, we demonstrate transient expression of PEG-mediated DNA uptake in the isolated protoplasts by measuring the activity of β-glucuronidase (GUS) reporter gene driven by either the Cauliflower mosaic virus (CaMV) 35S promoter or the maize ubiquitin 1 promoter. Protoplast transformation with either the 35S or the ubiquitin promoter resulted in an increase in GUS activity compared to the untransformed controls; however, the extent of GUS activity was considerably higher for the ubiquitin promoter than for the 35S promoter. Collectively, our results indicate an efficient protoplast isolation and transient assay system that can be used to facilitate gene expression studies in switchgrass.

Xinlu Chen - One of the best experts on this subject based on the ideXlab platform.

  • biosynthesis and emission of stress induced volatile terpenes in roots and leaves of switchgrass Panicum virgatum l
    Frontiers in Plant Science, 2019
    Co-Authors: Andrew Muchlinski, Xinlu Chen, John T Lovell, Tobias G Kollner, Kyle A Pelot, Philipp Zerbe, Meredith Ruggiero, Lemar Callaway, Suzanne Laliberte, Feng Chen
    Abstract:

    Switchgrass (Panicum virgatum L.), a perennial C4 grass, represents an important species in natural and anthropogenic grasslands of North America. Its resilience to abiotic and biotic stress has made switchgrass a preferred bioenergy crop. However, little is known about the mechanisms of resistance of switchgrass against pathogens and herbivores. Volatile compounds such as terpenes have important activities in plant direct and indirect defense. Here, we show that switchgrass leaves emit blends of monoterpenes and sesquiterpenes upon feeding by the generalist insect herbivore Spodoptera frugiperda (fall armyworm) and in a systemic response to the treatment of roots with defense hormones. Belowground application of methyl jasmonate also induced the release of volatile terpenes from roots. To correlate the emission of terpenes with the expression and activity of their corresponding biosynthetic genes, we identified a gene family of 44 monoterpene and sesquiterpene synthases (mono- and sesqui-TPSs) of the type-a, type-b, type-g, and type-e subfamilies, of which 32 TPSs were found to be functionally active in vitro. The TPS genes are distributed over the K and N subgenomes with clusters occurring on several chromosomes. Synteny analysis revealed syntenic networks for approximately 30-40% of the switchgrass TPS genes in the genomes of Panicum hallii, Setaria italica, and Sorghum bicolor, suggesting shared TPS ancestry in the common progenitor of these grass lineages. Eighteen switchgrass TPS genes were substantially induced upon insect and hormone treatment and the enzymatic products of nine of these genes correlated with compounds of the induced volatile blends. In accordance with the emission of volatiles, TPS gene expression was induced systemically in response to belowground treatment, whereas this response was not observed upon aboveground feeding of S. frugiperda. Our results demonstrate complex above and belowground responses of induced volatile terpene metabolism in switchgrass and provide a framework for more detailed investigations of the function of terpenes in stress resistance in this monocot crop.

  • a high throughput transient gene expression system for switchgrass Panicum virgatum l seedlings
    Biotechnology for Biofuels, 2010
    Co-Authors: Xinlu Chen, Raymie Equi, Holly L Baxter, Kyle Berk, Jin Han, Sujata Agarwal, J Zale
    Abstract:

    Background Grasses are relatively recalcitrant to genetic transformation in comparison to certain dicotyledons, yet they constitute some of the most important biofuel crops. Genetic transformation of switchgrass (Panicum virgatum L.) has previously been reported after cocultivation of explants with Agrobacterium and biolistics of embryogenic calli. Experiments to increase transient gene expression in planta may lead to stable transformation methods with increased efficiency.

David G J Mann - One of the best experts on this subject based on the ideXlab platform.

  • overexpression of mir156 in switchgrass Panicum virgatum l results in various morphological alterations and leads to improved biomass production
    Plant Biotechnology Journal, 2012
    Co-Authors: Ramanjulu Sunkar, Neal C Stewart, Hui Shen, David G J Mann, Chuanen Zhou, Jiyi Zhang, Jessica Matts, Jennifer J Wolf
    Abstract:

    Summary Switchgrass (Panicum virgatum L.) has been developed into a dedicated herbaceous bioenergy crop. Biomass yield is a major target trait for genetic improvement of switchgrass. microRNAs have emerged as a prominent class of gene regulatory factors that has the potential to improve complex traits such as biomass yield. A miR156b precursor was overexpressed in switchgrass. The effects of miR156 overexpression on SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes were revealed by microarray and quantitative RT-PCR analyses. Morphological alterations, biomass yield, saccharification efficiency and forage digestibility of the transgenic plants were characterized. miR156 controls apical dominance and floral transition in switchgrass by suppressing its target SPL genes. Relatively low levels of miR156 overexpression were sufficient to increase biomass yield while producing plants with normal flowering time. Moderate levels of miR156 led to improved biomass but the plants were nonflowering. These two groups of plants produced 58%‐101% more biomass yield compared with the control. However, high miR156 levels resulted in severely stunted growth. The degree of morphological alterations of the transgenic switchgrass depends on miR156 level. Compared with floral transition, a lower miR156 level is required to disrupt apical dominance. The improvement in biomass yield was mainly because of the increase in tiller number. Targeted overexpression of miR156 also improved solubilized sugar yield and forage digestibility, and offered an effective approach for transgene containment.

  • gateway compatible vectors for high throughput gene functional analysis in switchgrass Panicum virgatum l and other monocot species
    Plant Biotechnology Journal, 2012
    Co-Authors: David G J Mann, Mitra Mazarei, Peter R Lafayette, Laura L Abercrombie, Zachary R King, Mathew Halter
    Abstract:

    Summary Switchgrass (Panicum virgatum L.) is a C4 perennial grass and has been identified as a potential bioenergy crop for cellulosic ethanol because of its rapid growth rate, nutrient use efficiency and widespread distribution throughout North America. The improvement of bioenergy feedstocks is needed to make cellulosic ethanol economically feasible, and genetic engineering of switchgrass is a promising approach towards this goal. A crucial component of creating transgenic switchgrass is having the capability of transforming the explants with DNA sequences of interest using vector constructs. However, there are limited options with the monocot plant vectors currently available. With this in mind, a versatile set of Gateway- compatible destination vectors (termed pANIC) was constructed to be used in monocot plants for transgenic crop improvement. The pANIC vectors can be used for transgene overexpres- sion or RNAi-mediated gene suppression. The pANIC vector set includes vectors that can be utilized for particle bombardment or Agrobacterium-mediated transformation. All the vectors contain (i) a Gateway cassette for overexpression or silencing of the target sequence, (ii) a plant selection cassette and (iii) a visual reporter cassette. The pANIC vector set was function- ally validated in switchgrass and rice and allows for high-throughput screening of sequences of interest in other monocot species as well.

  • switchgrass Panicum virgatum l polyubiquitin gene pvubi1 and pvubi2 promoters for use in plant transformation
    BMC Biotechnology, 2011
    Co-Authors: Blake L Joyce, David G J Mann, Zachary R King, Wuesheng Liu, Ryan Percifield, Jennifer S Hawkins
    Abstract:

    The ubiquitin protein is present in all eukaryotic cells and promoters from ubiquitin genes are good candidates to regulate the constitutive expression of transgenes in plants. Therefore, two switchgrass (Panicum virgatum L.) ubiquitin genes (PvUbi1 and PvUbi2) were cloned and characterized. Reporter constructs were produced containing the isolated 5' upstream regulatory regions of the coding sequences (i.e. PvUbi1 and PvUbi2 promoters) fused to the uidA coding region (GUS) and tested for transient and stable expression in a variety of plant species and tissues. PvUbi1 consists of 607 bp containing cis-acting regulatory elements, a 5' untranslated region (UTR) containing a 93 bp non-coding exon and a 1291 bp intron, and a 918 bp open reading frame (ORF) that encodes four tandem, head -to-tail ubiquitin monomer repeats followed by a 191 bp 3' UTR. PvUbi2 consists of 692 bp containing cis-acting regulatory elements, a 5' UTR containing a 97 bp non-coding exon and a 1072 bp intron, a 1146 bp ORF that encodes five tandem ubiquitin monomer repeats and a 183 bp 3' UTR. PvUbi1 and PvUbi2 were expressed in all examined switchgrass tissues as measured by qRT-PCR. Using biolistic bombardment, PvUbi1 and PvUbi2 promoters showed strong expression in switchgrass and rice callus, equaling or surpassing the expression levels of the CaMV 35S, 2x35S, ZmUbi1, and OsAct1 promoters. GUS staining following stable transformation in rice demonstrated that the PvUbi1 and PvUbi2 promoters drove expression in all examined tissues. When stably transformed into tobacco (Nicotiana tabacum), the PvUbi2+3 and PvUbi2+9 promoter fusion variants showed expression in vascular and reproductive tissues. The PvUbi1 and PvUbi2 promoters drive expression in switchgrass, rice and tobacco and are strong constitutive promoter candidates that will be useful in genetic transformation of monocots and dicots.

  • Rapid Assessment of Lignin Content and Structure in Switchgrass (Panicum virgatum L.) Grown Under Different Environmental Conditions
    BioEnergy Research, 2009
    Co-Authors: David G J Mann, Jason N Burris, Nicole Labbé, Robert W. Sykes, Kristen Gracom, Lindsey Kline, Isabella M. Swamidoss, Mark Davis, C. Neal Stewart
    Abstract:

    Switchgrass ( Panicum virgatum L.) is a candidate feedstock in bioenergy, and plant breeding and molecular genetic strategies are being used to improve germplasm. In order to assess these subsequent modifications, baseline biomass compositional data are needed in a relevant variety of environments. In this study, switchgrass cv. Alamo was grown in the field, greenhouse, and growth chamber and harvested into individual leaf and stem tissue components. These components were analyzed with pyrolysis vapor analysis using molecular beam mass spectrometry, Fourier transform infrared, and standard wet chemistry methods to characterize and compare the composition among the different growth environments. The details of lignin content, S/G ratios, and degree of cross-linked lignin are discussed. Multivariate approaches such as projection to latent structures regression found a very strong correlation between the lignin content obtained by standard wet chemistry methods and the two high throughput techniques employed to rapidly assess lignin in potential switchgrass candidates. The models were tested on unknown samples and verified by wet chemistry. The similar lignin content found by the two methods shows that both approaches are capable of determining lignin content in biomass in a matter of minutes.

  • an improved tissue culture system for embryogenic callus production and plant regeneration in switchgrass Panicum virgatum l
    Bioenergy Research, 2009
    Co-Authors: Jason N Burris, Blake L Joyce, David G J Mann, Neal C Stewart
    Abstract:

    The increased emphasis on research of dedicated biomass and biofuel crops begs for biotechnology method improvements. For switchgrass (Panicum virgatum L.), one limitation is inefficient tissue culture and transformation systems. The objectives of this study were to investigate the utility of a new medium described here, LP9, for the production and maintenance of switchgrass callus and its regeneration, which also enables genetic transformation. LP9 medium is not based on Murashige and Skoog (MS) medium, the basal medium that all published switchgrass transformation has been performed. We demonstrate an efficient tissue culture system for switchgrass Alamo 2, which yields increased viability of callus and the ability to maintain callus for a duration of over 6 months. This longevity gives a greater useful callus lifetime than for published switchgrass MS-based media. This increased longevity enables greater potential efficiency and throughput for a transformation pipeline. Callus produced on LP9 is categorized as type II callus, which is more friable and easier to multiply, maintain and transfer than type I callus obtained from previously described tissue culture systems.

Yunwei Zhang - One of the best experts on this subject based on the ideXlab platform.

  • pvnac1 increases biomass and enhances salt tolerance by decreasing na accumulation and promoting ros scavenging in switchgrass Panicum virgatum l
    Plant Science, 2019
    Co-Authors: Jinfang Wang, Yunwei Zhang, Lu Zhang, Xiaoyun Wang, Lun Liu, Xinpeng Lin, Wenjing Wang, Yunyun Cao, Shuxin Ren, Wanjun Zhang
    Abstract:

    Abstract Switchgrass (Panicum virgatum L.) is a bioenergy crop; thus, it is important to improve biomass to effectively produce bioethanol, particularly under adverse stress conditions. NAC transcription factors are involved in the abiotic stress response. PvNAC1 was isolated in the nucleus of switchgrass, with its C-terminal region containing a transcriptional activation domain. PvNAC1 expression was induced by dehydration, salt, H2O2, and abscisic acid treatments. Overexpressing (OE) PvNAC1 improved growth performance, leading to significantly taller and heavier (dry weight) plants. Moreover, cellulose content was significantly higher in OE plants, indicating that PvNAC1 plays an important role regulating growth and bioethanol production. PvNAC1 RNA interference (RNAi) switchgrass plants exhibited reduced dry weight and cellulose content. OE PvNAC1 enhanced tolerance to salt stress, through higher reactive oxygen species scavenging ability and less Na+ and more K+ accumulation in roots and shoots. RNAi plants were more sensitive to salt stress. The quantitative polymerase chain reaction results revealed that some stress responsive genes, three antioxidant enzymatic genes, and an ion homeostasis-related gene were upregulated in OE plants and downregulated in RNAi plants. These results show that PvNAC1 functions as a transcriptional activator in response to salt stress and growth.

  • overexpression of gene encoding the key enzyme involved in proline biosynthesis pup5cs to improve salt tolerance in switchgrass Panicum virgatum l
    Plant Cell Reports, 2018
    Co-Authors: Cong Guan, Yanhua Huang, Xin Cui, Sijia Liu, Yunzhuan Zhou, Yunwei Zhang
    Abstract:

    Genetic improvement through overexpressing PuP5CS in switchgrass is feasible for enhancing plant salt stress tolerance. Switchgrass (Panicum virgatum L.) has developed into a dedicated bioenergy crop. To improve the biomass production of switchgrass grown on different types of soil, abiotic stress tolerance traits are considered for its genetic improvement. Proline accumulation is a widespread response when plants are subjected to abiotic stresses such as drought, cold and salinity. In plants, P5CS gene encodes the key regulatory enzyme that plays a crucial role in proline biosynthesis. Here, we introduced the PuP5CS gene (from Puccinellia chinampoensis) into switchgrass by Agrobacterium-mediated transformation. Transgenic lines overexpressing the PuP5CS gene showed phenotypic advantages, in leaf width, internode diameter, internode length, tiller numbers and precocious flowering under normal conditions, and the transgenic lines displayed better regenerative capacity in forming more tillers after harvest. Moreover, the PuP5CS gene enhanced the salt tolerance of transgenic switchgrass by altering a wide range of physiological responses. In accordance with the physiological results, histological analysis of cross sections through the leaf blade showed that the areas of bulliform cells and bundle sheath cells were significantly increased in PuP5CS-overexpressing leaves. The expression levels of ROS scavenging-associated genes in transgenic plants were higher than in control plants under salt stress. The results show that genetic improvement through overexpressing PuP5CS in switchgrass is feasible for enhancing plant stress tolerance.

  • synergistic and antagonistic effects of salinity and ph on germination in switchgrass Panicum virgatum l
    PLOS ONE, 2014
    Co-Authors: Yuan Liu, Quanzhen Wang, Yunwei Zhang, Jian Cui, Guo Chen, Bao Xie, Haitao Liu
    Abstract:

    The effects of salt-alkaline mixed stress on switchgrass were investigated by evaluating seed germination and the proline, malondialdehyde (MDA) and soluble sugar contents in three switchgrass (Panicum virgatum L.) cultivars in order to identify which can be successfully produced on marginal lands affected by salt-alkaline mixed stress. The experimental conditions consisted of four levels of salinity (10, 60, 110 and 160 mM) and four pH levels (7.1, 8.3, 9.5 and 10.7). The effects of salt-alkaline mixed stress with equivalent coupling of the salinity and pH level on the switchgrass were explored via model analyses. Switchgrass was capable of germinating and surviving well in all treatments under low-alkaline pH (pH≤8.3), regardless of the salinity. However, seed germination and seedling growth were sharply reduced at higher pH values in conjunction with salinity. The salinity and pH had synergetic effects on the germination percentage, germination index, plumular length and the soluble sugar and proline contents in switchgrass. However, these two factors exhibited antagonistic effects on the radicular length of switchgrass. The combined effects of salinity and pH and the interactions between them should be considered when evaluating the strength of salt-alkaline mixed stress.

  • Post-glacial evolution of Panicum virgatum: centers of diversity and gene pools revealed by SSR markers and cpDNA sequences.
    Genetica, 2011
    Co-Authors: Yunwei Zhang, Shawn M Kaeppler, Juan Zalapa, Andrew R. Jakubowski, David L. Price, Ananta Acharya, Yanling Wei, E. Charles Brummer, Michael D. Casler
    Abstract:

    Switchgrass (Panicum virgatum), a central and Eastern USA native, is highly valued as a component in tallgrass prairie and savanna restoration and conservation projects and a potential bioenergy feedstock. The purpose of this study was to identify regional diversity, gene pools, and centers-of-diversity of switchgrass to gain an under- standing of its post-glacial evolution and to identify both the geographic range and potential overlap between func- tional gene pools. We sampled a total of 384 genotypes from 49 accessions that included the three main taxonomic groups of switchgrass (lowland 4x, upland 4x, and upland 8x) along with one accession possessing an intermediate phenotype. We identified primary centers of diversity for switchgrass in the eastern and western Gulf Coast regions. Migration, drift, and selection have led to adaptive radia- tion in switchgrass, creating regional gene pools within each of the main taxa. We estimate that both upland-low- land divergence and 4x-to-8x polyploidization within switchgrass began approximately 1.5-1 M ybp and that subsequent ice age cycles have resulted in gene flow between ecotype lineages and between ploidy levels. Gene flow has resulted in ''hot spots'' of genetic diversity in the southeastern USA and along the Atlantic Seaboard.