Paraphyly

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 3255 Experts worldwide ranked by ideXlab platform

Joongki Park - One of the best experts on this subject based on the ideXlab platform.

  • eurotatorian Paraphyly revisiting phylogenetic relationships based on the complete mitochondrial genome sequence of rotaria rotatoria bdelloidea rotifera syndermata
    BMC Genomics, 2009
    Co-Authors: Gisik Min, Joongki Park
    Abstract:

    The Syndermata (Rotifera+Acanthocephala) is one of the best model systems for studying the evolutionary origins and persistence of different life styles because it contains a series of lineage-specific life histories: Monogononta (cyclic parthenogenetic and free-living), Bdelloidea (entirely parthenogenetic and mostly benthic dweller), Seisonidea (exclusively bisexual and epizoic or ectoparasitic), and Acanthocephala (sexual and obligatory endoparasitic). Providing phylogenetic resolution to the question of Eurotatoria (Monogononta and Bdelloidea) monophyly versus Paraphyly is a key factor for better understanding the evolution of different life styles, yet this matter is not clearly resolved. In this study, we revisited this issue based on comparative analysis of complete mitochondrial genome information for major groups of the Syndermata. We determined the first complete mitochondrial genome sequences (15,319 bp) of a bdelloid rotifer, Rotaria rotatoria. In order to examine the validity of Eurotatoria (Monogononta and Bdelloidea) monophyly/Paraphyly, we performed phylogenetic analysis of amino acid sequences for eleven protein-coding genes sampled from a wide variety of bilaterian representatives. The resulting mitochondrial genome trees, inferred using different algorithms, consistently failed to recover Monogononta and Bdelloidea as monophyletic, but instead identified them as a paraphyletic assemblage. Bdelloidea (as represented by R. rotatoria) shares most common ancestry with Acanthocephala (as represented by L. thecatus) rather than with monogonont B. plicatilis, the other representative of Eurotatoria. Comparisons of inferred amino acid sequence and gene arrangement patterns with those of other metazoan mtDNAs (including those of acanthocephalan L. thecatus and monogonont B. plicatilis) support the hypothesis that Bdelloidea shares most common ancestry with Acanthocephala rather than with Monogononta. From this finding, we suggest that the obligatory asexuality of bdelloideans may have secondarily derived from some other preexisting condition in earlier lineage of rotifers. Providing a more complete assessment of phylogenetic relationships and inferring patterns of evolution of different types of life styles among Syndermata awaits comparisons requiring mitochondrial genome sequencing of Seisonidea.

Stephen Mcloughlin - One of the best experts on this subject based on the ideXlab platform.

  • osmunda pulchella sp nov from the jurassic of sweden reconciling molecular and fossil evidence in the phylogeny of modern royal ferns osmundaceae
    BMC Evolutionary Biology, 2015
    Co-Authors: Benjamin Bomfleur, Guido W. Grimm, Stephen Mcloughlin
    Abstract:

    The classification of royal ferns (Osmundaceae) has long remained controversial. Recent molecular phylogenies indicate that Osmunda is paraphyletic and needs to be separated into Osmundastrum and Osmunda s.str. Here, however, we describe an exquisitely preserved Jurassic Osmunda rhizome (O. pulchella sp. nov.) that combines diagnostic features of both Osmundastrum and Osmunda, calling molecular evidence for Paraphyly into question. We assembled a new morphological matrix based on rhizome anatomy, and used network analyses to establish phylogenetic relationships between fossil and extant members of modern Osmundaceae. We re-analysed the original molecular data to evaluate root-placement support. Finally, we integrated morphological and molecular data-sets using the evolutionary placement algorithm. Osmunda pulchella and five additional Jurassic rhizome species show anatomical character suites intermediate between Osmundastrum and Osmunda. Molecular evidence for Paraphyly is ambiguous: a previously unrecognized signal from spacer sequences favours an alternative root placement that would resolve Osmunda s.l. as monophyletic. Our evolutionary placement analysis identifies fossil species as probable ancestral members of modern genera and subgenera, which accords with recent evidence from Bayesian dating. Osmunda pulchella is likely a precursor of the Osmundastrum lineage. The recently proposed root placement in Osmundaceae—based solely on molecular data—stems from possibly misinformative outgroup signals in rbcL and atpA genes. We conclude that the seemingly conflicting evidence from morphological, anatomical, molecular, and palaeontological data can instead be elegantly reconciled under the assumption that Osmunda is indeed monophyletic.

  • Osmunda pulchella sp. nov. from the Jurassic of Swedenreconciling molecular and fossil evidence in the phylogeny of Osmundaceae
    2014
    Co-Authors: Benjamin Bomfleur, Guido W. Grimm, Stephen Mcloughlin
    Abstract:

    The systematic classification of Osmundaceae has long remained controversial. Recent molecular data indicate that Osmunda is paraphyletic, and needs to be separated into Osmundastrum and Osmunda s. str. Here we describe an exquisitely preserved Jurassic Osmunda rhizome (O. pulchella sp. nov.) that combines diagnostic features of Osmundastrum and Osmunda, calling molecular evidence for Paraphyly into question. We assembled a new morphological matrix based on rhizome anatomy, and used network analyses to establish phylogenetic relationships between fossil and extant members of modern Osmundaceae. We re-analysed the original molecular data to evaluate root-placement support. Finally, we integrated morphological and molecular data-sets using the evolutionary placement algorithm. Osmunda pulchella and five additional, newly identified Jurassic Osmunda species show anatomical character suites intermediate between Osmundastrum and Osmunda. Molecular evidence for Paraphyly is ambiguous: a previously unrecognized signal from spacer sequences favours an alternative root placement that would resolve Osmunda s.l. as monophyletic. Our evolutionary placement analysis identifies fossil species as ancestral members of modern genera and subgenera. Altogether, the seemingly conflicting evidence from morphological, anatomical, molecular, and palaeontological data can be elegantly reconciled under the assumption that Osmunda is indeed monophyletic; the recently proposed root-placement in Osmundaceae—based solely on molecular data—likely results from un- or misinformative out-group signals.

  • a fossil osmunda from the jurassic of sweden reconciling molecular and fossil evidence in the phylogeny of osmundaceae
    bioRxiv, 2014
    Co-Authors: Benjamin Bomfleur, Guido W. Grimm, Stephen Mcloughlin
    Abstract:

    ABSTRACT The systematic classification of Osmundaceae has long remained controversial. Recent molecular data indicate that Osmunda is paraphyletic, and needs to be separated into Osmundastrum and Osmunda s. str. Here we describe an exquisitely preserved Jurassic Osmunda rhizome (O. pulchella sp. nov.) that combines diagnostic features of Osmundastrum and Osmunda, calling molecular evidence for Paraphyly into question. We assembled a new morphological matrix based on rhizome anatomy, and used network analyses to establish phylogenetic relationships between fossil and extant members of modern Osmundaceae. We re-analysed the original molecular data to evaluate root-placement support. Finally, we integrated morphological and molecular data-sets using the evolutionary placement algorithm. Osmunda pulchella and five additional, newly identified Jurassic Osmunda species show anatomical character suites intermediate between Osmundastrum and Osmunda. Molecular evidence for Paraphyly is ambiguous: a previously unrecognized signal from spacer sequences favours an alternative root placement that would resolve Osmunda s.l. as monophyletic. Our evolutionary placement analysis identifies fossil species as ancestral members of modern genera and subgenera. Altogether, the seemingly conflicting evidence from morphological, anatomical, molecular, and palaeontological data can be elegantly reconciled under the assumption that Osmunda is indeed monophyletic; the recently proposed root-placement in Osmundaceae—based solely on molecular data—likely results from un- or misinformative out-group signals.

Gisik Min - One of the best experts on this subject based on the ideXlab platform.

  • eurotatorian Paraphyly revisiting phylogenetic relationships based on the complete mitochondrial genome sequence of rotaria rotatoria bdelloidea rotifera syndermata
    BMC Genomics, 2009
    Co-Authors: Gisik Min, Joongki Park
    Abstract:

    The Syndermata (Rotifera+Acanthocephala) is one of the best model systems for studying the evolutionary origins and persistence of different life styles because it contains a series of lineage-specific life histories: Monogononta (cyclic parthenogenetic and free-living), Bdelloidea (entirely parthenogenetic and mostly benthic dweller), Seisonidea (exclusively bisexual and epizoic or ectoparasitic), and Acanthocephala (sexual and obligatory endoparasitic). Providing phylogenetic resolution to the question of Eurotatoria (Monogononta and Bdelloidea) monophyly versus Paraphyly is a key factor for better understanding the evolution of different life styles, yet this matter is not clearly resolved. In this study, we revisited this issue based on comparative analysis of complete mitochondrial genome information for major groups of the Syndermata. We determined the first complete mitochondrial genome sequences (15,319 bp) of a bdelloid rotifer, Rotaria rotatoria. In order to examine the validity of Eurotatoria (Monogononta and Bdelloidea) monophyly/Paraphyly, we performed phylogenetic analysis of amino acid sequences for eleven protein-coding genes sampled from a wide variety of bilaterian representatives. The resulting mitochondrial genome trees, inferred using different algorithms, consistently failed to recover Monogononta and Bdelloidea as monophyletic, but instead identified them as a paraphyletic assemblage. Bdelloidea (as represented by R. rotatoria) shares most common ancestry with Acanthocephala (as represented by L. thecatus) rather than with monogonont B. plicatilis, the other representative of Eurotatoria. Comparisons of inferred amino acid sequence and gene arrangement patterns with those of other metazoan mtDNAs (including those of acanthocephalan L. thecatus and monogonont B. plicatilis) support the hypothesis that Bdelloidea shares most common ancestry with Acanthocephala rather than with Monogononta. From this finding, we suggest that the obligatory asexuality of bdelloideans may have secondarily derived from some other preexisting condition in earlier lineage of rotifers. Providing a more complete assessment of phylogenetic relationships and inferring patterns of evolution of different types of life styles among Syndermata awaits comparisons requiring mitochondrial genome sequencing of Seisonidea.

Guido W. Grimm - One of the best experts on this subject based on the ideXlab platform.

  • osmunda pulchella sp nov from the jurassic of sweden reconciling molecular and fossil evidence in the phylogeny of modern royal ferns osmundaceae
    BMC Evolutionary Biology, 2015
    Co-Authors: Benjamin Bomfleur, Guido W. Grimm, Stephen Mcloughlin
    Abstract:

    The classification of royal ferns (Osmundaceae) has long remained controversial. Recent molecular phylogenies indicate that Osmunda is paraphyletic and needs to be separated into Osmundastrum and Osmunda s.str. Here, however, we describe an exquisitely preserved Jurassic Osmunda rhizome (O. pulchella sp. nov.) that combines diagnostic features of both Osmundastrum and Osmunda, calling molecular evidence for Paraphyly into question. We assembled a new morphological matrix based on rhizome anatomy, and used network analyses to establish phylogenetic relationships between fossil and extant members of modern Osmundaceae. We re-analysed the original molecular data to evaluate root-placement support. Finally, we integrated morphological and molecular data-sets using the evolutionary placement algorithm. Osmunda pulchella and five additional Jurassic rhizome species show anatomical character suites intermediate between Osmundastrum and Osmunda. Molecular evidence for Paraphyly is ambiguous: a previously unrecognized signal from spacer sequences favours an alternative root placement that would resolve Osmunda s.l. as monophyletic. Our evolutionary placement analysis identifies fossil species as probable ancestral members of modern genera and subgenera, which accords with recent evidence from Bayesian dating. Osmunda pulchella is likely a precursor of the Osmundastrum lineage. The recently proposed root placement in Osmundaceae—based solely on molecular data—stems from possibly misinformative outgroup signals in rbcL and atpA genes. We conclude that the seemingly conflicting evidence from morphological, anatomical, molecular, and palaeontological data can instead be elegantly reconciled under the assumption that Osmunda is indeed monophyletic.

  • Osmunda pulchella sp. nov. from the Jurassic of Swedenreconciling molecular and fossil evidence in the phylogeny of Osmundaceae
    2014
    Co-Authors: Benjamin Bomfleur, Guido W. Grimm, Stephen Mcloughlin
    Abstract:

    The systematic classification of Osmundaceae has long remained controversial. Recent molecular data indicate that Osmunda is paraphyletic, and needs to be separated into Osmundastrum and Osmunda s. str. Here we describe an exquisitely preserved Jurassic Osmunda rhizome (O. pulchella sp. nov.) that combines diagnostic features of Osmundastrum and Osmunda, calling molecular evidence for Paraphyly into question. We assembled a new morphological matrix based on rhizome anatomy, and used network analyses to establish phylogenetic relationships between fossil and extant members of modern Osmundaceae. We re-analysed the original molecular data to evaluate root-placement support. Finally, we integrated morphological and molecular data-sets using the evolutionary placement algorithm. Osmunda pulchella and five additional, newly identified Jurassic Osmunda species show anatomical character suites intermediate between Osmundastrum and Osmunda. Molecular evidence for Paraphyly is ambiguous: a previously unrecognized signal from spacer sequences favours an alternative root placement that would resolve Osmunda s.l. as monophyletic. Our evolutionary placement analysis identifies fossil species as ancestral members of modern genera and subgenera. Altogether, the seemingly conflicting evidence from morphological, anatomical, molecular, and palaeontological data can be elegantly reconciled under the assumption that Osmunda is indeed monophyletic; the recently proposed root-placement in Osmundaceae—based solely on molecular data—likely results from un- or misinformative out-group signals.

  • a fossil osmunda from the jurassic of sweden reconciling molecular and fossil evidence in the phylogeny of osmundaceae
    bioRxiv, 2014
    Co-Authors: Benjamin Bomfleur, Guido W. Grimm, Stephen Mcloughlin
    Abstract:

    ABSTRACT The systematic classification of Osmundaceae has long remained controversial. Recent molecular data indicate that Osmunda is paraphyletic, and needs to be separated into Osmundastrum and Osmunda s. str. Here we describe an exquisitely preserved Jurassic Osmunda rhizome (O. pulchella sp. nov.) that combines diagnostic features of Osmundastrum and Osmunda, calling molecular evidence for Paraphyly into question. We assembled a new morphological matrix based on rhizome anatomy, and used network analyses to establish phylogenetic relationships between fossil and extant members of modern Osmundaceae. We re-analysed the original molecular data to evaluate root-placement support. Finally, we integrated morphological and molecular data-sets using the evolutionary placement algorithm. Osmunda pulchella and five additional, newly identified Jurassic Osmunda species show anatomical character suites intermediate between Osmundastrum and Osmunda. Molecular evidence for Paraphyly is ambiguous: a previously unrecognized signal from spacer sequences favours an alternative root placement that would resolve Osmunda s.l. as monophyletic. Our evolutionary placement analysis identifies fossil species as ancestral members of modern genera and subgenera. Altogether, the seemingly conflicting evidence from morphological, anatomical, molecular, and palaeontological data can be elegantly reconciled under the assumption that Osmunda is indeed monophyletic; the recently proposed root-placement in Osmundaceae—based solely on molecular data—likely results from un- or misinformative out-group signals.

Allan J. Baker - One of the best experts on this subject based on the ideXlab platform.

  • A rticle Fast T rack Genomic Support for a Moa–Tinamou Clade and Adaptive Morphological Convergence in Flightless Ratites
    2016
    Co-Authors: Allan J. Baker, Oliver Haddrath, John Douglas Mcpherson, Alison Cloutier
    Abstract:

    One of the most startling discoveries in avian molecular phylogenetics is that the volant tinamous are embedded in the flightless ratites, but this topology remains controversial because recent morphological phylogenies place tinamous as the closest relative of a monophyletic ratite clade. Here, we integrate new phylogenomic sequences from 1,448 nuclear DNA loci totaling almost 1 million bp from the extinct little bush moa, Chilean tinamou, and emu with available sequences from ostrich, elegant crested tinamou, four neognaths, and the green anole. Phylogenetic analysis using standard ho-mogeneous models and heterogeneous models robust to common topological artifacts recovered compelling support for ratite Paraphyly with the little bush moa closest to tinamous within ratites. Ratite Paraphyly was further corroborated by eight independent CR1 retroposon insertions. Analysis of morphological characters reinterpreted on a 27-gene paleog-nath topology indicates that many characters are convergent in the ratites, probably as the result of adaptation to a cursorial life style

  • A rticle Genomic Support for a Moa–Tinamou Clade and Adaptive Morphological Convergence in Flightless Ratites
    2016
    Co-Authors: Allan J. Baker, Oliver Haddrath, John Douglas Mcpherson, Alison Cloutier
    Abstract:

    One of the most startling discoveries in avian molecular phylogenetics is that the volant tinamous are embedded in the flightless ratites, but this topology remains controversial because recent morphological phylogenies place tinamous as the closest relative of a monophyletic ratite clade. Here, we integrate new phylogenomic sequences from 1,448 nuclear DNA loci totaling almost 1 million bp from the extinct little bush moa, Chilean tinamou, and emu with available sequences from ostrich, elegant crested tinamou, four neognaths, and the green anole. Phylogenetic analysis using standard ho-mogeneous models and heterogeneous models robust to common topological artifacts recovered compelling support for ratite Paraphyly with the little bush moa closest to tinamous within ratites. Ratite Paraphyly was further corroborated by eight independent CR1 retroposon insertions. Analysis of morphological characters reinterpreted on a 27-gene paleog-nath topology indicates that many characters are convergent in the ratites, probably as the result of adaptation to a cursorial life style

  • genomic support for a moa tinamou clade and adaptive morphological convergence in flightless ratites
    Molecular Biology and Evolution, 2014
    Co-Authors: Allan J. Baker, Oliver Haddrath, John Douglas Mcpherson, Alison Cloutier
    Abstract:

    One of the most startling discoveries in avian molecular phylogenetics is that the volant tinamous are embedded in the flightless ratites, but this topology remains controversial because recent morphological phylogenies place tinamous as the closest relative of a monophyletic ratite clade. Here, we integrate new phylogenomic sequences from 1,448 nuclear DNA loci totaling almost 1 million bp from the extinct little bush moa, Chilean tinamou, and emu with available sequences from ostrich, elegant crested tinamou, four neognaths, and the green anole. Phylogenetic analysis using standard homogeneous models and heterogeneous models robust to common topological artifacts recovered compelling support for ratite Paraphyly with the little bush moa closest to tinamous within ratites. Ratite Paraphyly was further corroborated by eight independent CR1 retroposon insertions. Analysis of morphological characters reinterpreted on a 27-gene paleognath topology indicates that many characters are convergent in the ratites, probably as the result of adaptation to a cursorial life style.