Rapid DNA

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 109407 Experts worldwide ranked by ideXlab platform

Erica L. Romsos - One of the best experts on this subject based on the ideXlab platform.

  • Results of the 2018 Rapid DNA Maturity Assessment
    Journal of Forensic Sciences, 2020
    Co-Authors: Erica L. Romsos, Julie L. French, Mark Smith, Vincent Figarelli, Frederick Harran, Glenn Vandegrift, Lilliana I. Moreno, Thomas F. Callaghan, Joanie Brocato, Janaki Vaidyanathan
    Abstract:

    Three commercially available integrated Rapid DNA instruments were tested as a part of a Rapid DNA maturity assessment in July of 2018. The assessment was conducted with sets of blinded single-source reference samples provided to participants for testing on the individual Rapid platforms within their laboratories. The data were returned to the National Institute of Standards and Technology (NIST) for review and analysis. Both FBI-defined automated review (Rapid DNA Analysis) and manual review (Modified Rapid DNA Analysis) of the datasets were conducted to assess the success of genotyping the 20 Combined DNA Index System (CODIS) core STR loci and full profiles generated by the instruments. Genotype results from the multiple platforms, participating laboratories, and STR typing chemistries were combined into a single analysis. The Rapid DNA Analysis resulted in a success rate of 80% for full profiles (85% for the 20 CODIS core loci) with automated analysis. Modified Rapid DNA Analysis resulted in a success rate of 90% for both the CODIS 20 core loci and full profiles (all attempted loci per chemistry). An analysis of the peak height ratios demonstrated that 95% of all heterozygous alleles were above 59% heterozygote balance. For base-pair sizing precision, the precision was below the standard 0.5 bp deviation for both the ANDE 6C System and the RapidHIT 200.

  • Developmental validation of the ANDE™ Rapid DNA system with FlexPlex™ assay for arrestee and reference buccal swab processing and database searching
    Forensic science international. Genetics, 2019
    Co-Authors: Christopher Carney, Erica L. Romsos, Peter M. Vallone, Janaki Vaidyanathan, Eugene Tan, Ranjana Grover, Scott Whitney, Rebekah Persick, Fabrice Noel, Rosemary S. Turingan
    Abstract:

    A developmental validation was performed to demonstrate reliability, reproducibility and robustness of the ANDE System with the FlexPlex assay, including an integrated Expert System, across a number of laboratories and buccal sample variations. Previously, the related DNAscan™/ANDE 4C Rapid DNA System using the PowerPlex®16 assay and integrated Expert System Software received NDIS approval in March 2016. The enhanced ANDE instrument, referred to as ANDE 6C, and the accompanying 6-dye, 27-locus STR assay, referred to as FlexPlex, have been developed to be compatible with all widely used global loci, including the expanded set of the CODIS core 20 loci. Six forensic and research laboratories participated in the FlexPlex Rapid DNA developmental validation experiments, testing a total of 2045 swabs, including those obtained from 1387 unique individuals. The goal of this extensive and comprehensive validation was to thoroughly evaluate and document the ANDE System and its internal Expert System to reliably genotype reference buccal swab samples in a manner compliant with the FBI's Quality Assurance Standards and the NDIS Operational Procedures. The ANDE System, including automated Expert System analysis, generated reproducible and concordant results for buccal swabs when testing various instruments at different laboratories by a number of different operators. When testing a number of non-human DNAs, including oral bacteria, the ANDE System and FlexPlex assay demonstrated limited cross-reactivity. Potential PCR inhibitors were evaluated as part of the validation and no inhibition was detected. Reproducible and concordant profiles were generated from buccal swab samples collected with a limit of detection appropriate for buccal swab collections from arrestees. The precision and resolution of the System met industry standards for detection of microvariants and single base resolution. The integrated Expert System appropriately demonstrated the ability to correctly pass or fail profiles for CODIS upload without human review. During this comprehensive developmental validation, the ANDE System successfully interpreted over 2000 samples tested with over 99.99% concordant alleles. The data package described herein led to the ANDE System with the FlexPlex assay receiving NDIS approval in June 2018.

  • Developmental validation of the DNAscan™ Rapid DNA Analysis™ instrument and expert system for reference sample processing
    Forensic science international. Genetics, 2016
    Co-Authors: Angelo Della Manna, Erica L. Romsos, Peter M. Vallone, Jeffrey Nye, Christopher Carney, Jennifer S. Hammons, Michael Mann, Farida Al Shamali, Beth Ann Marne, Eugene Tan
    Abstract:

    Abstract Since the implementation of forensic DNA typing in labs more than 20 years ago, the analysis procedures and data interpretation have always been conducted in a laboratory by highly trained and qualified scientific personnel. Rapid DNA technology has the potential to expand testing capabilities within forensic laboratories and to allow forensic STR analysis to be performed outside the physical boundaries of the traditional laboratory. The developmental validation of the DNAscan/ANDE Rapid DNA Analysis System was completed using a BioChipSet™ Cassette consumable designed for high DNA content samples, such as single source buccal swabs. A total of eight laboratories participated in the testing which totaled over 2300 swabs, and included nearly 1400 unique individuals. The goal of this extensive study was to obtain, document, analyze, and assess DNAscan and its internal Expert System to reliably genotype reference samples in a manner compliant with the FBI's Quality Assurance Standards (QAS) and the NDIS Operational Procedures. The DNAscan System provided high quality, concordant results for reference buccal swabs, including automated data analysis with an integrated Expert System. Seven external laboratories and NetBio, the developer of the technology, participated in the validation testing demonstrating the reproducibility and reliability of the system and its successful use in a variety of settings by numerous operators. The DNAscan System demonstrated limited cross reactivity with other species, was resilient in the presence of numerous inhibitors, and provided reproducible results for both buccal and purified DNA samples with sensitivity at a level appropriate for buccal swabs. The precision and resolution of the system met industry standards for detection of micro-variants and displayed single base resolution. PCR-based studies provided confidence that the system was robust and that the amplification reaction had been optimized to provide high quality results. The DNAscan integrated Expert System was examined as part of the Developmental Validation and successfully interpreted the over 2000 samples tested with over 99.998% concordant alleles. The system appropriately flagged samples for human review and failed both mixed samples and samples with insufficient genetic information. These results demonstrated the integrated Expert System makes correct allele calls without human intervention.

  • Rapid DNA maturity assessment
    Forensic Science International: Genetics Supplement Series, 2015
    Co-Authors: Erica L. Romsos, S. Lembirick, Peter M. Vallone
    Abstract:

    © 2015 Two fully integrated Rapid DNA platforms were tested as a part of a Rapid DNA maturity assessment in the fall of 2014. The assessment was conducted with sets of blinded single-source reference samples to gauge the typing success of the current Rapid DNA typing technology. Samples were provided to participants for testing on the individual Rapid platforms, and data was returned to the National Institute of Standards and Technology (NIST) for review and analysis. Both automated and manual review of the data sets were conducted to assess the success of genotyping the CODIS 13 core STR loci. Genotype results from the multiple platforms, participating laboratories, and STR typing chemistry was combined into a single analysis. The current assessment of the maturity of Rapid DNA technology was focused on genotyping success, peak height ratios, and stutter artifacts across two platforms and multiple STR kit chemistries.

Peter M. Vallone - One of the best experts on this subject based on the ideXlab platform.

  • Developmental validation of the ANDE™ Rapid DNA system with FlexPlex™ assay for arrestee and reference buccal swab processing and database searching
    Forensic science international. Genetics, 2019
    Co-Authors: Christopher Carney, Erica L. Romsos, Peter M. Vallone, Janaki Vaidyanathan, Eugene Tan, Ranjana Grover, Scott Whitney, Rebekah Persick, Fabrice Noel, Rosemary S. Turingan
    Abstract:

    A developmental validation was performed to demonstrate reliability, reproducibility and robustness of the ANDE System with the FlexPlex assay, including an integrated Expert System, across a number of laboratories and buccal sample variations. Previously, the related DNAscan™/ANDE 4C Rapid DNA System using the PowerPlex®16 assay and integrated Expert System Software received NDIS approval in March 2016. The enhanced ANDE instrument, referred to as ANDE 6C, and the accompanying 6-dye, 27-locus STR assay, referred to as FlexPlex, have been developed to be compatible with all widely used global loci, including the expanded set of the CODIS core 20 loci. Six forensic and research laboratories participated in the FlexPlex Rapid DNA developmental validation experiments, testing a total of 2045 swabs, including those obtained from 1387 unique individuals. The goal of this extensive and comprehensive validation was to thoroughly evaluate and document the ANDE System and its internal Expert System to reliably genotype reference buccal swab samples in a manner compliant with the FBI's Quality Assurance Standards and the NDIS Operational Procedures. The ANDE System, including automated Expert System analysis, generated reproducible and concordant results for buccal swabs when testing various instruments at different laboratories by a number of different operators. When testing a number of non-human DNAs, including oral bacteria, the ANDE System and FlexPlex assay demonstrated limited cross-reactivity. Potential PCR inhibitors were evaluated as part of the validation and no inhibition was detected. Reproducible and concordant profiles were generated from buccal swab samples collected with a limit of detection appropriate for buccal swab collections from arrestees. The precision and resolution of the System met industry standards for detection of microvariants and single base resolution. The integrated Expert System appropriately demonstrated the ability to correctly pass or fail profiles for CODIS upload without human review. During this comprehensive developmental validation, the ANDE System successfully interpreted over 2000 samples tested with over 99.99% concordant alleles. The data package described herein led to the ANDE System with the FlexPlex assay receiving NDIS approval in June 2018.

  • Developmental validation of the DNAscan™ Rapid DNA Analysis™ instrument and expert system for reference sample processing
    Forensic science international. Genetics, 2016
    Co-Authors: Angelo Della Manna, Erica L. Romsos, Peter M. Vallone, Jeffrey Nye, Christopher Carney, Jennifer S. Hammons, Michael Mann, Farida Al Shamali, Beth Ann Marne, Eugene Tan
    Abstract:

    Abstract Since the implementation of forensic DNA typing in labs more than 20 years ago, the analysis procedures and data interpretation have always been conducted in a laboratory by highly trained and qualified scientific personnel. Rapid DNA technology has the potential to expand testing capabilities within forensic laboratories and to allow forensic STR analysis to be performed outside the physical boundaries of the traditional laboratory. The developmental validation of the DNAscan/ANDE Rapid DNA Analysis System was completed using a BioChipSet™ Cassette consumable designed for high DNA content samples, such as single source buccal swabs. A total of eight laboratories participated in the testing which totaled over 2300 swabs, and included nearly 1400 unique individuals. The goal of this extensive study was to obtain, document, analyze, and assess DNAscan and its internal Expert System to reliably genotype reference samples in a manner compliant with the FBI's Quality Assurance Standards (QAS) and the NDIS Operational Procedures. The DNAscan System provided high quality, concordant results for reference buccal swabs, including automated data analysis with an integrated Expert System. Seven external laboratories and NetBio, the developer of the technology, participated in the validation testing demonstrating the reproducibility and reliability of the system and its successful use in a variety of settings by numerous operators. The DNAscan System demonstrated limited cross reactivity with other species, was resilient in the presence of numerous inhibitors, and provided reproducible results for both buccal and purified DNA samples with sensitivity at a level appropriate for buccal swabs. The precision and resolution of the system met industry standards for detection of micro-variants and displayed single base resolution. PCR-based studies provided confidence that the system was robust and that the amplification reaction had been optimized to provide high quality results. The DNAscan integrated Expert System was examined as part of the Developmental Validation and successfully interpreted the over 2000 samples tested with over 99.998% concordant alleles. The system appropriately flagged samples for human review and failed both mixed samples and samples with insufficient genetic information. These results demonstrated the integrated Expert System makes correct allele calls without human intervention.

  • Rapid DNA maturity assessment
    Forensic Science International: Genetics Supplement Series, 2015
    Co-Authors: Erica L. Romsos, S. Lembirick, Peter M. Vallone
    Abstract:

    © 2015 Two fully integrated Rapid DNA platforms were tested as a part of a Rapid DNA maturity assessment in the fall of 2014. The assessment was conducted with sets of blinded single-source reference samples to gauge the typing success of the current Rapid DNA typing technology. Samples were provided to participants for testing on the individual Rapid platforms, and data was returned to the National Institute of Standards and Technology (NIST) for review and analysis. Both automated and manual review of the data sets were conducted to assess the success of genotyping the CODIS 13 core STR loci. Genotype results from the multiple platforms, participating laboratories, and STR typing chemistry was combined into a single analysis. The current assessment of the maturity of Rapid DNA technology was focused on genotyping success, peak height ratios, and stutter artifacts across two platforms and multiple STR kit chemistries.

Rosemary S. Turingan - One of the best experts on this subject based on the ideXlab platform.

  • Identification of human remains using Rapid DNA analysis
    International Journal of Legal Medicine, 2020
    Co-Authors: Rosemary S. Turingan, Jessi Brown, Ludmila Kaplun, Jake Smith, Jenna Watson, Derek A. Boyd, Dawnie Wolfe Steadman, Richard F. Selden
    Abstract:

    Rapid identification of human remains following mass casualty events is essential to bring closure to family members and friends of the victims. Unfortunately, disaster victim identification, missing persons identification, and forensic casework analysis are often complicated by sample degradation due to exposure to harsh environmental conditions. Following a mass disaster, forensic laboratories may be overwhelmed by the number of dissociated portions that require identification and reassociation or compromised by the event itself. The interval between the disaster and receipt of victim samples at a laboratory is critical in that sample quality deteriorates as the postmortem interval increases. When bodies decompose due to delay in collection, transport, and sample processing, DNA becomes progressively fragmented, adversely impacting identification. We have previously developed a fully automated, field-forward Rapid DNA identification system that produces STR profiles (also referred to as DNA IDs or DNA fingerprints) from buccal and crime scene samples. The system performs all sample processing and data interpretation in less than 2 h. Here, we present results on Rapid DNA identification performed on several tissue types (including buccal, muscle, liver, brain, tooth, and bone) from exposed human bodies placed above ground or stored in a morgue/cooler, two scenarios commonly encountered following mass disasters. We demonstrate that for exposed remains, buccal swabs are the sample of choice for up to 11 days exposure and bone and tooth samples generated excellent DNA IDs for the 1-year duration of the study. For refrigerated remains, all sample types generated excellent DNA IDs for the 3-month testing period.

  • The 2018 California Wildfires: Integration of Rapid DNA to Dramatically Accelerate Victim Identification.
    Journal of forensic sciences, 2020
    Co-Authors: Kim Gin, Jason Tovar, Eric J. Bartelink, Ashley Kendell, Colleen Milligan, P. Willey, James Wood, Eugene Tan, Rosemary S. Turingan, Richard F. Selden
    Abstract:

    In November 2018, Butte County, California, was decimated by the Camp Fire, the deadliest wildfire in state history. Over 150,000 acres were destroyed, and at its peak, the fire consumed eighty acres per minute. The speed and intensity of the oncoming flames killed scores of people, and weeks before the fire was contained, first responders began searching through the rubble of 18,804 residences and commercial buildings. As with most mass disasters, conventional identification modalities (e.g., fingerprints, odontology, hardware) were utilized to identify victims. The intensity and duration of the fire severely degraded most of the remains, and these approaches were useful in only 22 of 84 cases. In the past, the remaining cases would have been subjected to conventional DNA analysis, which may have required months to years. Instead, Rapid DNA technology was utilized (in a rented recreational vehicle outside the Sacramento morgue) in the victim identification effort. Sixty-nine sets of remains were subjected to Rapid DNA Identification and, of these, 62 (89.9%) generated short tandem repeat profiles that were subjected to familial searching; essentially all these profiles were produced within hours of sample receipt. Samples successfully utilized for DNA identification included blood, bone, liver, muscle, soft tissue of unknown origin, and brain. In tandem with processing of 255 family reference samples, 58 victims were identified. This work represents the first use of Rapid DNA Identification in a mass casualty event, and the results support the use of Rapid DNA as an integrated tool with conventional disaster victim identification modalities.

  • Developmental Validation of the ANDE 6C System for Rapid DNA Analysis of Forensic Casework and DVI Samples
    Journal of forensic sciences, 2020
    Co-Authors: Rosemary S. Turingan, Eugene Tan, Jessi Brown, Hua Jiang, Yeshwanthi Estari, Greice Krautz-peterson, Richard F. Selden
    Abstract:

    A developmental validation was performed to demonstrate reliability, reproducibility, and robustness of the ANDE Rapid DNA Identification System for processing of crime scene and disaster victim identification (DVI) samples. A total of 1705 samples were evaluated, including blood, oral epithelial samples from drinking containers, samples on FTA and untreated paper, semen, bone, and soft tissues. This study was conducted to address the FBI's Quality Assurance Standards on developmental validation and to accumulate data from a sufficient number of unique donors and sample types to meet NDIS submission requirements for acceptance of the ANDE Expert System for casework use. To date, no Expert System has been approved for such samples, but the results of this study demonstrated that the automated Expert System performs similarly to conventional laboratory data analysis. Furthermore, Rapid DNA analysis demonstrated accuracy, precision, resolution, concordance, and reproducibility that were comparable to conventional processing along with appropriate species specificity, limit of detection, performance in the presence of inhibitors. No lane-to-lane or run-to-run contamination was observed, and the system correctly identified the presence of mixtures. Taken together, the ANDE instrument, I-Chip consumable, FlexPlex chemistry (a 27-locus STR assay compatible with all widely used global loci, including the CODIS core 20 loci), and automated Expert System successfully processed and interpreted more than 1200 unique samples with over 99.99% concordant CODIS alleles. This extensive developmental validation data provides support for broad use of the system by agencies and accredited forensic laboratories in single-source suspect-evidence comparisons, local database searches, and DVI.

  • Developmental validation of the ANDE™ Rapid DNA system with FlexPlex™ assay for arrestee and reference buccal swab processing and database searching
    Forensic science international. Genetics, 2019
    Co-Authors: Christopher Carney, Erica L. Romsos, Peter M. Vallone, Janaki Vaidyanathan, Eugene Tan, Ranjana Grover, Scott Whitney, Rebekah Persick, Fabrice Noel, Rosemary S. Turingan
    Abstract:

    A developmental validation was performed to demonstrate reliability, reproducibility and robustness of the ANDE System with the FlexPlex assay, including an integrated Expert System, across a number of laboratories and buccal sample variations. Previously, the related DNAscan™/ANDE 4C Rapid DNA System using the PowerPlex®16 assay and integrated Expert System Software received NDIS approval in March 2016. The enhanced ANDE instrument, referred to as ANDE 6C, and the accompanying 6-dye, 27-locus STR assay, referred to as FlexPlex, have been developed to be compatible with all widely used global loci, including the expanded set of the CODIS core 20 loci. Six forensic and research laboratories participated in the FlexPlex Rapid DNA developmental validation experiments, testing a total of 2045 swabs, including those obtained from 1387 unique individuals. The goal of this extensive and comprehensive validation was to thoroughly evaluate and document the ANDE System and its internal Expert System to reliably genotype reference buccal swab samples in a manner compliant with the FBI's Quality Assurance Standards and the NDIS Operational Procedures. The ANDE System, including automated Expert System analysis, generated reproducible and concordant results for buccal swabs when testing various instruments at different laboratories by a number of different operators. When testing a number of non-human DNAs, including oral bacteria, the ANDE System and FlexPlex assay demonstrated limited cross-reactivity. Potential PCR inhibitors were evaluated as part of the validation and no inhibition was detected. Reproducible and concordant profiles were generated from buccal swab samples collected with a limit of detection appropriate for buccal swab collections from arrestees. The precision and resolution of the System met industry standards for detection of microvariants and single base resolution. The integrated Expert System appropriately demonstrated the ability to correctly pass or fail profiles for CODIS upload without human review. During this comprehensive developmental validation, the ANDE System successfully interpreted over 2000 samples tested with over 99.99% concordant alleles. The data package described herein led to the ANDE System with the FlexPlex assay receiving NDIS approval in June 2018.

  • FlexPlex27—highly multiplexed Rapid DNA identification for law enforcement, kinship, and military applications
    International Journal of Legal Medicine, 2017
    Co-Authors: Ranjana Grover, Julie L. French, Rosemary S. Turingan, Hua Jiang, Richard F. Selden
    Abstract:

    Rapid DNA identification is the use of a rugged, field-deployable system to generate short tandem repeat (STR) profiles in law enforcement, military, immigration, and homeland security applications. A performance verification study was conducted on the ANDE Rapid DNA identification system using FlexPlex27, a highly multiplexed, 27 locus assay that generates data for the expanded CODIS core loci and all additional STR loci required for international databasing. The assay contains 23 autosomal loci (D1S1656, D2S1338, D2S441, D3S1358, D5S81, D6S1043, D7S820, D8S1179, D10S1248, D12S391, D13S317, D16S539, D18S51, D19S433, D21S11, D22S1045, FGA, CSF1PO, Penta E, TH01, vWA, TPOX, and SE33), three Y-chromosomal loci (DYS391, DYS576, and DYS570), and Amelogenin. Study results demonstrate that the instrument is reliable, reproducible, accurate, robust, and ready for a large scale, comprehensive developmental validation by NDIS-participating laboratories. The additional loci in the FlexPlex assay allow for improved STR profile sharing globally, increase the power of discrimination for identification matches, and improve the effectiveness of kinship analyses.

Eugene Tan - One of the best experts on this subject based on the ideXlab platform.

  • The 2018 California Wildfires: Integration of Rapid DNA to Dramatically Accelerate Victim Identification.
    Journal of forensic sciences, 2020
    Co-Authors: Kim Gin, Jason Tovar, Eric J. Bartelink, Ashley Kendell, Colleen Milligan, P. Willey, James Wood, Eugene Tan, Rosemary S. Turingan, Richard F. Selden
    Abstract:

    In November 2018, Butte County, California, was decimated by the Camp Fire, the deadliest wildfire in state history. Over 150,000 acres were destroyed, and at its peak, the fire consumed eighty acres per minute. The speed and intensity of the oncoming flames killed scores of people, and weeks before the fire was contained, first responders began searching through the rubble of 18,804 residences and commercial buildings. As with most mass disasters, conventional identification modalities (e.g., fingerprints, odontology, hardware) were utilized to identify victims. The intensity and duration of the fire severely degraded most of the remains, and these approaches were useful in only 22 of 84 cases. In the past, the remaining cases would have been subjected to conventional DNA analysis, which may have required months to years. Instead, Rapid DNA technology was utilized (in a rented recreational vehicle outside the Sacramento morgue) in the victim identification effort. Sixty-nine sets of remains were subjected to Rapid DNA Identification and, of these, 62 (89.9%) generated short tandem repeat profiles that were subjected to familial searching; essentially all these profiles were produced within hours of sample receipt. Samples successfully utilized for DNA identification included blood, bone, liver, muscle, soft tissue of unknown origin, and brain. In tandem with processing of 255 family reference samples, 58 victims were identified. This work represents the first use of Rapid DNA Identification in a mass casualty event, and the results support the use of Rapid DNA as an integrated tool with conventional disaster victim identification modalities.

  • Developmental Validation of the ANDE 6C System for Rapid DNA Analysis of Forensic Casework and DVI Samples
    Journal of forensic sciences, 2020
    Co-Authors: Rosemary S. Turingan, Eugene Tan, Jessi Brown, Hua Jiang, Yeshwanthi Estari, Greice Krautz-peterson, Richard F. Selden
    Abstract:

    A developmental validation was performed to demonstrate reliability, reproducibility, and robustness of the ANDE Rapid DNA Identification System for processing of crime scene and disaster victim identification (DVI) samples. A total of 1705 samples were evaluated, including blood, oral epithelial samples from drinking containers, samples on FTA and untreated paper, semen, bone, and soft tissues. This study was conducted to address the FBI's Quality Assurance Standards on developmental validation and to accumulate data from a sufficient number of unique donors and sample types to meet NDIS submission requirements for acceptance of the ANDE Expert System for casework use. To date, no Expert System has been approved for such samples, but the results of this study demonstrated that the automated Expert System performs similarly to conventional laboratory data analysis. Furthermore, Rapid DNA analysis demonstrated accuracy, precision, resolution, concordance, and reproducibility that were comparable to conventional processing along with appropriate species specificity, limit of detection, performance in the presence of inhibitors. No lane-to-lane or run-to-run contamination was observed, and the system correctly identified the presence of mixtures. Taken together, the ANDE instrument, I-Chip consumable, FlexPlex chemistry (a 27-locus STR assay compatible with all widely used global loci, including the CODIS core 20 loci), and automated Expert System successfully processed and interpreted more than 1200 unique samples with over 99.99% concordant CODIS alleles. This extensive developmental validation data provides support for broad use of the system by agencies and accredited forensic laboratories in single-source suspect-evidence comparisons, local database searches, and DVI.

  • Developmental validation of the ANDE™ Rapid DNA system with FlexPlex™ assay for arrestee and reference buccal swab processing and database searching
    Forensic science international. Genetics, 2019
    Co-Authors: Christopher Carney, Erica L. Romsos, Peter M. Vallone, Janaki Vaidyanathan, Eugene Tan, Ranjana Grover, Scott Whitney, Rebekah Persick, Fabrice Noel, Rosemary S. Turingan
    Abstract:

    A developmental validation was performed to demonstrate reliability, reproducibility and robustness of the ANDE System with the FlexPlex assay, including an integrated Expert System, across a number of laboratories and buccal sample variations. Previously, the related DNAscan™/ANDE 4C Rapid DNA System using the PowerPlex®16 assay and integrated Expert System Software received NDIS approval in March 2016. The enhanced ANDE instrument, referred to as ANDE 6C, and the accompanying 6-dye, 27-locus STR assay, referred to as FlexPlex, have been developed to be compatible with all widely used global loci, including the expanded set of the CODIS core 20 loci. Six forensic and research laboratories participated in the FlexPlex Rapid DNA developmental validation experiments, testing a total of 2045 swabs, including those obtained from 1387 unique individuals. The goal of this extensive and comprehensive validation was to thoroughly evaluate and document the ANDE System and its internal Expert System to reliably genotype reference buccal swab samples in a manner compliant with the FBI's Quality Assurance Standards and the NDIS Operational Procedures. The ANDE System, including automated Expert System analysis, generated reproducible and concordant results for buccal swabs when testing various instruments at different laboratories by a number of different operators. When testing a number of non-human DNAs, including oral bacteria, the ANDE System and FlexPlex assay demonstrated limited cross-reactivity. Potential PCR inhibitors were evaluated as part of the validation and no inhibition was detected. Reproducible and concordant profiles were generated from buccal swab samples collected with a limit of detection appropriate for buccal swab collections from arrestees. The precision and resolution of the System met industry standards for detection of microvariants and single base resolution. The integrated Expert System appropriately demonstrated the ability to correctly pass or fail profiles for CODIS upload without human review. During this comprehensive developmental validation, the ANDE System successfully interpreted over 2000 samples tested with over 99.99% concordant alleles. The data package described herein led to the ANDE System with the FlexPlex assay receiving NDIS approval in June 2018.

  • FlexPlex27-highly multiplexed Rapid DNA identification for law enforcement, kinship, and military applications.
    International journal of legal medicine, 2017
    Co-Authors: Ranjana Grover, Julie L. French, Eugene Tan, Rosemary S. Turingan, Hua Jiang, Richard F. Selden
    Abstract:

    Rapid DNA identification is the use of a rugged, field-deployable system to generate short tandem repeat (STR) profiles in law enforcement, military, immigration, and homeland security applications. A performance verification study was conducted on the ANDE Rapid DNA identification system using FlexPlex27, a highly multiplexed, 27 locus assay that generates data for the expanded CODIS core loci and all additional STR loci required for international databasing. The assay contains 23 autosomal loci (D1S1656, D2S1338, D2S441, D3S1358, D5S81, D6S1043, D7S820, D8S1179, D10S1248, D12S391, D13S317, D16S539, D18S51, D19S433, D21S11, D22S1045, FGA, CSF1PO, Penta E, TH01, vWA, TPOX, and SE33), three Y-chromosomal loci (DYS391, DYS576, and DYS570), and Amelogenin. Study results demonstrate that the instrument is reliable, reproducible, accurate, robust, and ready for a large scale, comprehensive developmental validation by NDIS-participating laboratories. The additional loci in the FlexPlex assay allow for improved STR profile sharing globally, increase the power of discrimination for identification matches, and improve the effectiveness of kinship analyses.

  • Developmental validation of the DNAscan™ Rapid DNA Analysis™ instrument and expert system for reference sample processing
    Forensic science international. Genetics, 2016
    Co-Authors: Angelo Della Manna, Erica L. Romsos, Peter M. Vallone, Jeffrey Nye, Christopher Carney, Jennifer S. Hammons, Michael Mann, Farida Al Shamali, Beth Ann Marne, Eugene Tan
    Abstract:

    Abstract Since the implementation of forensic DNA typing in labs more than 20 years ago, the analysis procedures and data interpretation have always been conducted in a laboratory by highly trained and qualified scientific personnel. Rapid DNA technology has the potential to expand testing capabilities within forensic laboratories and to allow forensic STR analysis to be performed outside the physical boundaries of the traditional laboratory. The developmental validation of the DNAscan/ANDE Rapid DNA Analysis System was completed using a BioChipSet™ Cassette consumable designed for high DNA content samples, such as single source buccal swabs. A total of eight laboratories participated in the testing which totaled over 2300 swabs, and included nearly 1400 unique individuals. The goal of this extensive study was to obtain, document, analyze, and assess DNAscan and its internal Expert System to reliably genotype reference samples in a manner compliant with the FBI's Quality Assurance Standards (QAS) and the NDIS Operational Procedures. The DNAscan System provided high quality, concordant results for reference buccal swabs, including automated data analysis with an integrated Expert System. Seven external laboratories and NetBio, the developer of the technology, participated in the validation testing demonstrating the reproducibility and reliability of the system and its successful use in a variety of settings by numerous operators. The DNAscan System demonstrated limited cross reactivity with other species, was resilient in the presence of numerous inhibitors, and provided reproducible results for both buccal and purified DNA samples with sensitivity at a level appropriate for buccal swabs. The precision and resolution of the system met industry standards for detection of micro-variants and displayed single base resolution. PCR-based studies provided confidence that the system was robust and that the amplification reaction had been optimized to provide high quality results. The DNAscan integrated Expert System was examined as part of the Developmental Validation and successfully interpreted the over 2000 samples tested with over 99.998% concordant alleles. The system appropriately flagged samples for human review and failed both mixed samples and samples with insufficient genetic information. These results demonstrated the integrated Expert System makes correct allele calls without human intervention.

Lilliana I. Moreno - One of the best experts on this subject based on the ideXlab platform.

  • Results of the 2018 Rapid DNA Maturity Assessment
    Journal of Forensic Sciences, 2020
    Co-Authors: Erica L. Romsos, Julie L. French, Mark Smith, Vincent Figarelli, Frederick Harran, Glenn Vandegrift, Lilliana I. Moreno, Thomas F. Callaghan, Joanie Brocato, Janaki Vaidyanathan
    Abstract:

    Three commercially available integrated Rapid DNA instruments were tested as a part of a Rapid DNA maturity assessment in July of 2018. The assessment was conducted with sets of blinded single-source reference samples provided to participants for testing on the individual Rapid platforms within their laboratories. The data were returned to the National Institute of Standards and Technology (NIST) for review and analysis. Both FBI-defined automated review (Rapid DNA Analysis) and manual review (Modified Rapid DNA Analysis) of the datasets were conducted to assess the success of genotyping the 20 Combined DNA Index System (CODIS) core STR loci and full profiles generated by the instruments. Genotype results from the multiple platforms, participating laboratories, and STR typing chemistries were combined into a single analysis. The Rapid DNA Analysis resulted in a success rate of 80% for full profiles (85% for the 20 CODIS core loci) with automated analysis. Modified Rapid DNA Analysis resulted in a success rate of 90% for both the CODIS 20 core loci and full profiles (all attempted loci per chemistry). An analysis of the peak height ratios demonstrated that 95% of all heterozygous alleles were above 59% heterozygote balance. For base-pair sizing precision, the precision was below the standard 0.5 bp deviation for both the ANDE 6C System and the RapidHIT 200.

  • internal validation of the DNAscan ande Rapid DNA analysis platform and its associated powerplex 16 high content DNA biochip cassette for use as an expert system with reference buccal swabs
    Forensic Science International-genetics, 2017
    Co-Authors: Lilliana I. Moreno, Thomas F Callagha
    Abstract:

    Rapid DNA platforms are fully integrated systems capable of producing and analyzing short tandem repeat (STR) profiles from reference sample buccal swabs in less than two hours. The technology requires minimal user interaction and experience making it possible for high quality profiles to be generated outside an accredited laboratory. The automated production of point of collection reference STR profiles could eliminate the time delay for shipment and analysis of arrestee samples at centralized laboratories. Furthermore, point of collection analysis would allow searching against profiles from unsolved crimes during the normal booking process once the infrastructure to immediately search the Combined DNA Index System (CODIS) database from the booking station is established. The DNAscan/ANDE™ Rapid DNA Analysis™ System developed by Network Biosystems was evaluated for robustness and reliability in the production of high quality reference STR profiles for database enrollment and searching applications. A total of 193 reference samples were assessed for concordance of the CODIS 13 loci. Studies to evaluate contamination, reproducibility, precision, stutter, peak height ratio, noise and sensitivity were also performed. The system proved to be robust, consistent and dependable. Results indicated an overall success rate of 75% for the 13 CODIS core loci and more importantly no incorrect calls were identified. The DNAscan/ANDE™ could be confidently used without human interaction in both laboratory and non-laboratory settings to generate reference profiles.

  • Internal validation of the DNAscan/ANDE™ Rapid DNA Analysis™ platform and its associated PowerPlex® 16 high content DNA biochip cassette for use as an expert system with reference buccal swabs.
    Forensic science international. Genetics, 2017
    Co-Authors: Lilliana I. Moreno, Alice L. Brown, Thomas F. Callaghan
    Abstract:

    Rapid DNA platforms are fully integrated systems capable of producing and analyzing short tandem repeat (STR) profiles from reference sample buccal swabs in less than two hours. The technology requires minimal user interaction and experience making it possible for high quality profiles to be generated outside an accredited laboratory. The automated production of point of collection reference STR profiles could eliminate the time delay for shipment and analysis of arrestee samples at centralized laboratories. Furthermore, point of collection analysis would allow searching against profiles from unsolved crimes during the normal booking process once the infrastructure to immediately search the Combined DNA Index System (CODIS) database from the booking station is established. The DNAscan/ANDE™ Rapid DNA Analysis™ System developed by Network Biosystems was evaluated for robustness and reliability in the production of high quality reference STR profiles for database enrollment and searching applications. A total of 193 reference samples were assessed for concordance of the CODIS 13 loci. Studies to evaluate contamination, reproducibility, precision, stutter, peak height ratio, noise and sensitivity were also performed. The system proved to be robust, consistent and dependable. Results indicated an overall success rate of 75% for the 13 CODIS core loci and more importantly no incorrect calls were identified. The DNAscan/ANDE™ could be confidently used without human interaction in both laboratory and non-laboratory settings to generate reference profiles.