Rosellinia

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 963 Experts worldwide ranked by ideXlab platform

Nobuhiro Suzuki - One of the best experts on this subject based on the ideXlab platform.

  • Coinfection of Rosellinia necatrix by a partitivirus and a virga-like virus is associated with hypovirulence
    European Journal of Plant Pathology, 2020
    Co-Authors: Juan M. Arjona-lópez, Nobuhiro Suzuki, Paul Telengech, Carlos J. López-herrera
    Abstract:

    Many Mediteranean isolates of Rosellinia necatrix , causing root rot in avocado, have previously been screened for viruses. Among them is isolate Rn459 that has been shown to be infected by at least three viruses such as Rosellinia necatrix partitivirus 10 (RnPV10), Rosellinia necatrix hypovirus 2 (RnHV2), Rosellinia necatrix fusagravirus 1 (RnFGV1), and Rosellinia necatrix virga-like virus (RnVLV). Here, we attempted to eliminate the viruses by hyphal tip cultures to examine their effect on colony growth in vitro and virulence on avocado plants. The obtained fungal strain termed, Rn459_PV10F/VLVF, which was confirmed to be cured of RnPV10 and RnVLV, but still retaining RnHV2, manifested a phenotype different from the original Rn459. Colony growth comparison showed that Rn459_PV10F/VLVF grew faster than the original Rn459 isolate and the virulence on avocado plants of this Rn459_PV10F/VLVF strain was higher than the original Rn459 strain. These combined results suggest that RnPV10 and RnVLV, alone or together, contribute to confer hypovirulence on the R. necatrix isolates.

  • Diverse Partitiviruses From the Phytopathogenic Fungus, Rosellinia necatrix
    Frontiers in Microbiology, 2020
    Co-Authors: Paul Telengech, Hideki Kondo, Satoko Kanematsu, Juan M. Arjona-lópez, Sakae Hisano, Cyrus Mugambi, Kiwamu Hyodo, C.j. López-herrera, Nobuhiro Suzuki
    Abstract:

    Partitiviruses (dsRNA viruses, family Partitiviridae) are ubiquitously detected in plants and fungi. Although previous surveys suggested their omnipresence in the white root rot fungus, Rosellinia necatrix, only a few of them have been molecularly and biologically characterized thus far. We report the characterization of a total of 20 partitiviruses from 16 R. necatrix strains belonging to 15 new species, for which "Rosellinia necatrix partitivirus 11-Rosellinia necatrix partitivirus 25" were proposed, and 5 previously reported species. The newly identified partitiviruses have been taxonomically placed in two genera, Alphapartitivirus, and Betapartitivirus. Some partitiviruses were transfected into reference strains of the natural host, R. necatrix, and an experimental host, Cryphonectria parasitica, using purified virions. A comparative analysis of resultant transfectants revealed interesting differences and similarities between the RNA accumulation and symptom induction patterns of R. necatrix and C. parasitica. Other interesting findings include the identification of a probable reassortment event and a quintuple partitivirus infection of a single fungal strain. These combined results provide a foundation for further studies aimed at elucidating mechanisms that underly the differences observed.

  • A moderate level of hypovirulence conferred by a hypovirus in the avocado white root rot fungus, Rosellinia necatrix
    Fungal Biology, 2020
    Co-Authors: Juan M. Arjona-lópez, Nobuhiro Suzuki, Paul Telengech, C.j. López-herrera
    Abstract:

    Abstract Two isolates of Rosellinia necatrix (Rn118-8 and Rn480) have previously obtained from diseased avocado trees in commercial orchards of the coastal area in southern Spain. Rn118-8 and Rn480 have weak virulence on avocado plants, and are infected by Rosellinia necatrix hypovirus 2 (RnHV2). In this work, the possible biological effects of the hypovirus on R. necatrix were tested. First, RnHV2 was transmitted from each of Rn118-8 and Rn480 to a highly virulent, RnHV2-free isolate of R. necatrix (Rn400) through hyphal anastomosis, using zinc compounds which attenuate the mycelial incompatibility reactions and allow for horizontal virus transfer between vegetatively incompatible fungal strains. Next, we carried out an analysis of growth rate in vitro and a virulence test of these newly infected strains in avocado plants. We obtained five strains of Rn400 infected by RnHV2 after horizontal transmission, and showed some of them to have lower colony growth in vitro and lower virulence on avocado plants compared with virus-free Rn400. These results suggest that R. necatrix isolates infected by RnHV2 could be used as novel virocontrol agents to combat avocado white root rot.

  • heterodimers as the structural unit of the t 1 capsid of the fungal double stranded rna Rosellinia necatrix quadrivirus 1
    Journal of Virology, 2016
    Co-Authors: Daniel Luque, Carlos P Mata, Josue Gomezblanco, Fernando Gonzalezcamacho, Satoko Kanematsu, German Rivas, Wendy M Havens, Carlos Alfonso, Jose M Gonzalez, Nobuhiro Suzuki
    Abstract:

    Most double-stranded RNA (dsRNA) viruses are transcribed and replicated in a specialized icosahedral capsid with a T=1 lattice consisting of 60 asymmetric capsid protein (CP) dimers. These capsids help to organize the viral genome and replicative complex(es). They also act as molecular sieves that isolate the virus genome from host defense mechanisms and allow the passage of nucleotides and viral transcripts. Rosellinia necatrix quadrivirus 1 (RnQV1), the type species of the family Quadriviridae, is a dsRNA fungal virus with a multipartite genome consisting of four monocistronic segments (segments 1 to 4). dsRNA-2 and dsRNA-4 encode two CPs (P2 and P4, respectively), which coassemble into ∼450-A-diameter capsids. We used three-dimensional cryo-electron microscopy combined with complementary biophysical techniques to determine the structures of RnQV1 virion strains W1075 and W1118. RnQV1 has a quadripartite genome, and the capsid is based on a single-shelled T=1 lattice built of P2-P4 dimers. Whereas the RnQV1-W1118 capsid is built of full-length CP, P2 and P4 of RnQV1-W1075 are cleaved into several polypeptides, maintaining the capsid structural organization. RnQV1 heterodimers have a quaternary organization similar to that of homodimers of reoviruses and other dsRNA mycoviruses. The RnQV1 capsid is the first T=1 capsid with a heterodimer as an asymmetric unit reported to date and follows the architectural principle for dsRNA viruses that a 120-subunit capsid is a conserved assembly that supports dsRNA replication and organization.Given their importance to health, members of the family Reoviridae are the basis of most structural and functional studies and provide much of our knowledge of dsRNA viruses. Analysis of bacterial, protozoal, and fungal dsRNA viruses has improved our understanding of their structure, function, and evolution, as well. Here, we studied a dsRNA virus that infects the fungus Rosellinia necatrix, an ascomycete that is pathogenic to a wide range of plants. Using three-dimensional cryo-electron microscopy and analytical ultracentrifugation analysis, we determined the structure and stoichiometry of Rosellinia necatrix quadrivirus 1 (RnQV1). The RnQV1 capsid is a T=1 capsid with 60 heterodimers as the asymmetric units. The large amount of genetic information used by RnQV1 to construct a simple T=1 capsid is probably related to the numerous virus-host and virus-virus interactions that it must face in its life cycle, which lacks an extracellular phase.

  • Heterodimers as the Structural Unit of the T=1 Capsid of the Fungal Double-Stranded RNA Rosellinia necatrix Quadrivirus 1.
    Journal of Virology, 2016
    Co-Authors: Daniel Luque, Carlos P Mata, Satoko Kanematsu, German Rivas, Wendy M Havens, Carlos Alfonso, Jose M Gonzalez, Fernando González-camacho, Josué Gómez-blanco, Nobuhiro Suzuki
    Abstract:

    Most double-stranded RNA (dsRNA) viruses are transcribed and replicated in a specialized icosahedral capsid with a T=1 lattice consisting of 60 asymmetric capsid protein (CP) dimers. These capsids help to organize the viral genome and replicative complex(es). They also act as molecular sieves that isolate the virus genome from host defense mechanisms and allow the passage of nucleotides and viral transcripts. Rosellinia necatrix quadrivirus 1 (RnQV1), the type species of the family Quadriviridae, is a dsRNA fungal virus with a multipartite genome consisting of four monocistronic segments (segments 1 to 4). dsRNA-2 and dsRNA-4 encode two CPs (P2 and P4, respectively), which coassemble into ∼450-A-diameter capsids. We used three-dimensional cryo-electron microscopy combined with complementary biophysical techniques to determine the structures of RnQV1 virion strains W1075 and W1118. RnQV1 has a quadripartite genome, and the capsid is based on a single-shelled T=1 lattice built of P2-P4 dimers. Whereas the RnQV1-W1118 capsid is built of full-length CP, P2 and P4 of RnQV1-W1075 are cleaved into several polypeptides, maintaining the capsid structural organization. RnQV1 heterodimers have a quaternary organization similar to that of homodimers of reoviruses and other dsRNA mycoviruses. The RnQV1 capsid is the first T=1 capsid with a heterodimer as an asymmetric unit reported to date and follows the architectural principle for dsRNA viruses that a 120-subunit capsid is a conserved assembly that supports dsRNA replication and organization. IMPORTANCE Given their importance to health, members of the family Reoviridae are the basis of most structural and functional studies and provide much of our knowledge of dsRNA viruses. Analysis of bacterial, protozoal, and fungal dsRNA viruses has improved our understanding of their structure, function, and evolution, as well. Here, we studied a dsRNA virus that infects the fungus Rosellinia necatrix, an ascomycete that is pathogenic to a wide range of plants. Using three-dimensional cryo-electron microscopy and analytical ultracentrifugation analysis, we determined the structure and stoichiometry of Rosellinia necatrix quadrivirus 1 (RnQV1). The RnQV1 capsid is a T=1 capsid with 60 heterodimers as the asymmetric units. The large amount of genetic information used by RnQV1 to construct a simple T=1 capsid is probably related to the numerous virus-host and virus-virus interactions that it must face in its life cycle, which lacks an extracellular phase.

Satoko Kanematsu - One of the best experts on this subject based on the ideXlab platform.

  • Diverse Partitiviruses From the Phytopathogenic Fungus, Rosellinia necatrix
    Frontiers in Microbiology, 2020
    Co-Authors: Paul Telengech, Hideki Kondo, Satoko Kanematsu, Juan M. Arjona-lópez, Sakae Hisano, Cyrus Mugambi, Kiwamu Hyodo, C.j. López-herrera, Nobuhiro Suzuki
    Abstract:

    Partitiviruses (dsRNA viruses, family Partitiviridae) are ubiquitously detected in plants and fungi. Although previous surveys suggested their omnipresence in the white root rot fungus, Rosellinia necatrix, only a few of them have been molecularly and biologically characterized thus far. We report the characterization of a total of 20 partitiviruses from 16 R. necatrix strains belonging to 15 new species, for which "Rosellinia necatrix partitivirus 11-Rosellinia necatrix partitivirus 25" were proposed, and 5 previously reported species. The newly identified partitiviruses have been taxonomically placed in two genera, Alphapartitivirus, and Betapartitivirus. Some partitiviruses were transfected into reference strains of the natural host, R. necatrix, and an experimental host, Cryphonectria parasitica, using purified virions. A comparative analysis of resultant transfectants revealed interesting differences and similarities between the RNA accumulation and symptom induction patterns of R. necatrix and C. parasitica. Other interesting findings include the identification of a probable reassortment event and a quintuple partitivirus infection of a single fungal strain. These combined results provide a foundation for further studies aimed at elucidating mechanisms that underly the differences observed.

  • draft genome sequence and transcriptional analysis of Rosellinia necatrix infected with a virulent mycovirus
    Phytopathology, 2018
    Co-Authors: Takeo Shimizu, Satoko Kanematsu, Hajime Yaegashi
    Abstract:

    Understanding the molecular mechanisms of pathogenesis is useful in developing effective control methods for fungal diseases. The white root rot fungus Rosellinia necatrix is a soilborne pathogen that causes serious economic losses in various crops, including fruit trees, worldwide. Here, using next-generation sequencing techniques, we first produced a 44-Mb draft genome sequence of R. necatrix strain W97, an isolate from Japan, in which 12,444 protein-coding genes were predicted. To survey differentially expressed genes (DEGs) associated with the pathogenesis of the fungus, the hypovirulent W97 strain infected with Rosellinia necatrix megabirnavirus 1 (RnMBV1) was used for a comprehensive transcriptome analysis. In total, 545 and 615 genes are up- and down-regulated, respectively, in R. necatrix infected with RnMBV1. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the DEGs suggested that primary and secondary metabolism would be greatly disturbed in R. necatrix infected with RnMBV1. The genes encoding transcriptional regulators, plant cell wall-degrading enzymes, and toxin production, such as cytochalasin E, were also found in the DEGs. The genetic resources provided in this study will accelerate the discovery of genes associated with pathogenesis and other biological characteristics of R. necatrix, thus contributing to disease control.

  • heterodimers as the structural unit of the t 1 capsid of the fungal double stranded rna Rosellinia necatrix quadrivirus 1
    Journal of Virology, 2016
    Co-Authors: Daniel Luque, Carlos P Mata, Josue Gomezblanco, Fernando Gonzalezcamacho, Satoko Kanematsu, German Rivas, Wendy M Havens, Carlos Alfonso, Jose M Gonzalez, Nobuhiro Suzuki
    Abstract:

    Most double-stranded RNA (dsRNA) viruses are transcribed and replicated in a specialized icosahedral capsid with a T=1 lattice consisting of 60 asymmetric capsid protein (CP) dimers. These capsids help to organize the viral genome and replicative complex(es). They also act as molecular sieves that isolate the virus genome from host defense mechanisms and allow the passage of nucleotides and viral transcripts. Rosellinia necatrix quadrivirus 1 (RnQV1), the type species of the family Quadriviridae, is a dsRNA fungal virus with a multipartite genome consisting of four monocistronic segments (segments 1 to 4). dsRNA-2 and dsRNA-4 encode two CPs (P2 and P4, respectively), which coassemble into ∼450-A-diameter capsids. We used three-dimensional cryo-electron microscopy combined with complementary biophysical techniques to determine the structures of RnQV1 virion strains W1075 and W1118. RnQV1 has a quadripartite genome, and the capsid is based on a single-shelled T=1 lattice built of P2-P4 dimers. Whereas the RnQV1-W1118 capsid is built of full-length CP, P2 and P4 of RnQV1-W1075 are cleaved into several polypeptides, maintaining the capsid structural organization. RnQV1 heterodimers have a quaternary organization similar to that of homodimers of reoviruses and other dsRNA mycoviruses. The RnQV1 capsid is the first T=1 capsid with a heterodimer as an asymmetric unit reported to date and follows the architectural principle for dsRNA viruses that a 120-subunit capsid is a conserved assembly that supports dsRNA replication and organization.Given their importance to health, members of the family Reoviridae are the basis of most structural and functional studies and provide much of our knowledge of dsRNA viruses. Analysis of bacterial, protozoal, and fungal dsRNA viruses has improved our understanding of their structure, function, and evolution, as well. Here, we studied a dsRNA virus that infects the fungus Rosellinia necatrix, an ascomycete that is pathogenic to a wide range of plants. Using three-dimensional cryo-electron microscopy and analytical ultracentrifugation analysis, we determined the structure and stoichiometry of Rosellinia necatrix quadrivirus 1 (RnQV1). The RnQV1 capsid is a T=1 capsid with 60 heterodimers as the asymmetric units. The large amount of genetic information used by RnQV1 to construct a simple T=1 capsid is probably related to the numerous virus-host and virus-virus interactions that it must face in its life cycle, which lacks an extracellular phase.

  • Heterodimers as the Structural Unit of the T=1 Capsid of the Fungal Double-Stranded RNA Rosellinia necatrix Quadrivirus 1.
    Journal of Virology, 2016
    Co-Authors: Daniel Luque, Carlos P Mata, Satoko Kanematsu, German Rivas, Wendy M Havens, Carlos Alfonso, Jose M Gonzalez, Fernando González-camacho, Josué Gómez-blanco, Nobuhiro Suzuki
    Abstract:

    Most double-stranded RNA (dsRNA) viruses are transcribed and replicated in a specialized icosahedral capsid with a T=1 lattice consisting of 60 asymmetric capsid protein (CP) dimers. These capsids help to organize the viral genome and replicative complex(es). They also act as molecular sieves that isolate the virus genome from host defense mechanisms and allow the passage of nucleotides and viral transcripts. Rosellinia necatrix quadrivirus 1 (RnQV1), the type species of the family Quadriviridae, is a dsRNA fungal virus with a multipartite genome consisting of four monocistronic segments (segments 1 to 4). dsRNA-2 and dsRNA-4 encode two CPs (P2 and P4, respectively), which coassemble into ∼450-A-diameter capsids. We used three-dimensional cryo-electron microscopy combined with complementary biophysical techniques to determine the structures of RnQV1 virion strains W1075 and W1118. RnQV1 has a quadripartite genome, and the capsid is based on a single-shelled T=1 lattice built of P2-P4 dimers. Whereas the RnQV1-W1118 capsid is built of full-length CP, P2 and P4 of RnQV1-W1075 are cleaved into several polypeptides, maintaining the capsid structural organization. RnQV1 heterodimers have a quaternary organization similar to that of homodimers of reoviruses and other dsRNA mycoviruses. The RnQV1 capsid is the first T=1 capsid with a heterodimer as an asymmetric unit reported to date and follows the architectural principle for dsRNA viruses that a 120-subunit capsid is a conserved assembly that supports dsRNA replication and organization. IMPORTANCE Given their importance to health, members of the family Reoviridae are the basis of most structural and functional studies and provide much of our knowledge of dsRNA viruses. Analysis of bacterial, protozoal, and fungal dsRNA viruses has improved our understanding of their structure, function, and evolution, as well. Here, we studied a dsRNA virus that infects the fungus Rosellinia necatrix, an ascomycete that is pathogenic to a wide range of plants. Using three-dimensional cryo-electron microscopy and analytical ultracentrifugation analysis, we determined the structure and stoichiometry of Rosellinia necatrix quadrivirus 1 (RnQV1). The RnQV1 capsid is a T=1 capsid with 60 heterodimers as the asymmetric units. The large amount of genetic information used by RnQV1 to construct a simple T=1 capsid is probably related to the numerous virus-host and virus-virus interactions that it must face in its life cycle, which lacks an extracellular phase.

  • A novel betapartitivirus RnPV6 from Rosellinia necatrix tolerates host RNA silencing but is interfered by its defective RNAs.
    Virus Research, 2016
    Co-Authors: Sotaro Chiba, Hideki Kondo, Satoko Kanematsu, Yu Hsin Lin, Nobuhiro Suzuki
    Abstract:

    The family Partitiviridae comprises of five genera with bi-segmented dsRNA genomes that accommodate members infecting plants, fungi or protists. All partitiviruses with only a few exceptions cause asymptomatic infections. We report the characterization of a novel betapartitivirus termed Rosellinia necatrix partitivirus 6 (RnPV6) from a field isolate of a plant pathogenic fungus, white root rot fungus. RnPV6 has typical partitivirus features: dsRNA1 and dsRNA2 are 2462 and 2499bps in length encoding RNA-dependent RNA polymerase and capsid protein. Purified particles are spherical with a diameter of 30nm. Taking advantage of infectivity as virions, RnPV6 was introduced into a model filamentous fungal host, chestnut blight fungus to investigate virus/host interactions. Unlike other partitiviruses tested previously, RnPV6 induced profound phenotypic alterations with symptoms characterized by a reduced growth rate and enhanced pigmentation and was tolerant to host RNA silencing. In addition, a variety of defective RNAs derived from dsRNA1 appear after virion transfection. These sub-viral RNAs were shown to interfere with RnPV6 replication, at least for that of cognate segment dsRNA1. Presence of these sub-viral elements resulted in reduced symptom expression by RnPV6, suggesting their nature as defective-interfering RNAs. The features of RnPV6 are similar to but distinct from those of a previously reported alphapartitivirus, Rosellinia necatrix partitivirus 2 that is susceptible to RNA silencing.

Sotaro Chiba - One of the best experts on this subject based on the ideXlab platform.

  • A novel betapartitivirus RnPV6 from Rosellinia necatrix tolerates host RNA silencing but is interfered by its defective RNAs.
    Virus Research, 2016
    Co-Authors: Sotaro Chiba, Hideki Kondo, Satoko Kanematsu, Yu Hsin Lin, Nobuhiro Suzuki
    Abstract:

    The family Partitiviridae comprises of five genera with bi-segmented dsRNA genomes that accommodate members infecting plants, fungi or protists. All partitiviruses with only a few exceptions cause asymptomatic infections. We report the characterization of a novel betapartitivirus termed Rosellinia necatrix partitivirus 6 (RnPV6) from a field isolate of a plant pathogenic fungus, white root rot fungus. RnPV6 has typical partitivirus features: dsRNA1 and dsRNA2 are 2462 and 2499bps in length encoding RNA-dependent RNA polymerase and capsid protein. Purified particles are spherical with a diameter of 30nm. Taking advantage of infectivity as virions, RnPV6 was introduced into a model filamentous fungal host, chestnut blight fungus to investigate virus/host interactions. Unlike other partitiviruses tested previously, RnPV6 induced profound phenotypic alterations with symptoms characterized by a reduced growth rate and enhanced pigmentation and was tolerant to host RNA silencing. In addition, a variety of defective RNAs derived from dsRNA1 appear after virion transfection. These sub-viral RNAs were shown to interfere with RnPV6 replication, at least for that of cognate segment dsRNA1. Presence of these sub-viral elements resulted in reduced symptom expression by RnPV6, suggesting their nature as defective-interfering RNAs. The features of RnPV6 are similar to but distinct from those of a previously reported alphapartitivirus, Rosellinia necatrix partitivirus 2 that is susceptible to RNA silencing.

  • a novel single stranded rna virus isolated from a phytopathogenic filamentous fungus Rosellinia necatrix with similarity to hypo like viruses
    Frontiers in Microbiology, 2014
    Co-Authors: Rui Zhang, Hideki Kondo, Satoko Kanematsu, Sotaro Chiba, Nobuhiro Suzuki
    Abstract:

    Here we report a biological and molecular characterization of a novel positive-sense RNA virus isolated from a field isolate (NW10) of a filamentous phytopathogenic fungus, the white root rot fungus that is designated as Rosellinia necatrix fusarivirus 1 (RnFV1). A recently developed technology using zinc ions allowed us to transfer RnFV1 to two mycelially incompatible Rosellinia necatrix strains. A biological comparison of the virus-free and -recipient isogenic fungal strains suggested that RnFV1 infects latently and thus has no potential as a virocontrol agent. The virus has an undivided positive-sense RNA genome of 6286 nucleotides excluding a poly (A) tail. The genome possesses two non-overlapping open reading frames (ORFs): a large ORF1 that encodes polypeptides with RNA replication functions and a smaller ORF2 that encodes polypeptides of unknown function. A lack of coat protein genes was suggested by the failure of virus particles from infected mycelia. No evidence was obtained by Northern analysis or classical 5'-RACE for the presence of subgenomic RNA for the downstream ORF. Sequence similarities were found in amino-acid sequence between RnFV1 putative proteins and counterparts of a previously reported mycovirus, Fusarium graminearum virus 1 (FgV1). Interestingly, several related sequences were detected by BLAST searches of independent transcriptome assembly databases one of which probably represents an entire virus genome. Phylogenetic analysis based on the conserved RNA-dependent RNA polymerase showed that RnFV1, FgV1, and these similar sequences are grouped in a cluster distinct from distantly related hypoviruses. It is proposed that a new taxonomic family termed Fusariviridae be created to include RnFV1and FgV1.

  • a novel victorivirus from a phytopathogenic fungus Rosellinia necatrix is infectious as particles and targeted by rna silencing
    Journal of Virology, 2013
    Co-Authors: Sotaro Chiba, Hideki Kondo, Satoko Kanematsu, Nobuhiro Suzuki
    Abstract:

    ABSTRACT A novel victorivirus, termed Rosellinia necatrix victorivirus 1 (RnVV1), was isolated from a plant pathogenic ascomycete, white root rot fungus Rosellinia necatrix, coinfected with a partitivirus. The virus was molecularly and biologically characterized using the natural and experimental hosts (chestnut blight fungus, Cryphonectria parasitica). RnVV1 was shown to have typical molecular victorivirus attributes, including a monopartite double-stranded RNA genome with two open reading frames (ORFs) encoding capsid protein (CP) and RNA-dependent RNA polymerase (RdRp), a UAAUG pentamer presumed to facilitate the coupled termination/reinitiation for translation of the two ORFs, a spherical particle structure ∼40 nm in diameter, and moderate levels of CP and RdRp sequence identity (34 to 58%) to those of members of the genus Victorivirus within the family Totiviridae. A reproducible transfection system with purified RnVV1 virions was developed for the two distinct fungal hosts. Transfection assay with purified RnVV1 virions combined with virus elimination by hyphal tipping showed that the effects of RnVV1 on the phenotype of the natural host were negligible. Interestingly, comparison of the RNA silencing-competent (standard strain EP155) and -defective (Δ dcl-2 ) strains of C. parasitica infected with RnVV1 showed that RNA silencing acted against the virus to repress its replication, which was restored by coinfection with hypovirus or transgenic expression of an RNA silencing suppressor, hypovirus p29. Phenotypic changes were observed in the Δ dcl-2 strain but not in EP155. This is the first reported study on the host range expansion of a Totiviridae member that is targeted by RNA silencing.

  • effects of defective interfering rna on symptom induction by and replication of a novel partitivirus from a phytopathogenic fungus Rosellinia necatrix
    Journal of Virology, 2013
    Co-Authors: Sotaro Chiba, Hideki Kondo, Satoko Kanematsu, Yu Hsin Lin, Nobuhiro Suzuki
    Abstract:

    A novel mycovirus termed Rosellinia necatrix partitivirus 2 (RnPV2), isolated from a phytopathogenic fungus, Rosellinina necatrix strain W57, was molecularly and biologically characterized in both natural and experimental host fungi. Three double-stranded RNA (dsRNA) segments, dsRNA1, dsRNA2, and defective interfering dsRNA1 (DI-dsRNA1), whose sizes were approximately 2.0, 1.8, and 1.7 kbp, respectively, were detected in W57. While the dsRNA2 sequence, encoding the coat protein, was reported previously, dsRNA1 and DI-dsRNA1 were shown to encode competent and defective (truncated) RNA-dependent RNA polymerase, respectively. Artificial introduction of RnPV2 into an RNA silencing-defective, Dicer-like 2 knockout mutant (Δdcl-2) of a nonnatural host, Cryphonectria parasitica (chestnut blight fungus), resulted in successful infection by the DI-dsRNA1-carrying and -free RnPV2. The DI-dsRNA1-free RnPV2 strain was characterized by a higher ratio of accumulation of the intact dsRNA1 to dsRNA2, enhanced replication and severer symptom expression, compared with the DI-carrying strain. These findings confirmed the nature of DI-dsRNA1 as a DI-RNA. Both viral strains replicated to higher levels in a Δdcl-2 mutant than in a wild-type C. parasitica fungal strain (EP155) and induced severe symptoms in the Δdcl-2 mutant but subtle symptoms in EP155, indicating that the host RNA silencing targets the partitivirus. No obvious phenotypic effects of infection by either virus strain were detected in the natural host fungus. These combined results represent the first example of a partitivirus with DI-RNA that alters viral symptom induction in a host-dependent manner.

  • a novel quadripartite dsrna virus isolated from a phytopathogenic filamentous fungus Rosellinia necatrix
    Virology, 2012
    Co-Authors: Sotaro Chiba, Hideki Kondo, Satoko Kanematsu, Atsuko Sasaki, Akio Tani, Nobuhiro Suzuki
    Abstract:

    Abstract Here we report the biological and molecular attributes of a novel dsRNA virus isolated from Rosellinia necatrix, a filamentous phytopathogenic fungus. The virus, termed Rosellinia necatrix quadrivirus 1 (RnQV1), forms rigid spherical particles approximately 45 nm in diameter in infected mycelia. The particles contain 4 dsRNA segments, dsRNA1 to dsRNA4, with a size range of 4.9 to 3.7 kbp, each possessing a single large ORF. A comparison of the virus-infected and -cured isogenic fungal strains suggested that RnQV1 infection has no appreciable phenotypic effects. Phylogenetic analysis using the dsRNA3-encoded RdRp sequence revealed that RnQV1 is more distantly related to quadripartite chrysoviruses than to monopartite totiviruses, and is placed in a distinct group from other mycoviruses. No significant sequence similarities were evident between known proteins and RnQV1 structural proteins shown to be encoded by dsRNA2 or dsRNA4. These suggest that RnQV1 is a novel latent virus, belonging to a new family.

Hideki Kondo - One of the best experts on this subject based on the ideXlab platform.

  • Diverse Partitiviruses From the Phytopathogenic Fungus, Rosellinia necatrix
    Frontiers in Microbiology, 2020
    Co-Authors: Paul Telengech, Hideki Kondo, Satoko Kanematsu, Juan M. Arjona-lópez, Sakae Hisano, Cyrus Mugambi, Kiwamu Hyodo, C.j. López-herrera, Nobuhiro Suzuki
    Abstract:

    Partitiviruses (dsRNA viruses, family Partitiviridae) are ubiquitously detected in plants and fungi. Although previous surveys suggested their omnipresence in the white root rot fungus, Rosellinia necatrix, only a few of them have been molecularly and biologically characterized thus far. We report the characterization of a total of 20 partitiviruses from 16 R. necatrix strains belonging to 15 new species, for which "Rosellinia necatrix partitivirus 11-Rosellinia necatrix partitivirus 25" were proposed, and 5 previously reported species. The newly identified partitiviruses have been taxonomically placed in two genera, Alphapartitivirus, and Betapartitivirus. Some partitiviruses were transfected into reference strains of the natural host, R. necatrix, and an experimental host, Cryphonectria parasitica, using purified virions. A comparative analysis of resultant transfectants revealed interesting differences and similarities between the RNA accumulation and symptom induction patterns of R. necatrix and C. parasitica. Other interesting findings include the identification of a probable reassortment event and a quintuple partitivirus infection of a single fungal strain. These combined results provide a foundation for further studies aimed at elucidating mechanisms that underly the differences observed.

  • A novel betapartitivirus RnPV6 from Rosellinia necatrix tolerates host RNA silencing but is interfered by its defective RNAs.
    Virus Research, 2016
    Co-Authors: Sotaro Chiba, Hideki Kondo, Satoko Kanematsu, Yu Hsin Lin, Nobuhiro Suzuki
    Abstract:

    The family Partitiviridae comprises of five genera with bi-segmented dsRNA genomes that accommodate members infecting plants, fungi or protists. All partitiviruses with only a few exceptions cause asymptomatic infections. We report the characterization of a novel betapartitivirus termed Rosellinia necatrix partitivirus 6 (RnPV6) from a field isolate of a plant pathogenic fungus, white root rot fungus. RnPV6 has typical partitivirus features: dsRNA1 and dsRNA2 are 2462 and 2499bps in length encoding RNA-dependent RNA polymerase and capsid protein. Purified particles are spherical with a diameter of 30nm. Taking advantage of infectivity as virions, RnPV6 was introduced into a model filamentous fungal host, chestnut blight fungus to investigate virus/host interactions. Unlike other partitiviruses tested previously, RnPV6 induced profound phenotypic alterations with symptoms characterized by a reduced growth rate and enhanced pigmentation and was tolerant to host RNA silencing. In addition, a variety of defective RNAs derived from dsRNA1 appear after virion transfection. These sub-viral RNAs were shown to interfere with RnPV6 replication, at least for that of cognate segment dsRNA1. Presence of these sub-viral elements resulted in reduced symptom expression by RnPV6, suggesting their nature as defective-interfering RNAs. The features of RnPV6 are similar to but distinct from those of a previously reported alphapartitivirus, Rosellinia necatrix partitivirus 2 that is susceptible to RNA silencing.

  • a novel single stranded rna virus isolated from a phytopathogenic filamentous fungus Rosellinia necatrix with similarity to hypo like viruses
    Frontiers in Microbiology, 2014
    Co-Authors: Rui Zhang, Hideki Kondo, Satoko Kanematsu, Sotaro Chiba, Nobuhiro Suzuki
    Abstract:

    Here we report a biological and molecular characterization of a novel positive-sense RNA virus isolated from a field isolate (NW10) of a filamentous phytopathogenic fungus, the white root rot fungus that is designated as Rosellinia necatrix fusarivirus 1 (RnFV1). A recently developed technology using zinc ions allowed us to transfer RnFV1 to two mycelially incompatible Rosellinia necatrix strains. A biological comparison of the virus-free and -recipient isogenic fungal strains suggested that RnFV1 infects latently and thus has no potential as a virocontrol agent. The virus has an undivided positive-sense RNA genome of 6286 nucleotides excluding a poly (A) tail. The genome possesses two non-overlapping open reading frames (ORFs): a large ORF1 that encodes polypeptides with RNA replication functions and a smaller ORF2 that encodes polypeptides of unknown function. A lack of coat protein genes was suggested by the failure of virus particles from infected mycelia. No evidence was obtained by Northern analysis or classical 5'-RACE for the presence of subgenomic RNA for the downstream ORF. Sequence similarities were found in amino-acid sequence between RnFV1 putative proteins and counterparts of a previously reported mycovirus, Fusarium graminearum virus 1 (FgV1). Interestingly, several related sequences were detected by BLAST searches of independent transcriptome assembly databases one of which probably represents an entire virus genome. Phylogenetic analysis based on the conserved RNA-dependent RNA polymerase showed that RnFV1, FgV1, and these similar sequences are grouped in a cluster distinct from distantly related hypoviruses. It is proposed that a new taxonomic family termed Fusariviridae be created to include RnFV1and FgV1.

  • a novel victorivirus from a phytopathogenic fungus Rosellinia necatrix is infectious as particles and targeted by rna silencing
    Journal of Virology, 2013
    Co-Authors: Sotaro Chiba, Hideki Kondo, Satoko Kanematsu, Nobuhiro Suzuki
    Abstract:

    ABSTRACT A novel victorivirus, termed Rosellinia necatrix victorivirus 1 (RnVV1), was isolated from a plant pathogenic ascomycete, white root rot fungus Rosellinia necatrix, coinfected with a partitivirus. The virus was molecularly and biologically characterized using the natural and experimental hosts (chestnut blight fungus, Cryphonectria parasitica). RnVV1 was shown to have typical molecular victorivirus attributes, including a monopartite double-stranded RNA genome with two open reading frames (ORFs) encoding capsid protein (CP) and RNA-dependent RNA polymerase (RdRp), a UAAUG pentamer presumed to facilitate the coupled termination/reinitiation for translation of the two ORFs, a spherical particle structure ∼40 nm in diameter, and moderate levels of CP and RdRp sequence identity (34 to 58%) to those of members of the genus Victorivirus within the family Totiviridae. A reproducible transfection system with purified RnVV1 virions was developed for the two distinct fungal hosts. Transfection assay with purified RnVV1 virions combined with virus elimination by hyphal tipping showed that the effects of RnVV1 on the phenotype of the natural host were negligible. Interestingly, comparison of the RNA silencing-competent (standard strain EP155) and -defective (Δ dcl-2 ) strains of C. parasitica infected with RnVV1 showed that RNA silencing acted against the virus to repress its replication, which was restored by coinfection with hypovirus or transgenic expression of an RNA silencing suppressor, hypovirus p29. Phenotypic changes were observed in the Δ dcl-2 strain but not in EP155. This is the first reported study on the host range expansion of a Totiviridae member that is targeted by RNA silencing.

  • effects of defective interfering rna on symptom induction by and replication of a novel partitivirus from a phytopathogenic fungus Rosellinia necatrix
    Journal of Virology, 2013
    Co-Authors: Sotaro Chiba, Hideki Kondo, Satoko Kanematsu, Yu Hsin Lin, Nobuhiro Suzuki
    Abstract:

    A novel mycovirus termed Rosellinia necatrix partitivirus 2 (RnPV2), isolated from a phytopathogenic fungus, Rosellinina necatrix strain W57, was molecularly and biologically characterized in both natural and experimental host fungi. Three double-stranded RNA (dsRNA) segments, dsRNA1, dsRNA2, and defective interfering dsRNA1 (DI-dsRNA1), whose sizes were approximately 2.0, 1.8, and 1.7 kbp, respectively, were detected in W57. While the dsRNA2 sequence, encoding the coat protein, was reported previously, dsRNA1 and DI-dsRNA1 were shown to encode competent and defective (truncated) RNA-dependent RNA polymerase, respectively. Artificial introduction of RnPV2 into an RNA silencing-defective, Dicer-like 2 knockout mutant (Δdcl-2) of a nonnatural host, Cryphonectria parasitica (chestnut blight fungus), resulted in successful infection by the DI-dsRNA1-carrying and -free RnPV2. The DI-dsRNA1-free RnPV2 strain was characterized by a higher ratio of accumulation of the intact dsRNA1 to dsRNA2, enhanced replication and severer symptom expression, compared with the DI-carrying strain. These findings confirmed the nature of DI-dsRNA1 as a DI-RNA. Both viral strains replicated to higher levels in a Δdcl-2 mutant than in a wild-type C. parasitica fungal strain (EP155) and induced severe symptoms in the Δdcl-2 mutant but subtle symptoms in EP155, indicating that the host RNA silencing targets the partitivirus. No obvious phenotypic effects of infection by either virus strain were detected in the natural host fungus. These combined results represent the first example of a partitivirus with DI-RNA that alters viral symptom induction in a host-dependent manner.

N Matsumoto - One of the best experts on this subject based on the ideXlab platform.

  • Complete nucleotide sequences of genome segments 1 and 3 of Rosellinia anti-rot virus in the family Reoviridae
    Archives of Virology, 2004
    Co-Authors: H. Osaki, Toru Iwanami, N Matsumoto, Yasushi Ohtsu
    Abstract:

    The nucleotide sequences of genome segments 1 and 3 of Rosellinia anti-rot virus (RArV) from a hypovirulent isolate, W370, of the plant pathogen Rosellinia necatrix were determined. The complete nucleotide sequence of the genome segment 1 encoded a putative RNA-dependent RNA polymerase (RDRP). The deduced amino acid sequence of RDRP of RArV showed 29% identity with RDRPs of Colorado tick fever virus (CTFV) and European Eyach virus (EYAV) in the genus Coltivirus , and identities of 23-21% with members of the genera Fijivirus and Cypovirus . Both RArV and the Coltivirus member might have originated from a common virus ancestor.

  • Complete nucleotide sequences of genome segments 1 and 3 of Rosellinia anti-rot virus in the family Reoviridae
    Archives of Virology, 2004
    Co-Authors: H. Osaki, Toru Iwanami, N Matsumoto, Yasushi Ohtsu
    Abstract:

    The nucleotide sequences of genome segments 1 and 3 of Rosellinia anti-rot virus (RArV) from a hypovirulent isolate, W370, of the plant pathogen Rosellinia necatrix were determined. The complete nucleotide sequence of the genome segment 1 encoded a putative RNA-dependent RNA polymerase (RDRP). The deduced amino acid sequence of RDRP of RArV showed 29% identity with RDRPs of Colorado tick fever virus (CTFV) and European Eyach virus (EYAV) in the genus Coltivirus , and identities of 23-21% with members of the genera Fijivirus and Cypovirus . Both RArV and the Coltivirus member might have originated from a common virus ancestor.

  • Molecular characterization of dsRNA segments 2 and 5 and electron microscopy of a novel reovirus from a hypovirulent isolate, W370, of the plant pathogen Rosellinia necatrix.
    Journal of General Virology, 2003
    Co-Authors: Chuan Zhao Wei, Toru Iwanami, H. Osaki, N Matsumoto, Yasushi Ohtsu
    Abstract:

    A hypovirulent isolate, W370, of the white root rot fungus Rosellinia necatrix has previously been shown to harbour 12 dsRNA segments. In this study, complete nucleotide sequences of segments 2 and 5 of W370 dsRNAs were determined. The nucleotide sequence of genome segment 2 was 3773 bases long with a single long open reading frame (ORF) encoding 1226 amino acid residues with a predicted molecular mass of approximately 138.5 kDa. The nucleotide sequence of segment 5 was 2089 bases long with a single long ORF, whose deduced polypeptide contained 646 amino acid residues with a predicted molecular mass of about 72 kDa. Comparative analysis showed that the deduced protein sequence of segment 2 had significant homology with the putative VP2 of Colorado tick fever virus (CTFV) and European Eyach virus (EYAV) in the genus Coltivirus, but the deduced protein sequence of segment 5 had no similarity with other virus proteins. Double-shelled spherical particles approximately 80 nm in diameter associated with W370 dsRNAs were observed in a preparation from the mycelial tissue of isolate W370. The results demonstrated that the virus associated with W370 dsRNAs is a novel reovirus of the family Reoviridae. The virus was named Rosellinia anti-rot virus (RArV).

  • Presence and distribution of double-stranded RNA elements in the white root rot fungus Rosellinia necatrix
    Mycoscience, 2002
    Co-Authors: Masao Arakawa, Yukari Uetake, Hitoshi Nakamura, N Matsumoto
    Abstract:

    Double-stranded (ds)RNA of various types was detected in 65 (21.8%) of 298 isolates from vegetative hyphae of Rosellinia necatrix by electrophoresis, but dsRNA was not detected from 39 ascosporic isolates. There were 45 distinct dsRNA profiles in the 65 isolates: they varied in the number of electrophoretic bands from 1 to 12 and in size from less than 1000 bp to more than 10 kbp. Each dsRNA profile was unique to each locality. dsRNAs having the same profiles were restricted to isolates of the same mycelial compatibility groups (MCG) from the same trees, with an exception where different profiles were detected in different isolates of the same MCGs.

  • inoculation of lupinus luteus with white root rot fungus Rosellinia necatrix to estimate virulence
    Journal of General Plant Pathology, 2001
    Co-Authors: Yukari Uetake, Hitoshi Nakamura, Masao Arakawa, Ikuko Okabe, N Matsumoto
    Abstract:

    An inoculation method using Lupinus luteus was developed for estimating virulence of isolates of the white root rot fungus, Rosellinia necatrix Prillieux. Fungal cultures grown on pieces of mulberry twigs were placed in contact with the hypocotyl of 3-week-old seedlings growing in pots of soil. Disease development was uniform and reproducible in repeated experiments. Of 24 isolates with double-stranded RNA, eight were weakly virulent. This method is useful throughout the year for estimating virulence of many isolates of the fungus and for screening for hypovirulent isolates.