Sigmodon

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 2847 Experts worldwide ranked by ideXlab platform

Robert J. Baker - One of the best experts on this subject based on the ideXlab platform.

  • do time heterochromatin nors or chromosomal rearrangements correlate with distribution of interstitial telomeric repeats in Sigmodon cotton rats
    Journal of Heredity, 2012
    Co-Authors: Vicki J. Swier, Faisal Ali Anwarali Khan, Robert J. Baker
    Abstract:

    We studied the chromosomal distribution of telomere repeats (TTAGGG)n in 8 species of Sigmodon (cotton rats) using chromosome paints fluorescent in situ hybridization (FISH) from Sigmodon hispidus. In 2 species with the proposed primitive karyotype for the genus, telomere repeats were restricted to telomeric sites. But in the other 6 species that include 3 with proposed primitive karyotypes and 3 with highly rearranged karyotypes, telomere repeats were found on both telomeric sites and within interstitial telomeric sites (ITSs). To explain the distribution of ITS in Sigmodon, we gather data from C-bands, silver nitrate staining, G-bands, and chromosomal paint data from previous published studies. We did find some correlation with ITS and heterochromatin, euchromatic chromosomal rearrangements, and nucleolar organizing regions. No one type of chromosomal structure explains all ITS in Sigmodon. Multiple explanations and mechanisms for movement of intragenomic sequences are required to explain ITS in this genus. We rejected the hypothesis that age of a lineage correlates with the presence of ITS using divergence time estimate analyses. This multigene phylogeny places species with ITS (S. arizonae, S. fulviventer, S. hispidus, S. mascotensis, S. ochrognathus, and S. toltecus) in the clade with a species without ITS (S. hirsutus). Lineages with ITS (S. arizonae and S. mascotensis) arose independently from a lineage absent of ITS (S. hirsutus) around 0.67 to 0.83 Ma. The rearranged karyotypes of S. mascotensis and S. arizonae appear to be an independently derived autapomorphic characters, supporting a fast rate of chromosomal changes that vary among species.

  • Do Time, Heterochromatin, NORs, or Chromosomal Rearrangements Correlate with Distribution of Interstitial Telomeric Repeats in Sigmodon (Cotton Rats)?
    The Journal of heredity, 2012
    Co-Authors: Vicki J. Swier, Faisal Ali Anwarali Khan, Robert J. Baker
    Abstract:

    We studied the chromosomal distribution of telomere repeats (TTAGGG)n in 8 species of Sigmodon (cotton rats) using chromosome paints fluorescent in situ hybridization (FISH) from Sigmodon hispidus. In 2 species with the proposed primitive karyotype for the genus, telomere repeats were restricted to telomeric sites. But in the other 6 species that include 3 with proposed primitive karyotypes and 3 with highly rearranged karyotypes, telomere repeats were found on both telomeric sites and within interstitial telomeric sites (ITSs). To explain the distribution of ITS in Sigmodon, we gather data from C-bands, silver nitrate staining, G-bands, and chromosomal paint data from previous published studies. We did find some correlation with ITS and heterochromatin, euchromatic chromosomal rearrangements, and nucleolar organizing regions. No one type of chromosomal structure explains all ITS in Sigmodon. Multiple explanations and mechanisms for movement of intragenomic sequences are required to explain ITS in this genus. We rejected the hypothesis that age of a lineage correlates with the presence of ITS using divergence time estimate analyses. This multigene phylogeny places species with ITS (S. arizonae, S. fulviventer, S. hispidus, S. mascotensis, S. ochrognathus, and S. toltecus) in the clade with a species without ITS (S. hirsutus). Lineages with ITS (S. arizonae and S. mascotensis) arose independently from a lineage absent of ITS (S. hirsutus) around 0.67 to 0.83 Ma. The rearranged karyotypes of S. mascotensis and S. arizonae appear to be an independently derived autapomorphic characters, supporting a fast rate of chromosomal changes that vary among species.

  • Patterns of Chromosomal Evolution in Sigmodon, Evidence from Whole Chromosome Paints
    Cytogenetic and genome research, 2009
    Co-Authors: Vicki J. Swier, F. F. B. Elder, R.d. Bradley, W. Rens, Robert J. Baker
    Abstract:

    Of the superfamily Muroidea (31 genera, 1578 species), the Sigmodontinae (74 genera, 377 species) is the second largest subfamily in number of species and represents a significant radiation of rodent biodiversity. Only 2 of the 74 genera are found in both North and South America (Sigmodon and Oryzomys) and the remainder are exclusively from South America. In recent molecular studies, the genus Sigmodon (Cricetidae, Sigmodontinae) has been considered sister to many other South American Sigmodontines [Steppan et al., 2004]. We examine the chromosomal evolution of 9 species of Sigmodon utilizing chromosomal paints isolated from S. hispidus, proposed to be similar to the ancestral karyotype [Elder, 1980]. Utilizing a phylogenetic hypothesis of a molecular phylogeny of Sigmodon [Henson and Bradley, 2009], we mapped shared chromosomal rearrangements of taxa on a molecular tree to estimate the evolutionary position of each rearrangement. For several species (S. hirsutus, S. leucotis, S. ochrognathus, S. peruanus, and S. toltecus), the karyotype accumulated few or no changes, but in three species (S. arizonae, S. fulviventer, and S. mascotensis) numerous karyotype rearrangements were observed. These rearrangements involved heterochromatic additions, centric fusions, tandem fusions, pericentric inversions, as well as the addition of interstitial DNA not identified by chromosome paints or C-banding. The hypothesis that the ancestral karyotype for this complex had a diploid number of 52, a fundamental number of 52, and a G-band pattern of which most, if not all are similar to that present in modern day S. hispidus fails to be rejected. This hypothesis remains viable as an explanation of chromosomal evolution in Sigmodontine rodents.

Felisa A Smith - One of the best experts on this subject based on the ideXlab platform.

  • changes in the diet and body size of a small herbivorous mammal hispid cotton rat Sigmodon hispidus following the late pleistocene megafauna extinction
    Ecography, 2020
    Co-Authors: Catalina P Tome, Emma Elliott A Smith, Kathleen S Lyons, Seth D Newsome, Felisa A Smith
    Abstract:

    The catastrophic loss of large‐bodied mammals during the terminal Pleistocene likely led to cascading effects within communities. While the extinction of the top consumers probably expanded the resources available to survivors of all body sizes, little work has focused on the responses of the smallest mammals. Here, we use a detailed fossil record from the southwestern United States to examine the response of the hispid cotton rat Sigmodon hispidus to biodiversity loss and climatic change over the late Quaternary. In particular, we focus on changes in diet and body size. We characterize diet through carbon (δ¹³C) and nitrogen (δ¹⁵N) isotope analysis of bone collagen in fossil jaws and body size through measurement of fossil teeth; the abundance of material allows us to examine population level responses at millennial scale for the past 16 ka. Sigmodon was not present at the cave during the full glacial, first appearing at ~16 ka after ice sheets were in retreat. It remained relatively rare until ~12 ka when warming temperatures allowed it to expand its species range northward. We find variation in both diet and body size of Sigmodon hispidus over time: the average body size of the population varied by ~20% (90–110 g) and mean δ¹³C and δ¹⁵N values ranged between −13.5 to −16.5‰ and 5.5 to 7.4‰ respectively. A state–space model suggested changes in mass were influenced by diet, maximum temperature and community structure, while the modest changes in diet were most influenced by community structure. Sigmodon maintained a fairly similar dietary niche over time despite contemporaneous changes in climate and herbivore community composition that followed the megafauna extinction. Broadly, our results suggest that small mammals may be as sensitive to shifts in local biotic interactions within their ecosystem as they are to changes in climate and large‐scale biodiversity loss.

Vicki J. Swier - One of the best experts on this subject based on the ideXlab platform.

  • Do Time, Heterochromatin, NORs, or Chromosomal Rearrangements Correlate with Distribution of Interstitial Telomeric Repeats in
    2016
    Co-Authors: Sigmodon Rats, Vicki J. Swier, Faisal Ali, Anwarali Khan, J. Baker
    Abstract:

    We studied the chromosomal distribution of telomere repeats (TTAGGG)n in 8 species of Sigmodon (cotton rats) using chromosome paints fluorescent in situ hybridization (FISH) from Sigmodon hispidus. In 2 species with the proposed primitive karyotype for the genus, telomere repeats were restricted to telomeric sites. But in the other 6 species that include 3 with proposed primitive karyotypes and 3 with highly rearranged karyotypes, telomere repeats were found on both telomeric sites and within interstitial telomeric sites (ITSs). To explain the distribution of ITS in Sigmodon, we gather data from C-bands, silver nitrate staining, G-bands, and chromosomal paint data from previous published studies. We did find some correlation with ITS and heterochromatin, euchromatic chromosomal rearrangements, and nucleolar organizing regions. No one type of chromosomal structure explains all ITS in Sigmodon. Multiple explanations and mechanisms for movement of intragenomic sequences are required to explain ITS in this genus. We rejected the hypothesis that age of a lineage correlates with the presence of ITS using divergence time estimate analyses. This multigene phylogeny places species with ITS (S. arizonae, S. fulviventer, S. hispidus, S. mascotensis, S. ochrognathus, and S. toltecus) in the clade with a species without ITS (S. hirsutus). Lineages with ITS (S. arizonae and S. mascotensis) arose independently from a lineage absent of ITS (S. hirsutus) around 0.67 to 0.83 Ma. The rearranged karyotypes of S. mascotensis and S. arizonae appear to be an independently derived autapomorphic characters, supporting a fast rate of chromosomal changes that vary among species

  • do time heterochromatin nors or chromosomal rearrangements correlate with distribution of interstitial telomeric repeats in Sigmodon cotton rats
    Journal of Heredity, 2012
    Co-Authors: Vicki J. Swier, Faisal Ali Anwarali Khan, Robert J. Baker
    Abstract:

    We studied the chromosomal distribution of telomere repeats (TTAGGG)n in 8 species of Sigmodon (cotton rats) using chromosome paints fluorescent in situ hybridization (FISH) from Sigmodon hispidus. In 2 species with the proposed primitive karyotype for the genus, telomere repeats were restricted to telomeric sites. But in the other 6 species that include 3 with proposed primitive karyotypes and 3 with highly rearranged karyotypes, telomere repeats were found on both telomeric sites and within interstitial telomeric sites (ITSs). To explain the distribution of ITS in Sigmodon, we gather data from C-bands, silver nitrate staining, G-bands, and chromosomal paint data from previous published studies. We did find some correlation with ITS and heterochromatin, euchromatic chromosomal rearrangements, and nucleolar organizing regions. No one type of chromosomal structure explains all ITS in Sigmodon. Multiple explanations and mechanisms for movement of intragenomic sequences are required to explain ITS in this genus. We rejected the hypothesis that age of a lineage correlates with the presence of ITS using divergence time estimate analyses. This multigene phylogeny places species with ITS (S. arizonae, S. fulviventer, S. hispidus, S. mascotensis, S. ochrognathus, and S. toltecus) in the clade with a species without ITS (S. hirsutus). Lineages with ITS (S. arizonae and S. mascotensis) arose independently from a lineage absent of ITS (S. hirsutus) around 0.67 to 0.83 Ma. The rearranged karyotypes of S. mascotensis and S. arizonae appear to be an independently derived autapomorphic characters, supporting a fast rate of chromosomal changes that vary among species.

  • Do Time, Heterochromatin, NORs, or Chromosomal Rearrangements Correlate with Distribution of Interstitial Telomeric Repeats in Sigmodon (Cotton Rats)?
    The Journal of heredity, 2012
    Co-Authors: Vicki J. Swier, Faisal Ali Anwarali Khan, Robert J. Baker
    Abstract:

    We studied the chromosomal distribution of telomere repeats (TTAGGG)n in 8 species of Sigmodon (cotton rats) using chromosome paints fluorescent in situ hybridization (FISH) from Sigmodon hispidus. In 2 species with the proposed primitive karyotype for the genus, telomere repeats were restricted to telomeric sites. But in the other 6 species that include 3 with proposed primitive karyotypes and 3 with highly rearranged karyotypes, telomere repeats were found on both telomeric sites and within interstitial telomeric sites (ITSs). To explain the distribution of ITS in Sigmodon, we gather data from C-bands, silver nitrate staining, G-bands, and chromosomal paint data from previous published studies. We did find some correlation with ITS and heterochromatin, euchromatic chromosomal rearrangements, and nucleolar organizing regions. No one type of chromosomal structure explains all ITS in Sigmodon. Multiple explanations and mechanisms for movement of intragenomic sequences are required to explain ITS in this genus. We rejected the hypothesis that age of a lineage correlates with the presence of ITS using divergence time estimate analyses. This multigene phylogeny places species with ITS (S. arizonae, S. fulviventer, S. hispidus, S. mascotensis, S. ochrognathus, and S. toltecus) in the clade with a species without ITS (S. hirsutus). Lineages with ITS (S. arizonae and S. mascotensis) arose independently from a lineage absent of ITS (S. hirsutus) around 0.67 to 0.83 Ma. The rearranged karyotypes of S. mascotensis and S. arizonae appear to be an independently derived autapomorphic characters, supporting a fast rate of chromosomal changes that vary among species.

  • Patterns of Chromosomal Evolution in Sigmodon, Evidence from Whole Chromosome Paints
    Cytogenetic and genome research, 2009
    Co-Authors: Vicki J. Swier, F. F. B. Elder, R.d. Bradley, W. Rens, Robert J. Baker
    Abstract:

    Of the superfamily Muroidea (31 genera, 1578 species), the Sigmodontinae (74 genera, 377 species) is the second largest subfamily in number of species and represents a significant radiation of rodent biodiversity. Only 2 of the 74 genera are found in both North and South America (Sigmodon and Oryzomys) and the remainder are exclusively from South America. In recent molecular studies, the genus Sigmodon (Cricetidae, Sigmodontinae) has been considered sister to many other South American Sigmodontines [Steppan et al., 2004]. We examine the chromosomal evolution of 9 species of Sigmodon utilizing chromosomal paints isolated from S. hispidus, proposed to be similar to the ancestral karyotype [Elder, 1980]. Utilizing a phylogenetic hypothesis of a molecular phylogeny of Sigmodon [Henson and Bradley, 2009], we mapped shared chromosomal rearrangements of taxa on a molecular tree to estimate the evolutionary position of each rearrangement. For several species (S. hirsutus, S. leucotis, S. ochrognathus, S. peruanus, and S. toltecus), the karyotype accumulated few or no changes, but in three species (S. arizonae, S. fulviventer, and S. mascotensis) numerous karyotype rearrangements were observed. These rearrangements involved heterochromatic additions, centric fusions, tandem fusions, pericentric inversions, as well as the addition of interstitial DNA not identified by chromosome paints or C-banding. The hypothesis that the ancestral karyotype for this complex had a diploid number of 52, a fundamental number of 52, and a G-band pattern of which most, if not all are similar to that present in modern day S. hispidus fails to be rejected. This hypothesis remains viable as an explanation of chromosomal evolution in Sigmodontine rodents.

Catalina P Tome - One of the best experts on this subject based on the ideXlab platform.

  • changes in the diet and body size of a small herbivorous mammal hispid cotton rat Sigmodon hispidus following the late pleistocene megafauna extinction
    Ecography, 2020
    Co-Authors: Catalina P Tome, Emma Elliott A Smith, Kathleen S Lyons, Seth D Newsome, Felisa A Smith
    Abstract:

    The catastrophic loss of large‐bodied mammals during the terminal Pleistocene likely led to cascading effects within communities. While the extinction of the top consumers probably expanded the resources available to survivors of all body sizes, little work has focused on the responses of the smallest mammals. Here, we use a detailed fossil record from the southwestern United States to examine the response of the hispid cotton rat Sigmodon hispidus to biodiversity loss and climatic change over the late Quaternary. In particular, we focus on changes in diet and body size. We characterize diet through carbon (δ¹³C) and nitrogen (δ¹⁵N) isotope analysis of bone collagen in fossil jaws and body size through measurement of fossil teeth; the abundance of material allows us to examine population level responses at millennial scale for the past 16 ka. Sigmodon was not present at the cave during the full glacial, first appearing at ~16 ka after ice sheets were in retreat. It remained relatively rare until ~12 ka when warming temperatures allowed it to expand its species range northward. We find variation in both diet and body size of Sigmodon hispidus over time: the average body size of the population varied by ~20% (90–110 g) and mean δ¹³C and δ¹⁵N values ranged between −13.5 to −16.5‰ and 5.5 to 7.4‰ respectively. A state–space model suggested changes in mass were influenced by diet, maximum temperature and community structure, while the modest changes in diet were most influenced by community structure. Sigmodon maintained a fairly similar dietary niche over time despite contemporaneous changes in climate and herbivore community composition that followed the megafauna extinction. Broadly, our results suggest that small mammals may be as sensitive to shifts in local biotic interactions within their ecosystem as they are to changes in climate and large‐scale biodiversity loss.

Faisal Ali Anwarali Khan - One of the best experts on this subject based on the ideXlab platform.

  • do time heterochromatin nors or chromosomal rearrangements correlate with distribution of interstitial telomeric repeats in Sigmodon cotton rats
    Journal of Heredity, 2012
    Co-Authors: Vicki J. Swier, Faisal Ali Anwarali Khan, Robert J. Baker
    Abstract:

    We studied the chromosomal distribution of telomere repeats (TTAGGG)n in 8 species of Sigmodon (cotton rats) using chromosome paints fluorescent in situ hybridization (FISH) from Sigmodon hispidus. In 2 species with the proposed primitive karyotype for the genus, telomere repeats were restricted to telomeric sites. But in the other 6 species that include 3 with proposed primitive karyotypes and 3 with highly rearranged karyotypes, telomere repeats were found on both telomeric sites and within interstitial telomeric sites (ITSs). To explain the distribution of ITS in Sigmodon, we gather data from C-bands, silver nitrate staining, G-bands, and chromosomal paint data from previous published studies. We did find some correlation with ITS and heterochromatin, euchromatic chromosomal rearrangements, and nucleolar organizing regions. No one type of chromosomal structure explains all ITS in Sigmodon. Multiple explanations and mechanisms for movement of intragenomic sequences are required to explain ITS in this genus. We rejected the hypothesis that age of a lineage correlates with the presence of ITS using divergence time estimate analyses. This multigene phylogeny places species with ITS (S. arizonae, S. fulviventer, S. hispidus, S. mascotensis, S. ochrognathus, and S. toltecus) in the clade with a species without ITS (S. hirsutus). Lineages with ITS (S. arizonae and S. mascotensis) arose independently from a lineage absent of ITS (S. hirsutus) around 0.67 to 0.83 Ma. The rearranged karyotypes of S. mascotensis and S. arizonae appear to be an independently derived autapomorphic characters, supporting a fast rate of chromosomal changes that vary among species.

  • Do Time, Heterochromatin, NORs, or Chromosomal Rearrangements Correlate with Distribution of Interstitial Telomeric Repeats in Sigmodon (Cotton Rats)?
    The Journal of heredity, 2012
    Co-Authors: Vicki J. Swier, Faisal Ali Anwarali Khan, Robert J. Baker
    Abstract:

    We studied the chromosomal distribution of telomere repeats (TTAGGG)n in 8 species of Sigmodon (cotton rats) using chromosome paints fluorescent in situ hybridization (FISH) from Sigmodon hispidus. In 2 species with the proposed primitive karyotype for the genus, telomere repeats were restricted to telomeric sites. But in the other 6 species that include 3 with proposed primitive karyotypes and 3 with highly rearranged karyotypes, telomere repeats were found on both telomeric sites and within interstitial telomeric sites (ITSs). To explain the distribution of ITS in Sigmodon, we gather data from C-bands, silver nitrate staining, G-bands, and chromosomal paint data from previous published studies. We did find some correlation with ITS and heterochromatin, euchromatic chromosomal rearrangements, and nucleolar organizing regions. No one type of chromosomal structure explains all ITS in Sigmodon. Multiple explanations and mechanisms for movement of intragenomic sequences are required to explain ITS in this genus. We rejected the hypothesis that age of a lineage correlates with the presence of ITS using divergence time estimate analyses. This multigene phylogeny places species with ITS (S. arizonae, S. fulviventer, S. hispidus, S. mascotensis, S. ochrognathus, and S. toltecus) in the clade with a species without ITS (S. hirsutus). Lineages with ITS (S. arizonae and S. mascotensis) arose independently from a lineage absent of ITS (S. hirsutus) around 0.67 to 0.83 Ma. The rearranged karyotypes of S. mascotensis and S. arizonae appear to be an independently derived autapomorphic characters, supporting a fast rate of chromosomal changes that vary among species.