Simulation Process

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 615456 Experts worldwide ranked by ideXlab platform

Michael Gehde - One of the best experts on this subject based on the ideXlab platform.

  • creating material data for thermoset injection molding Simulation Process
    Polymer Testing, 2019
    Co-Authors: Ngoc Tu Tran, Michael Gehde
    Abstract:

    Abstract Thermoset material data for reactive injection molding Simulation Process is found in limited sources and seldom available from data bank of Simulation tools because of complication not only in rheological and thermal properties measurement but also in writing optimization algorithm to model rheological and thermal mathematical equations. In this paper, rheological and thermal properties of thermoset injection molding compounds were successfully measured. In addition, a numerical method was developed to create material data of thermoset injection molding compounds, which was directly imported into a Simulation tool, namely, Moldex3D to investigate its application in thermoset injection molding Simulation Process. Furthermore, a strong slip phenomenon on the interface between thermoset melt and wall surface which was investigated and detected during injection molding experiments was taken into account in the filling Simulation Process. The computation was found to be in good agreement with the experimental results, indicating that the new generated material data is reasonable and the influence of wall slip on the mold filling characterization of thermoset injection compounds during Simulation Process is not ignorable.

Ngoc Tu Tran - One of the best experts on this subject based on the ideXlab platform.

  • Creating material properties for thermoset injection molding Simulation Process
    Universitätsverlag Chemnitz, 2020
    Co-Authors: Ngoc Tu Tran
    Abstract:

    Um den Spritzgießprozess zu simulieren, sind korrekte Materialdaten nötig. Diese Daten umfassen Viskositätsmodelle, Wärmekapazitätskoeffizienten, Wärmeleitfähigkeitskoeffizienten, PVT-Modelle und bei reaktiven Materialien Härtungsmodelle. Bei der SpritzgießSimulation von Thermoplasten sind die Materialdaten in der Regel in den Simulationstools verfügbar. Der Anwender kann problemlos Thermoplastmaterialdaten auswählen, die bereits in die Materialdatenbank der Simulationswerkzeuge eingebettet waren, um die gesamten Phasen des Thermoplastspritzgießprozesses zu simulieren. Bei der DuroplastspritzgießSimulation sind nur begrenzt Materialdaten vorhanden und selten aus der Datenbank der Simulationswerkzeuge verfügbar, da sie nicht nur bei der Messung rheologischer und thermischer Eigenschaften, sondern auch bei der Modellierung rheologischer und kinetischer mathematischer Modelle kompliziert sind. Daher ist es notwendig, eigene Materialdaten zu generieren. Um dieses Problem zu lösen, bedarf es einer umfangreichen Wissensbasis bei der Messung von Materialeigenschaften sowie der Erstellung eines Optimierungsalgorithmus´. Um den Prozess des duroplastischen Spritzgießens exakt zu simulieren, bedarf es zudem fundierter Kenntnisse über die Formfüllungseigenschaften dieser Materialien. Die Untersuchung des Fließverhaltens von duroplastischen Spritzgießmassen im Inneren der Kavität ist jedoch nicht ausreichend beschrieben. Bisher gab es noch keine veröffentlichten Hinweise, die zeigen, wie man aus experimentellen Messdaten (thermische und rheologische Daten) für den reaktiven SpritzgießSimulationsprozess komplette Materialdaten für Duroplaste erzeugen kann. Diese Probleme führen zu einer Abhängigkeit der Anwender von der Materialdatenbank der Simulationssoftware, was zu einer Einschränkung der Anwendung der ComputerSimulation in der duroplastischen SpritzgießSimulation und dem Vergleich zwischen experimentellen und Simulationsergebnissen führt. Darüber hinaus stellt sich die Frage, ob es beim Füllen der Kavität ein Wandgleiten zwischen Duroplastschmelze und Wandoberfläche gibt oder nicht. Aus diesem Grund wird die Wirkung des Wandgleitens auf die Kavitätenoberfläche bei der Simulation des duroplastischen Spritzgießens immer noch vernachlässigt. Die vorliegende Arbeit konzentriert sich auf drei wichtige wissenschaftliche Ziele. Das erste ist die Innovation eines neuen technischen Verfahrens zur physikalischen Erklärung des Formfüllverhaltens von duroplastischen Spritzgießmassen. Das zweite Hauptziel ist die Entwicklung einer numerischen Methode zur Erstellung eines duroplastischen Materialdatenblattes zur Simulation der Formfüllung von duroplastischen Spritzgießmassen. Schließlich wird die Erstellung von Simulationswerkzeugen auf der Grundlage der physikalischen Gegebenheiten und des erzeugten Materialdatenblattes durchgeführt.To simulate the injection molding Process, it is necessary to set material data. The material data for an injection molding Process must include a viscosity model and its fitted coefficients, heat capacity coefficients, thermal conductivity coefficients, a PVT model and its coefficients, a curing model and its coefficients (only for reactive injection molding). With thermoplastics injection molding Simulation, the material data is generally available from Simulation tools. Users could easily choose thermoplastics material data that was already embedded in the material data bank of Simulation tools to simulate the entire phases of thermoplastics injection molding Process. However, with thermosets injection molding Simulation, the material data is found in limited sources and seldom available from data bank of Simulation tools because of complication not only in rheological and thermal properties measurement but also in modeling rheological and cure kinetics mathematical models. Therefore, with thermoset injection molding compounds that its material data bank has not been found in data bank of Simulation tools, before setting material data, it is necessary to create its own material data that Simulation packages do not supply a tool. Therefore, to solve this problem, it requires an extensive knowledge base in measurements of material properties as well as optimization algorithm. In addition, to simulate exactly the thermosets injection molding compound Process, it requires a profound knowledge in the mold filling characteristics of thermoset injection molding compounds. However, investigation of flow behavior of thermosets injection molding compounds inside the mold has not been adequately described. Up to now, there has not been any article that shows a complete way to create thermoset material data from measured experimental data (thermal data and rheological data) for the reactive injection molding Simulation Process. These problems are leading to the users ‘dependency on the material data bank of Simulation tools, leading to restriction in application of computer Simulation in the thermoset injection molding Simulation and comparison between experimental and Simulation results. Furthermore, there is still a big question related to whether there is or no slip phenomenon between thermosets melt and the wall surface during filling the cavity, for which has not yet been found an exact answer. Because of this the effect of wall slip on the cavity surface is still ignored during thermoset injection molding Simulation Process. This thesis focused on three key scientific goals. The first one is innovation of a new technical method to explain the mold filling behavior of thermoset injection molding compounds physically. The second key goal is developing numerical method to create thermoset material data sheet for Simulation of mold filling characterizations of thermoset injection molding compounds. Finally, creating a Simulation tool base on the physical technique and generated material data sheet

  • creating material data for thermoset injection molding Simulation Process
    Polymer Testing, 2019
    Co-Authors: Ngoc Tu Tran, Michael Gehde
    Abstract:

    Abstract Thermoset material data for reactive injection molding Simulation Process is found in limited sources and seldom available from data bank of Simulation tools because of complication not only in rheological and thermal properties measurement but also in writing optimization algorithm to model rheological and thermal mathematical equations. In this paper, rheological and thermal properties of thermoset injection molding compounds were successfully measured. In addition, a numerical method was developed to create material data of thermoset injection molding compounds, which was directly imported into a Simulation tool, namely, Moldex3D to investigate its application in thermoset injection molding Simulation Process. Furthermore, a strong slip phenomenon on the interface between thermoset melt and wall surface which was investigated and detected during injection molding experiments was taken into account in the filling Simulation Process. The computation was found to be in good agreement with the experimental results, indicating that the new generated material data is reasonable and the influence of wall slip on the mold filling characterization of thermoset injection compounds during Simulation Process is not ignorable.

Cynthia H Mccollough - One of the best experts on this subject based on the ideXlab platform.

Wang Nan - One of the best experts on this subject based on the ideXlab platform.

Peng Bing - One of the best experts on this subject based on the ideXlab platform.