TAS1R3

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 8165283 Experts worldwide ranked by ideXlab platform

Wolfgang Meyerhof - One of the best experts on this subject based on the ideXlab platform.

  • Amino acid sensing in hypothalamic tanycytes via umami taste receptors
    Molecular metabolism, 2017
    Co-Authors: Greta Lazutkaite, Wolfgang Meyerhof, Kristina Lossow, Alice Soldà, Nicholas Dale
    Abstract:

    Abstract Objective Hypothalamic tanycytes are glial cells that line the wall of the third ventricle and contact the cerebrospinal fluid (CSF). While they are known to detect glucose in the CSF we now show that tanycytes also detect amino acids, important nutrients that signal satiety. Methods Ca 2+ imaging and ATP biosensing were used to detect tanycyte responses to l -amino acids. The downstream pathway of the responses was determined using ATP receptor antagonists and channel blockers. The receptors were characterized using mice lacking the Tas1r1 gene, as well as an mGluR4 receptor antagonist. Results Amino acids such as Arg, Lys, and Ala evoke Ca 2+ signals in tanycytes and evoke the release of ATP via pannexin 1 and CalHM1, which amplifies the signal via a P2 receptor dependent mechanism. Tanycytes from mice lacking the Tas1r1 gene had diminished responses to lysine and arginine but not alanine. Antagonists of mGluR4 greatly reduced the responses to alanine and lysine. Conclusion Two receptors previously implicated in taste cells, the Tas1r1/TAS1R3 heterodimer and mGluR4, contribute to the detection of a range of amino acids by tanycytes in CSF.

  • A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes.
    Glia, 2017
    Co-Authors: Heather Elizabeth Benford, Matei Bolborea, Wolfgang Meyerhof, Sergey Kasparov, Eric Pollatzek, Kristina Lossow, Irm Hermans-borgmeyer, Beihui Liu, Nicholas Dale
    Abstract:

    Hypothalamic tanycytes are glial-like glucosensitive cells that contact the cerebrospinal fluid of the third ventricle, and send processes into the hypothalamic nuclei that control food intake and body weight. The mechanism of tanycyte glucosensing remains undetermined. While tanycytes express the components associated with the glucosensing of the pancreatic β cell, they respond to nonmetabolisable glucose analogues via an ATP receptor-dependent mechanism. Here, we show that tanycytes in rodents respond to non-nutritive sweeteners known to be ligands of the sweet taste (Tas1r2/TAS1R3) receptor. The initial sweet tastant-evoked response, which requires the presence of extracellular Ca2+, leads to release of ATP and a larger propagating Ca2+ response mediated by P2Y1 receptors. In Tas1r2 null mice the proportion of glucose nonresponsive tanycytes was greatly increased in these mice, but a subset of tanycytes retained an undiminished sensitivity to glucose. Our data demonstrate that the sweet taste receptor mediates glucosensing in about 60% of glucosensitive tanycytes while the remaining 40% of glucosensitive tanycytes use some other, as yet unknown mechanism.

  • Rubemamine and Rubescenamine, Two Naturally Occurring N-Cinnamoyl Phenethylamines with Umami-Taste-Modulating Properties.
    Journal of Agricultural and Food Chemistry, 2015
    Co-Authors: Michael Backes, Wolfgang Meyerhof, Katja Obst, Juliane Bojahr, Anika Thorhauer, Natacha Roudnitzky, Susanne Paetz, Katharina Reichelt, Gerhard Krammer, Jakob Ley
    Abstract:

    Sensory screening of a series of naturally occurring N-cinnamoyl derivatives of substituted phenethylamines revealed that rubemamine (9, from Chenopodium album) and rubescenamine (10, from Zanthoxylum rubsecens) elicit strong intrinsic umami taste in water at 50 and 10 ppm, respectively. Sensory tests in glutamate- and nucleotide-containing bases showed that the compounds influence the whole flavor profile of savory formulations. Both rubemamine (9) and rubescenamine (10) at 10–100 ppm dose-dependently positively modulated the umami taste of MSG (0.17–0.22%) up to threefold. Among the investigated amides, only rubemamine (9) and rubescenamine (10) are able to directly activate the TAS1R1-TAS1R3 umami taste receptor. Moreover, both compounds also synergistically modulated the activation of TAS1R1-TAS1R3 by MSG. Most remarkably, rubemamine (9) was able to further positively modulate the IMP-enhanced TAS1R1-TAS1R3 response to MSG ∼1.8-fold. Finally, armatamide (11), zanthosinamide (13), and dioxamine (14), w...

  • Oligomerization of Sweet and Bitter Taste Receptors
    Methods in cell biology, 2013
    Co-Authors: Christian Kuhn, Wolfgang Meyerhof
    Abstract:

    The superfamily of G protein-coupled receptors (GPCRs) mediates numerous physiological processes, including neurotransmission, cell differentiation and metabolism, and sensory perception. In recent years, it became evident that these receptors might function not only as monomeric receptors but also as homo- or heteromeric receptor complexes. The family of TAS1R taste receptors are prominent examples of GPCR dimerization as they act as obligate functional heteromers: TAS1R1 and TAS1R3 combine to form an umami taste receptor, while the combination of TAS1R2 and TAS1R3 is a sweet taste receptor. So far, TAS2Rs, a second family of ~25 taste receptors in humans that mediates responses to bitter compounds, have been shown to function on their own, but if they do so as receptor monomers or as homomeric receptors still remains unknown. Using two different experimental approaches, we have recently shown that TAS2Rs can indeed form both homomeric and heteromeric receptor complexes. The employed techniques, coimmunoprecipitations and bioluminescence resonance energy transfer (BRET), are based on different principles and complement each other well and therefore provided compelling evidences for TAS2R oligomerization. Furthermore, we have adapted the protocols to include a number of controls and for higher throughput to accommodate the investigation of a large number of receptors and receptor combinations. Here, we present the protocols in detail.

  • sweet taste receptor interacting protein cib1 is a general inhibitor of insp3 dependent ca2 release in vivo
    Journal of Neurochemistry, 2008
    Co-Authors: Jan K Hennigs, Nicole Burhenne, Frauke Stähler, Marcel Winnig, Bettina Walter, Wolfgang Meyerhof, Hartwig Schmale
    Abstract:

    In a search for sweet taste receptor interacting proteins, we have identified the calcium- and integrin-binding protein 1 (CIB1) as specific binding partner of the intracellular carboxyterminal domain of the rat sweet taste receptor subunit Tas1r2. In heterologous human embryonic kidney 293 (HEK293) cells, the G protein chimeras Gα16gust44 and Gα15i3 link the sweet taste receptor dimer TAS1R2/TAS1R3 to an inositol 1,4,5-trisphosphate (InsP3)-dependent Ca2+ release pathway. To demonstrate the influence of CIB1 on the cytosolic Ca2+ concentration, we used sweet and umami compounds as well as other InsP3-generating ligands in FURA-2-based Ca2+ assays in wild-type HEK293 cells and HEK293 cells expressing functional human sweet and umami taste receptor dimers. Stable and transient depletion of CIB1 by short-hairpin RNA increased the Ca2+ response of HEK293 cells to the InsP3-generating ligands ATP, UTP and carbachol. Over-expression of CIB1 had the opposite effect as shown for the sweet ligand saccharin, the umami receptor ligand monosodium glutamate and UTP. The CIB1 effect was dependent on the thapsigargin-sensitive Ca2+ store of the endoplasmic reticulum (ER) and independent of extracellular Ca2+. The function of CIB1 on InsP3-evoked Ca2+ release from the ER is most likely mediated by its interaction with the InsP3 receptor. Thus, CIB1 seems to be an inhibitor of InsP3-dependent Ca2+ release in vivo.

Barry G. Green - One of the best experts on this subject based on the ideXlab platform.

  • sweet thermal taste perceptual characteristics in water and dependence on tas1r2 TAS1R3
    Chemical Senses, 2020
    Co-Authors: Danielle Nachtigal, Barry G. Green
    Abstract:

    The initial objective of this study was to determine if activation of the sweet taste receptor TAS1R2/TAS1R3 is necessary for perception of sweet thermal taste (swTT). Our approach was to inhibit the receptor with the inverse agonist lactisole using a temperature-controlled flow gustometer. Because all prior studies of thermal taste (TT) used metal thermodes to heat the tongue tip, we first investigated whether it could be generated in heated water. Experiment 1 showed that sweetness could be evoked when deionized water was heated from 20 to 35 °C, and testing with static temperatures between 20 and 35 °C demonstrated the importance of heating from a cool temperature. As in previous studies, thermal sweetness was reported by only a subset of participants, and replicate measurements found variability in reports of sweetness across trials and between sessions. Experiment 2 then showed that exposure to 8 mM lactisole blocked perception of swTT. Confirmation of the involvement of TAS1R2/TAS1R3 led to an investigation of possible sensory and cognitive interactions between thermal and chemical sweetness. Using sucrose as a sweet stimulus and quinine as a nonsweet control, we found that dynamic heating capable of producing thermal sweetness did not increase the sweetness of sucrose compared with static heating at 35 °C. However, swTT was disrupted if trials containing sucrose (but not quinine) were interspersed among heating-only trials. These findings provide new information relevant to understanding the perceptual processes and receptor mechanisms of swTT, as well as the heat sensitivity of sweet taste in general.

  • Sweet Thermal Taste: Perceptual Characteristics in Water and Dependence on TAS1R2/TAS1R3.
    Chemical senses, 2020
    Co-Authors: Danielle Nachtigal, Barry G. Green
    Abstract:

    The initial objective of this study was to determine if activation of the sweet taste receptor TAS1R2/TAS1R3 is necessary for perception of sweet thermal taste (swTT). Our approach was to inhibit the receptor with the inverse agonist lactisole using a temperature-controlled flow gustometer. Because all prior studies of thermal taste (TT) used metal thermodes to heat the tongue tip, we first investigated whether it could be generated in heated water. Experiment 1 showed that sweetness could be evoked when deionized water was heated from 20 to 35 °C, and testing with static temperatures between 20 and 35 °C demonstrated the importance of heating from a cool temperature. As in previous studies, thermal sweetness was reported by only a subset of participants, and replicate measurements found variability in reports of sweetness across trials and between sessions. Experiment 2 then showed that exposure to 8 mM lactisole blocked perception of swTT. Confirmation of the involvement of TAS1R2/TAS1R3 led to an investigation of possible sensory and cognitive interactions between thermal and chemical sweetness. Using sucrose as a sweet stimulus and quinine as a nonsweet control, we found that dynamic heating capable of producing thermal sweetness did not increase the sweetness of sucrose compared with static heating at 35 °C. However, swTT was disrupted if trials containing sucrose (but not quinine) were interspersed among heating-only trials. These findings provide new information relevant to understanding the perceptual processes and receptor mechanisms of swTT, as well as the heat sensitivity of sweet taste in general.

  • Differential modulation of the lactisole 'Sweet Water Taste' by sweeteners.
    PloS one, 2017
    Co-Authors: Cynthia Alvarado, Jay Patrick Slack, Danielle Nachtigal, Barry G. Green
    Abstract:

    Pre-exposure to taste stimuli and certain chemicals can cause water to have a taste. Here we studied further the 'sweet water taste' (SWT) perceived after exposure to the sweet taste inhibitor lactisole. Experiment 1 investigated an incidental observation that presenting lactisole in mixture with sucrose reduced the intensity of the SWT. The results confirmed this observation and also showed that rinsing with sucrose after lactisole could completely eliminate the SWT. The generalizability of these findings was investigated in experiment 2 by presenting 5 additional sweeteners before, during, or after exposure to lactisole. The results found with sucrose were replicated with fructose and cyclamate, but the 3 other sweeteners were less effective suppressors of the SWT, and the 2 sweeteners having the highest potency initially enhanced it. A third experiment investigated these interactions on the tongue tip and found that the lactisole SWT was perceived only when water was actively flowed across the tongue. The same experiment yielded evidence against the possibility that suppression of the SWT following exposure to sweeteners is an aftereffect of receptor activation while providing additional support for a role of sweetener potency. Collectively these results provide new evidence that complex inhibitory and excitatory interactions occur between lactisole and agonists of the sweet taste receptor TAS1R2-TAS1R3. Receptor mechanisms that may be responsible for these interactions are discussed in the context of the current model of the SWT and the possible contribution of allosteric modulation.

Paul A. S. Breslin - One of the best experts on this subject based on the ideXlab platform.

  • perceptual variation in umami taste and polymorphisms in tas1r taste receptor genes
    The American Journal of Clinical Nutrition, 2009
    Co-Authors: Qingying Chen, Suzanne Alarcon, Anilet Tharp, Osama M Ahmed, Nelsa L Estrella, Tiffani A Greene, Joseph Rucker, Paul A. S. Breslin
    Abstract:

    Background: The TAS1R1 and TAS1R3 G protein–coupled receptors are believed to function in combination as a heteromeric glutamate taste receptor in humans. Objective: We hypothesized that variations in the umami perception of glutamate would correlate with variations in the sequence of these 2 genes, if they contribute directly to umami taste. Design: In this study, we first characterized the general sensitivity to glutamate in a sample population of 242 subjects. We performed these experiments by sequencing the coding regions of the genomic TAS1R1 and TAS1R3 genes in a separate set of 87 individuals who were tested repeatedly with monopotassium glutamate (MPG) solutions. Last, we tested the role of the candidate umami taste receptor hTAS1R1-hTAS1R3 in a functional expression assay. Results: A subset of subjects displays extremes of sensitivity, and a battery of different psychophysical tests validated this observation. Statistical analysis showed that the rare T allele of single nucleotide polymorphism (SNP) R757C in TAS1R3 led to a doubling of umami ratings of 25 mmol MPG/L. Other suggestive SNPs of TAS1R3 include the A allele of A5T and the A allele of R247H, which both resulted in an approximate doubling of umami ratings of 200 mmol MPG/L. We confirmed the potential role of the human TAS1R1-TAS1R3 heteromer receptor in umami taste by recording responses, specifically to l-glutamate and inosine 5′-monophosphate (IMP) mixtures in a heterologous expression assay in HEK (human embryonic kidney) T cells. Conclusions: There is a reliable and valid variation in human umami taste of l-glutamate. Variations in perception of umami taste correlated with variations in the human TAS1R3 gene. The putative human taste receptor TAS1R1-TAS1R3 responds specifically to l-glutamate mixed with the ribonucleotide IMP. Thus, this receptor likely contributes to human umami taste perception.

  • Perceptual variation in umami taste and polymorphisms in TAS1R taste receptor genes.
    The American journal of clinical nutrition, 2009
    Co-Authors: Qingying Chen, Suzanne Alarcon, Anilet Tharp, Osama M Ahmed, Nelsa L Estrella, Tiffani A Greene, Joseph Rucker, Paul A. S. Breslin
    Abstract:

    The TAS1R1 and TAS1R3 G protein-coupled receptors are believed to function in combination as a heteromeric glutamate taste receptor in humans. We hypothesized that variations in the umami perception of glutamate would correlate with variations in the sequence of these 2 genes, if they contribute directly to umami taste. In this study, we first characterized the general sensitivity to glutamate in a sample population of 242 subjects. We performed these experiments by sequencing the coding regions of the genomic TAS1R1 and TAS1R3 genes in a separate set of 87 individuals who were tested repeatedly with monopotassium glutamate (MPG) solutions. Last, we tested the role of the candidate umami taste receptor hTAS1R1-hTAS1R3 in a functional expression assay. A subset of subjects displays extremes of sensitivity, and a battery of different psychophysical tests validated this observation. Statistical analysis showed that the rare T allele of single nucleotide polymorphism (SNP) R757C in TAS1R3 led to a doubling of umami ratings of 25 mmol MPG/L. Other suggestive SNPs of TAS1R3 include the A allele of A5T and the A allele of R247H, which both resulted in an approximate doubling of umami ratings of 200 mmol MPG/L. We confirmed the potential role of the human TAS1R1-TAS1R3 heteromer receptor in umami taste by recording responses, specifically to l-glutamate and inosine 5'-monophosphate (IMP) mixtures in a heterologous expression assay in HEK (human embryonic kidney) T cells. There is a reliable and valid variation in human umami taste of l-glutamate. Variations in perception of umami taste correlated with variations in the human TAS1R3 gene. The putative human taste receptor TAS1R1-TAS1R3 responds specifically to l-glutamate mixed with the ribonucleotide IMP. Thus, this receptor likely contributes to human umami taste perception.

  • A TAS1R receptor-based explanation of sweet ‘water-taste’
    Nature, 2006
    Co-Authors: Veronica Galindo-cuspinera, Marcel Winnig, Bernd Bufe, Wolfgang Meyerhof, Paul A. S. Breslin
    Abstract:

    Paradoxically, artificial sweeteners such as sodium saccharin and acesulfame-K taken in high concentrations are not sweet: they can even seem bitter. And if the mouth is then rinsed out with water, it takes on a sweet taste. These observations have led to new insights into the action of the TAS1R taste receptor. As well as causing the ‘sweet water’ aftertaste, saccharin at high concentrations masks the effect of other sweeteners tasted at the same time. What emerges at the molecular level is a two-site system. Saccharin and acesulfame-K elicit a perception of sweetness when they bind to a high-affinity binding site; at high concentrations they bind to a second low-affinity inhibitory site. When the sweet taste inhibitors are washed away, the sweet receptor re-activates and the perception of sweetness returns. Sweet inhibitors are used in the food industry to offset the high sweetness that results from replacing fats with sweet carbohydrates in some reduced-fat products: the sweet water taste may be a useful predictor for sweet inhibitor activity. ‘Water-tastes’ are gustatory after-impressions elicited by water following the removal of a chemical solution from the mouth, akin to colour after-images appearing on ‘white’ paper after fixation on coloured images. Unlike colour after-images, gustatory after-effects are poorly understood1. One theory posits that ‘water-tastes’ are adaptation phenomena, in which adaptation to one taste solution causes the water presented subsequently to act as a taste stimulus2,3. An alternative hypothesis is that removal of the stimulus upon rinsing generates a receptor-based, positive, off-response in taste-receptor cells, ultimately inducing a gustatory perception4. Here we show that a sweet ‘water-taste’ is elicited when sweet-taste inhibitors are rinsed away. Responses of cultured cells expressing the human sweetener receptor directly parallel the psychophysical responses—water rinses remove the inhibitor from the heteromeric sweetener receptor TAS1R2–TAS1R3, which activates cells and results in the perception of strong sweetness from pure water. This ‘rebound’ activity occurs when equilibrium forces on the two-state allosteric sweet receptors result in their coordinated shift to the activated state upon being released from inhibition by rinsing5,6,7.

Eugeni Roura - One of the best experts on this subject based on the ideXlab platform.

  • TAS1R1 and TAS1R3 Polymorphisms Relate to Energy and Protein-Rich Food Choices from a Buffet Meal Respectively.
    Nutrients, 2018
    Co-Authors: Pengfei Han, Russell Keast, Eugeni Roura
    Abstract:

    Eating behaviour in humans is a complex trait that involves sensory perception. Genetic variation in sensory systems is one of the factors influencing perception of foods. However, the extent that these genetic variations may determine food choices in a real meal scenario warrants further research. This study investigated how genetic variants of the umami taste receptor (TAS1R1/TAS1R3) related to consumption of umami-tasting foods. Thirty normal-weight adult subjects were offered “ad libitum” access to a variety of foods covering the full range of main taste-types for 40 min using a buffet meal arrangement. Buccal cell samples were collected and analysed for six single nucleotide polymorphisms (SNPs) reported previously related to the TAS1R1/TAS1R3 genes. Participants identified with the CC alleles of the TAS1R3 rs307355 and rs35744813 consumed significantly more protein from the buffet than T carriers. In addition, participants with GG genotype of the TAS1R1 SNP rs34160967 consumed more fat and calories as compared to the genotype group having the A alleles. In summary, these findings revealed a link between the SNPs variations of umami taster receptor gene and fat and protein intake from a buffet meal.

  • Salivary leptin and TAS1R2/TAS1R3 polymorphisms are related to sweet taste sensitivity and carbohydrate intake from a buffet meal in healthy young adults.
    The British journal of nutrition, 2017
    Co-Authors: Pengfei Han, Russell Keast, Eugeni Roura
    Abstract:

    The influence of sweet taste sensitivity on food intake is not well understood. We investigated the involvement of salivary leptin and SNP of the sweet taste receptor genes (TAS1R2/TAS1R3) on sweet taste sensitivity, sensory-specific satiety (SSS) and macronutrient intake in healthy human adults. In all, nineteen high sweet sensitivity (HS) and eleven low sweet sensitivity (LS) subjects were classified based on the sweetness perception of one solution (9 mm sucrose) forced-choice triangle test. All participants completed a randomised crossover design experiment where they consumed one of three iso-energetic soup preloads differing in primary taste quality (sweet, non-sweet taste-control or no-taste energy-control). A period of 1 h after the preload, participants were offered a buffet meal consisting of foods varying in taste (sweet or non-sweet) and fat content. Subjective measures included hunger/fullness and SSS for sweetness. Saliva and buccal cells were collected to measure leptin level and to study the TAS1R2/TAS1R3 specific SNP, respectively. Salivary leptin concentrations were significantly higher in LS than HS participants (P 05). In addition, HS showed stronger sweet SSS compared with LH participants (P 05), and consumed less carbohydrate (% energy) and more non-sweet foods than LS (P 01 and P 05, respectively). Alleles from each TAS1R2 locus (GG compared with AA alleles of rs12033832, and CT/CC compared with TT alleles of rs35874116) were related to higher consumption of carbohydrates (% energy) and higher amount of sweet foods, respectively (P 05). In contrast, no associations were found for the TAS1R3 alleles. These results contribute to understand the links between taste sensitivity, macronutrient appetite and food consumption.

  • Salivary leptin and TAS1R2/TAS1R3 polymorphisms are related to sweet taste sensitivity and carbohydrate intake from a buffet meal in healthy young adults.
    The British journal of nutrition, 2017
    Co-Authors: Pengfei Han, Russell Keast, Eugeni Roura
    Abstract:

    The influence of sweet taste sensitivity on food intake is not well understood. We investigated the involvement of salivary leptin and SNP of the sweet taste receptor genes (TAS1R2/TAS1R3) on sweet taste sensitivity, sensory-specific satiety (SSS) and macronutrient intake in healthy human adults. In all, nineteen high sweet sensitivity (HS) and eleven low sweet sensitivity (LS) subjects were classified based on the sweetness perception of one solution (9 mm sucrose) forced-choice triangle test. All participants completed a randomised crossover design experiment where they consumed one of three iso-energetic soup preloads differing in primary taste quality (sweet, non-sweet taste-control or no-taste energy-control). A period of 1 h after the preload, participants were offered a buffet meal consisting of foods varying in taste (sweet or non-sweet) and fat content. Subjective measures included hunger/fullness and SSS for sweetness. Saliva and buccal cells were collected to measure leptin level and to study the TAS1R2/TAS1R3 specific SNP, respectively. Salivary leptin concentrations were significantly higher in LS than HS participants (P

  • salivary leptin and tas1r2 TAS1R3 polymorphisms are related to sweet taste sensitivity and carbohydrate intake from a buffet meal in healthy young adults
    British Journal of Nutrition, 2017
    Co-Authors: Pengfei Han, Russell Keast, Eugeni Roura
    Abstract:

    The influence of sweet taste sensitivity on food intake is not well understood. We investigated the involvement of salivary leptin and SNP of the sweet taste receptor genes (TAS1R2/TAS1R3) on sweet taste sensitivity, sensory-specific satiety (SSS) and macronutrient intake in healthy human adults. In all, nineteen high sweet sensitivity (HS) and eleven low sweet sensitivity (LS) subjects were classified based on the sweetness perception of one solution (9 mm sucrose) forced-choice triangle test. All participants completed a randomised crossover design experiment where they consumed one of three iso-energetic soup preloads differing in primary taste quality (sweet, non-sweet taste-control or no-taste energy-control). A period of 1 h after the preload, participants were offered a buffet meal consisting of foods varying in taste (sweet or non-sweet) and fat content. Subjective measures included hunger/fullness and SSS for sweetness. Saliva and buccal cells were collected to measure leptin level and to study the TAS1R2/TAS1R3 specific SNP, respectively. Salivary leptin concentrations were significantly higher in LS than HS participants (P 05). In addition, HS showed stronger sweet SSS compared with LH participants (P 05), and consumed less carbohydrate (% energy) and more non-sweet foods than LS (P 01 and P 05, respectively). Alleles from each TAS1R2 locus (GG compared with AA alleles of rs12033832, and CT/CC compared with TT alleles of rs35874116) were related to higher consumption of carbohydrates (% energy) and higher amount of sweet foods, respectively (P 05). In contrast, no associations were found for the TAS1R3 alleles. These results contribute to understand the links between taste sensitivity, macronutrient appetite and food consumption.

  • A regulatory gene network related to the porcine umami taste receptor (TAS1R1/TAS1R3).
    Animal genetics, 2015
    Co-Authors: J. M. Kim, D. Ren, Antonio Reverter, Eugeni Roura
    Abstract:

    Taste perception plays an important role in the mediation of food choices in mammals. The first porcine taste receptor genes identified, sequenced and characterized, TAS1R1 and TAS1R3, were related to the dimeric receptor for umami taste. However, little is known about their regulatory network. The objective of this study was to unfold the genetic network involved in porcine umami taste perception. We performed a meta-analysis of 20 gene expression studies spanning 480 porcine microarray chips and screened 328 taste-related genes by selective mining steps among the available 12,320 genes. A porcine umami taste-specific regulatory network was constructed based on the normalized coexpression data of the 328 genes across 27 tissues. From the network, we revealed the 'taste module' and identified a coexpression cluster for the umami taste according to the first connector with the TAS1R1/TAS1R3 genes. Our findings identify several taste-related regulatory genes and extend previous genetic background of porcine umami taste.

Yuzo Ninomiya - One of the best experts on this subject based on the ideXlab platform.

  • Intracellular acidification is required for full activation of the sweet taste receptor by miraculin.
    Scientific reports, 2016
    Co-Authors: Keisuke Sanematsu, Noriatsu Shigemura, Ryusuke Yoshida, Masayuki Kitagawa, Satoru Nirasawa, Yuzo Ninomiya
    Abstract:

    Acidification of the glycoprotein, miraculin (MCL), induces sweet taste in humans, but not in mice. The sweet taste induced by MCL is more intense when acidification occurs with weak acids as opposed to strong acids. MCL interacts with the human sweet receptor subunit hTAS1R2, but the mechanisms by which the acidification of MCL activates the sweet taste receptor remain largely unexplored. The work reported here speaks directly to this activation by utilizing a sweet receptor TAS1R2 + TAS1R3 assay. In accordance with previous data, MCL-applied cells displayed a pH dependence with citric acid (weak acid) being right shifted to that with hydrochloric acid (strong acid). When histidine residues in both the intracellular and extracellular region of hTAS1R2 were exchanged for alanine, taste-modifying effect of MCL was reduced or abolished. Stronger intracellular acidification of HEK293 cells was induced by citric acid than by HCl and taste-modifying effect of MCL was proportional to intracellular pH regardless of types of acids. These results suggest that intracellular acidity is required for full activation of the sweet taste receptor by MCL.

  • Genetic and molecular basis of individual differences in human umami taste perception.
    PloS one, 2009
    Co-Authors: Noriatsu Shigemura, Keisuke Sanematsu, Ryusuke Yoshida, Shinya Shirosaki, Yuzo Ninomiya
    Abstract:

    Umami taste (corresponds to savory in English) is elicited by L-glutamate, typically as its Na salt (monosodium glutamate: MSG), and is one of five basic taste qualities that plays a key role in intake of amino acids. A particular property of umami is the synergistic potentiation of glutamate by purine nucleotide monophosphates (IMP, GMP). A heterodimer of a G protein coupled receptor, TAS1R1 and TAS1R3, is proposed to function as its receptor. However, little is known about genetic variation of TAS1R1 and TAS1R3 and its potential links with individual differences in umami sensitivity. Here we investigated the association between recognition thresholds for umami substances and genetic variations in human TAS1R1 and TAS1R3, and the functions of TAS1R1/TAS1R3 variants using a heterologous expression system. Our study demonstrated that the TAS1R1-372T creates a more sensitive umami receptor than -372A, while TAS1R3-757C creates a less sensitive one than -757R for MSG and MSG plus IMP, and showed a strong correlation between the recognition thresholds and in vitro dose - response relationships. These results in human studies support the propositions that a TAS1R1/TAS1R3 heterodimer acts as an umami receptor, and that genetic variation in this heterodimer directly affects umami taste sensitivity.

  • Variation in umami perception and in candidate genes for the umami receptor in mice and humans
    The American journal of clinical nutrition, 2009
    Co-Authors: Noriatsu Shigemura, Keisuke Sanematsu, Ryusuke Yoshida, Shinya Shirosaki, Tadahiro Ohkuri, A.a. Shahidul Islam, Yoko Ogiwara, Misako Kawai, Yuzo Ninomiya
    Abstract:

    The unique taste induced by monosodium glutamate is referred to as umami taste. The umami taste is also elicited by the purine nucleotides inosine 5'-monophosphate and guanosine 5'-monophosphate. There is evidence that a heterodimeric G protein-coupled receptor, which consists of the T1R1 (taste receptor type 1, member 1, Tas1r1) and the T1R3 (taste receptor type 1, member 3, TAS1R3) proteins, functions as an umami taste receptor for rodents and humans. Splice variants of metabotropic glutamate receptors, mGluR(1) (glutamate receptor, metabotropic 1, Grm1) and mGluR(4) (glutamate receptor, metabotropic 4, Grm4), also have been proposed as taste receptors for glutamate. The taste sensitivity to umami substances varies in inbred mouse strains and in individual humans. However, little is known about the relation of umami taste sensitivity to variations in candidate umami receptor genes in rodents or in humans. In this article, we summarize current knowledge of the diversity of umami perception in mice and humans. Furthermore, we combine previously published data and new information from the single nucleotide polymorphism databases regarding variation in the mouse and human candidate umami receptor genes: mouse Tas1r1 (TAS1R1 for human), mouse TAS1R3 (TAS1R3 for human), mouse Grm1 (GRM1 for human), and mouse Grm4 (GRM4 for human). Finally, we discuss prospective associations between variation of these genes and umami taste perception in both species.

  • Mouse strain differences in Gurmarin-sensitivity of sweet taste responses are not associated with polymorphisms of the sweet receptor gene, TAS1R3
    Chemical senses, 2005
    Co-Authors: Keisuke Sanematsu, Noriatsu Shigemura, Ryusuke Yoshida, Keiko Yasumatsu, Yuzo Ninomiya
    Abstract:

    Gurmarin (Gur) is a peptide that selectively inhibits responses of the chorda tympani (CT) nerve to sweet compounds in rodents. In mice, the sweet-suppressing effect of Gur differs among strains. The inhibitory effect of Gur is clearly observed in C57BL/6 mice, but only slightly, if at all, in BALB/c mice. These two mouse strains possess different alleles of the sweet receptor gene, Sac (TAS1R3) (taster genotype for C57BL/6 and non-taster genotype for BALB/c mice), suggesting that polymorphisms in the gene may account for differential sensitivity to Gur. To investigate this possibility, we examined the effect of Gur in another TAS1R3 nontaster strain, 129X1/Sv mice. The results indicated that unlike non-taster BALB/c mice but similar to taster C57BL/6 mice, 129X1/ Sv mice exhibited significant inhibition of CT responses to various sweet compounds by Gur. This suggests that the mouse strain difference in the Gur inhibition of sweet responses of the CT nerve may not be associated with polymorphisms of TAS1R3.