Teatcups

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 210 Experts worldwide ranked by ideXlab platform

D J Reinemann - One of the best experts on this subject based on the ideXlab platform.

  • short communication effects of changing teatcup removal and vacuum settings on milking efficiency of an automatic milking system
    Journal of Dairy Science, 2019
    Co-Authors: J Upton, Silva P Bolona, D J Reinemann
    Abstract:

    ABSTRACT The aim of this experiment was to assess strategies to reduce milking time in a pasture-based automatic milking system (AMS). Milking time is an important factor in automatic milking because any reductions in box time can facilitate more milkings per day and hence higher production levels per AMS. This study evaluated 2 end-of-milking criteria treatments (teatcup removal at 30% and 50% of average milk flowrate at the quarter-level), 2 milking system vacuum treatments (static and dynamic, where the milking system vacuum could change during the peak milk flowrate period), and the interaction of these treatment effects on milking time in a Lely Astronaut A4 AMS (Maassluis, the Netherlands). The experiment was carried out at the research facility at Teagasc Moorepark, Cork, Ireland, and used 77 spring-calved cows, which were managed on a grass-based system. Cows were 179 DIM, with an average parity of 3. No significant differences in milk flowrate, milk yield, box time, milking time, or milking interval were found between treatments in this study on cows milked in an AMS on a pasture-based system. Average and peak milk flowrates of 2.15 kg/min and 3.48 kg/min, respectively, were observed during the experiment. Small increases in maximum milk flowrate were detected (+0.09 kg/min) due to the effect of increasing the system vacuum during the peak milk flow period. These small increases in maximum milk flowrate were not sufficient to deliver a significant reduction in milking time or box time. Furthermore, increasing the removal setting from 30% of the average milk flowrate to 50% of the average milk flowrate was not an effective means of reducing box time, because the resultant increase in removal flowrate of 0.12 kg/min was not enough to deliver practical or statistically significant decreases in milking time or box time. Hence, to make significant reductions in milking time, where cows have an average milk flow of 2 kg/min and yield per milking of 10 kg, end-of-milking criteria above 50% of average milk flowrate at the quarter level would be required.

  • effect of teatcup removal settings on milking efficiency and milk quality in a pasture based automatic milking system
    Journal of Dairy Science, 2019
    Co-Authors: Silva P Bolona, D J Reinemann, J Upton
    Abstract:

    ABSTRACT In automatic milking systems (AMS), it is important to maximize the amount of milk harvested per day to increase profitability. One strategy to achieve this goal is to reduce the time it takes to milk each cow. Several studies in conventional milking systems have shown that milking time can be reduced by increasing the milk flow rate at which the teatcup is removed. One study analyzed the effect of increasing the milk flow switch point on milking time in a confinement AMS. No research has been conducted on teatcup removal settings in pasture-based automatic milking systems. Furthermore, not all AMS remove the Teatcups based on absolute milk flow rate (kg/min); hence, it is important to study alternative strategies. The aim of this experiment was to measure the effect of 3 novel teatcup removal strategies on box time (time in the AMS), milking time, somatic cell count (SCC), and milk production rate of cows milked in a pasture-based automatic milking system. Each teatcup removal strategy in this study was applied for a period of 1 wk to 1 of 3 groups of cows and then switched to the following group until cows had transitioned through all treatments. The teatcup removal strategies consisted of removing the teatcup when the quarter flow rate fell below 20% of the quarter rolling average milk flow rate (TRS20), when quarter milk flow rate was below 30% of the rolling average milk flow rate (TRS30), and when quarter milk flow rate dropped below 50% of the rolling average milk flow rate (TRS50). A limit prevented teatcup removal if the calculated milk flow rate for teatcup removal was above 0.5 kg/min. This limit was in place for all treatments; however, it only affected the TRS50 treatment. The TRS30 strategy had 9-s shorter milking time and 11-s shorter box time than the TRS20 removal strategy. The TRS50 strategy had 8-s shorter milking time and 9-s shorter box time than the TRS20 teatcup removal strategy. There was no significant difference in milking time or box time between the TRS30 and TRS50 teatcup removal strategies, probably due to the large variability in milk flow rate at teatcup removal. The TRS20 and TRS30 strategies did not differ in SCC or milk production rate. The 0.5 kg/min limit, which affected roughly 25% of milkings in the TRS50 treatment, may have distorted the effect that this setting had on milk time, box time, milk production rate, or SCC. The difference in box time for the TRS30 and TRS50 strategies could allow for more than 3 extra milkings per day.

  • association of quarter milking measurements and cow level factors in an automatic milking system
    Journal of Dairy Science, 2018
    Co-Authors: J.f. Penry, P M Crump, Laura L Hernandez, D J Reinemann
    Abstract:

    ABSTRACT The primary aim of this observational study, in a single herd milked using multiple automatic milking system units, was to describe associations of quarter milk yield variability and quarter peak milk flow rate with cow-level factors. Information from the current lactation of 1,549 primiparous and multiparous cows was collected from January to December 2015. Data from each individual milking used in the analysis included quarter milk yield (QMY), udder milk yield, quarter peak milk flow rate (QPMF), quarter average milk flow rate (QAMF), quarter milking time, and milking interval. Milking interval and milk yield were used to calculate milk production rate (kg/h) at the quarter and udder levels. We investigated associations between QPMF and milking interval, QPMF and days in milk, and QMY and QAMF. A strong association between QPMF and both QAMF and milking interval was observed. A moderate association was found between QPMF and stage of lactation. However, QMY was not a useful indicator of QPMF because of the weak association observed between these variables. In this study, rear quarter QPMF was significantly increased by 3% compared with front quarter QPMF (1.45 vs 1.41 kg/min). Quarter milk yield was calculated as a percentage contribution of total udder milk yield per 10-d in milk window and ranked from lowest to highest contribution. Quarter contribution to udder milk yield showed a high level of variability, with 39% of animals having all 4 quarters change contribution rank at least once during part of or the whole lactation. Only 14% of cows were observed to have no change in quarter rank. When quarter contribution was assessed, irrespective of physical position of quarter within the udder, the percent of highest to lowest contribution across the lactation was relatively stable. The standard deviation of quarter milk production rate for each cow was regressed against the same cow's peak udder milk production rate, within a lactation, to ascertain whether quarter milk production rate variance could be used to predict peak udder milk production rate. Knowledge of the intra-udder quarter milk production rate standard deviation for an individual cow is not useful in predicting peak udder milk production rate. Quarter milking time appears to be a useful indicator to predict the optimal order of teatcup attachment. Analysis from this large, single-herd population indicates that QPMF is associated with the cow-level factors milking interval and days in milk, and that intra-udder QMY is highly variable.

  • development and testing of a device to measure compressive teat load applied to a bovine teat by the closed teatcup liner
    2001 Sacramento CA July 29-August 1 2001, 2001
    Co-Authors: M A Davis, D J Reinemann, G. A. Mein
    Abstract:

    A measurement device was developed for measurements of the compressive load applied to a teat by the closed teatcup liner. The device consisted of a load cell covered with a material to simulate the biomechanical properties of teat tissue. Two materials were compared against excised teat tissue: gum rubber and a soft gel-like material. Compressive load measurements were conducted on five different liners to assess the response of the device with the individual materials. Device response to changes in liner tension, wall thickness and penetration depth was favorable. The gel-like material performed statistically similar to teat tissue in the liner tests. Material compression tests indicated that for input strains under 37%, the gel deformed statistically similar to that of a teat. The gel material seemed to simulate teat tissue better than gum rubber and is a recommended alternative to teat tissue as a sensor covering material on the teat sensor device developed in this study.

J Upton - One of the best experts on this subject based on the ideXlab platform.

  • short communication effects of changing teatcup removal and vacuum settings on milking efficiency of an automatic milking system
    Journal of Dairy Science, 2019
    Co-Authors: J Upton, Silva P Bolona, D J Reinemann
    Abstract:

    ABSTRACT The aim of this experiment was to assess strategies to reduce milking time in a pasture-based automatic milking system (AMS). Milking time is an important factor in automatic milking because any reductions in box time can facilitate more milkings per day and hence higher production levels per AMS. This study evaluated 2 end-of-milking criteria treatments (teatcup removal at 30% and 50% of average milk flowrate at the quarter-level), 2 milking system vacuum treatments (static and dynamic, where the milking system vacuum could change during the peak milk flowrate period), and the interaction of these treatment effects on milking time in a Lely Astronaut A4 AMS (Maassluis, the Netherlands). The experiment was carried out at the research facility at Teagasc Moorepark, Cork, Ireland, and used 77 spring-calved cows, which were managed on a grass-based system. Cows were 179 DIM, with an average parity of 3. No significant differences in milk flowrate, milk yield, box time, milking time, or milking interval were found between treatments in this study on cows milked in an AMS on a pasture-based system. Average and peak milk flowrates of 2.15 kg/min and 3.48 kg/min, respectively, were observed during the experiment. Small increases in maximum milk flowrate were detected (+0.09 kg/min) due to the effect of increasing the system vacuum during the peak milk flow period. These small increases in maximum milk flowrate were not sufficient to deliver a significant reduction in milking time or box time. Furthermore, increasing the removal setting from 30% of the average milk flowrate to 50% of the average milk flowrate was not an effective means of reducing box time, because the resultant increase in removal flowrate of 0.12 kg/min was not enough to deliver practical or statistically significant decreases in milking time or box time. Hence, to make significant reductions in milking time, where cows have an average milk flow of 2 kg/min and yield per milking of 10 kg, end-of-milking criteria above 50% of average milk flowrate at the quarter level would be required.

  • effect of teatcup removal settings on milking efficiency and milk quality in a pasture based automatic milking system
    Journal of Dairy Science, 2019
    Co-Authors: Silva P Bolona, D J Reinemann, J Upton
    Abstract:

    ABSTRACT In automatic milking systems (AMS), it is important to maximize the amount of milk harvested per day to increase profitability. One strategy to achieve this goal is to reduce the time it takes to milk each cow. Several studies in conventional milking systems have shown that milking time can be reduced by increasing the milk flow rate at which the teatcup is removed. One study analyzed the effect of increasing the milk flow switch point on milking time in a confinement AMS. No research has been conducted on teatcup removal settings in pasture-based automatic milking systems. Furthermore, not all AMS remove the Teatcups based on absolute milk flow rate (kg/min); hence, it is important to study alternative strategies. The aim of this experiment was to measure the effect of 3 novel teatcup removal strategies on box time (time in the AMS), milking time, somatic cell count (SCC), and milk production rate of cows milked in a pasture-based automatic milking system. Each teatcup removal strategy in this study was applied for a period of 1 wk to 1 of 3 groups of cows and then switched to the following group until cows had transitioned through all treatments. The teatcup removal strategies consisted of removing the teatcup when the quarter flow rate fell below 20% of the quarter rolling average milk flow rate (TRS20), when quarter milk flow rate was below 30% of the rolling average milk flow rate (TRS30), and when quarter milk flow rate dropped below 50% of the rolling average milk flow rate (TRS50). A limit prevented teatcup removal if the calculated milk flow rate for teatcup removal was above 0.5 kg/min. This limit was in place for all treatments; however, it only affected the TRS50 treatment. The TRS30 strategy had 9-s shorter milking time and 11-s shorter box time than the TRS20 removal strategy. The TRS50 strategy had 8-s shorter milking time and 9-s shorter box time than the TRS20 teatcup removal strategy. There was no significant difference in milking time or box time between the TRS30 and TRS50 teatcup removal strategies, probably due to the large variability in milk flow rate at teatcup removal. The TRS20 and TRS30 strategies did not differ in SCC or milk production rate. The 0.5 kg/min limit, which affected roughly 25% of milkings in the TRS50 treatment, may have distorted the effect that this setting had on milk time, box time, milk production rate, or SCC. The difference in box time for the TRS30 and TRS50 strategies could allow for more than 3 extra milkings per day.

  • A method for assessing teatcup liner performance during the peak milk flow period.
    Journal of Dairy Science, 2017
    Co-Authors: J.f. Penry, P. D. Thompson, J Upton, S. Leonardi, Douglas J Reinemann
    Abstract:

    The objective of this study was to develop a method to quantify the milking conditions under which circulatory impairment of teat tissues occurs during the peak flow period of milking. A secondary objective was to quantify the effect of the same milking conditions on milk flow rate during the peak flow rate period of milking. Additionally, the observed milk flow rate was a necessary input to the calculation of canal area, our quantitative measure of circulatory impairment. A central composite experimental design was used with 5 levels of each of 2 explanatory variables (system vacuum and pulsator ratio), creating 9 treatments including the center point. Ten liners, representing a wide range of liner compression (as indicated by overpressure), were assessed, with treatments applied using a novel quarter-milking device. Eight cows (32 cow-quarters) were used across 10 separate evening milkings, with quarter being the experimental unit. The 9 treatments, with the exception of a repeated center point, were randomly applied to all quarters within each individual milking. Analysis was confined to the peak milk flow period. Milk flow rate (MFR) and teat canal cross sectional area (CA) were normalized by dividing individual MFR, or CA, values by their within-quarter average value across all treatments. A multiple explanatory variable regression model was developed for normalized MFR and normalized CA. The methods presented in this paper provided sufficient precision to estimate the effects of vacuum (both at teat-end and in the liner mouthpiece), pulsation, and liner compression on CA, as an indicator of teat-end congestion, during the peak flow period of milking. Liner compression (as indicated by overpressure), teat-end vacuum, vacuum in the liner mouthpiece, milk-phase time, and their interactions are all important predictors of MFR and teat-end congestion during the peak milk flow period of milking. Increasing teat-end vacuum and milk-phase time increases MFR and reduces CA (indicative of increased teat-end congestion). Increasing vacuum in the liner mouthpiece also acts to reduce CA and MFR. Increasing liner compression reduces the effects of teat-end congestion, resulting in increased MFR and increased CA at high levels of teat-end vacuum and milk-phase time. These results provide a better understanding of the balance between milking speed and milking gentleness.

  • Estimating teat canal cross-sectional area to determine the effects of teat-end and mouthpiece chamber vacuum on teat congestion.
    Journal of Dairy Science, 2016
    Co-Authors: J.f. Penry, P. D. Thompson, J Upton, G. A. Mein, M.d. Rasmussen, I. Ohnstad, Douglas J Reinemann
    Abstract:

    Abstract The primary objective of this experiment was to assess the effect of mouthpiece chamber vacuum on teat-end congestion. The secondary objective was to assess the interactive effects of mouthpiece chamber vacuum with teat-end vacuum and pulsation setting on teat-end congestion. The influence of system vacuum, pulsation settings, mouthpiece chamber vacuum, and teat-end vacuum on teat-end congestion were tested in a 2×2 factorial design. The low-risk conditions for teat-end congestion (TEL) were 40 kPa system vacuum (Vs) and 400-ms pulsation b-phase. The high-risk conditions for teat-end congestion (TEH) were 49 kPa Vs and 700-ms b-phase. The low-risk condition for teat-barrel congestion (TBL) was created by venting the liner mouthpiece chamber to atmosphere. In the high-risk condition for teat-barrel congestion (TBH) the mouthpiece chamber was connected to short milk tube vacuum. Eight cows (32 quarters) were used in the experiment conducted during 0400 h milkings. All cows received all treatments over the entire experimental period. Teatcups were removed after 150 s for all treatments to standardize the exposure period. Calculated teat canal cross-sectional area (CA) was used to assess congestion of teat tissue. The main effect of the teat-end treatment was a reduction in CA of 9.9% between TEL and TEH conditions, for both levels of teat-barrel congestion risk. The main effect of the teat-barrel treatment was remarkably similar, with a decrease of 9.7% in CA between TBL and TBH conditions for both levels of teat-end congestion risk. No interaction between treatments was detected, hence the main effects are additive. The most aggressive of the 4 treatment combinations (TEH plus TBH) had a CA estimate 20% smaller than for the most gentle treatment combination (TEL plus TBL). The conditions designed to impair circulation in the teat barrel also had a deleterious effect on circulation at the teat end. This experiment highlights the importance of elevated mouthpiece chamber vacuum on teat-end congestion and resultant decreases in CA.

C. Peris - One of the best experts on this subject based on the ideXlab platform.

  • Effects of machine milking on udder health in dairy ewes
    Small Ruminant Research, 2020
    Co-Authors: G. Romero, C. Peris, George C. Fthenakis, José Ramón Díaz
    Abstract:

    Abstract The aim of this article is to review factors associated with machine milking that would increase mastitis incidence risk and the effects of milking machine, milking management and routine in sheep. Machine milking settings that increase vacuum fluctuations under the teat or teat thickness and help to disseminate infectious agents would increase the risk of intramammary infection. Vacuum fluctuations are caused by a low effective reserve, low air and milk line diameters, low milk tube diameters, sudden air leakages caused by high milking cluster weight, teatcup slippage, excessive liner mouthpiece diameter or inadequate machine stripping. The milk line height (low vs mid line) has no relation with SCC if the rest of the settings are adequate, although higher vacuum fluctuations have been recorded in high line. The settings that increase teat thickness include an excessively high vacuum level, lack of effective massage on the teat (high pulsation ratio), liners too soft, hard, narrow or old, and overmilking for longer than 2 min. Regarding milking management, the reduction of milking frequency to 1 milking per day has an effect on yield and SCC due to a concentration effect, and some milking practices such as post-milking teat disinfection or milking animals with intramammary infections last, despite the drawbacks in overall farm management (identification and separation of infected animals), can lower the risk of mastitis incidence.

  • Teatcups with automatic valves in machine milking of goats.
    Journal of Dairy Research, 2017
    Co-Authors: Alberto Manzur, José Ramón Díaz, N. Fernández, Sebastià Balasch, C. Peris
    Abstract:

    This Research Paper addresses the hypothesis that using Teatcups with automatic valves, without cutting off the vacuum prior to cluster removal, could increases the risk of mastitis and affect other milking variables on goats. A first trial used 46 intramammary infection (IMI)-free goats that had been milked with normal Teatcups (without automatic valves) during a pre-experimental period of 8 ± 2 d postpartum. These animals were divided into two groups ( n = 23), randomly assigning each group to Teatcups with automatic valves (Teatcups A ) or without automatic valves (Teatcups B ) for a 20-week experimental period. During this period, several strategies were applied to increase teat exposure to pathogens in both experimental groups. In the first eight weeks of the experimental period, the new IMI rate per gland was significantly higher ( P A (6 of 46; 13%) than in the group milked with Teatcups B (1 of 46; 2%). However, throughout the rest of the experimental period the same number of glands appeared with new IMI ( n = 7) in both animal groups. SCC was higher in goats milked with Teatcups A , but no significant differences were found in the remaining variables (milk production and composition, frequency of liner slips + teatcup fall-off). In a second experiment, in a crossover design (54 goats in fourth month of lactation, 2 treatments – Teatcups A and B – in 2 experimental periods each lasting 1 week), no differences were observed in total milk, average milk flow, total milking time or teat thickness changes after milking between both Teatcups. However, Teatcups A worsened slightly the maximum milk flow. We concluded that the use of Teatcups with automatic valves, without cutting off the vacuum prior to cluster removal, increases the risk of mastitis on goat livestock farms.

  • Factors affecting milking speed in Murciano-Granadina breed goats
    Journal of Dairy Science, 2016
    Co-Authors: E. Blasco, E.a. Gomez, C. Vicente, G. Vidal, C. Peris
    Abstract:

    Abstract Milk flow during the first minute of milking was analyzed using data from 1,132 Murciano-Granadina breed goats belonging to 17 herds. During the individual lactations, 2 test days were scheduled for recording several milk flow traits, total milk, milk composition (fat and protein percentages), and somatic cell count. Average lag time from teatcup attachment to arrival of milk at the milk claw (T0) was 4.9 s and at the milk meter (T1) was 15.8 s. Average milk flow after 30 s (MF0.5) was 0.29kg/30 s (0 to 1.1kg/30 s) and milk flow at 60 s or milking speed (MF1) was 0.67kg/min (0.1 to 2.1kg/min). Repeatabilities of T0, T1, MF0.5, and MF1 were 0.45, 0.58, 0.62, and 0.68, respectively. The MF1 showed high phenotypic correlation withT1(−0.63) and MF0.5 (0.90), medium values withT0(−0.42) and total milk (0.22), and very low values (−0.04 to −0.12) with fat, protein, and somatic cell count. We found no differences between flows during the first 3 lactations, with a reduction as the lactation number increased. Months in milk since parturition affected MF1, being highest in the first 3mo (0.67–0.71kg/min) and decreasing until the end of lactation (0.58kg/min). The effect of herd-test day was significant for all traits. Inclusion of all these effects for the analysis of milk flow traits is considered necessary.

  • Effect of mid-line or low-line milking systems on milking characteristics in goats
    Journal of Dairy Research, 2012
    Co-Authors: Alberto Manzur, José Ramón Díaz, N. Fernández, Amine Mehdid, C. Peris
    Abstract:

    Two experiments were carried out to compare mechanical milking in mid-level (ML) and low-level (LL) milkline in goats. The first trial used 40 intramammary infection (IMI)-free goats that had been milked in ML during a pre-experimental period of 4±1 weeks post partum. These animals were divided into two groups (n=20), randomly assigning each group to ML or LL milking for a 17-week experimental period. During this period, several strategies were applied to increase teat exposure to pathogens in both experimental groups. The IMI rate was the same in both experimental groups (30% of goats), although the majority of new infections appeared earlier in ML (weeks 1-5) than in LL (weeks 7-16). Teat-end vacuum range (maximum minus minimum vacuum) was higher in ML than in LL, but no significant differences were found in the remaining variables [milk production and composition, somatic cell count (SCC), frequency of liner slips+Teatcups fall off]. In the second experiment, in a crossover design (54 goats in fourth month of lactation; 2 treatments, ML and LL, in 2 experimental periods each lasting 1 week) it was observed that both the milk fractioning (reduced machine milk and increased machine stripping) and average machine milk flow worsened slightly in ML milking; in contrast, no differences were observed in total milking time or teat thickness changes after milking. It was concluded that the differences found between ML and LL are not sufficiently important to discourage breeders from using ML in goat milking.

  • Effect of Milking Pipeline Height on Machine Milking Efficiency and Milk Quality in Sheep
    Journal of Dairy Science, 2004
    Co-Authors: J.r. Díaz, M. Rodriguez, C. Peris, Maria Pilar Molina, N. Fernández
    Abstract:

    This experiment studied the effect of milking pipeline height (mid- vs. low-level milking system) on milking efficiency and milk composition. The experiment was of 8 wk duration: 2 wk preexperimental period and 6 wk experimental, in crossover design (2 x 2). Ewes were milked in a 2 x 12 milking parlor with 2 milking pipelines set at a milking vacuum of 36 kPa with a pulsation rate of 180 cycle/min and ratio of 50%. Height of the milkline had no effect on yield of milk at the time of milking, yield after stripping, milk composition, SCC, and number of teatcup fall-offs. Nor did milkline height have any effect on milk lipolysis or on the distribution of fatty acids. The level of free fatty acids was higher in evening than in morning milk (60.5 vs. 25.6 mg/L). Likewise, the increase in the degree of lipolysis between the receiver (40.4 mg/L) and the refrigeration tank (45.8 mg/L) underlines the importance of the milk delivery line design. The parameters (time and flow rate) that define the first peak in the milk emission kinetics were statistically different between lines, so care must be taken when comparing milk emission curves from both types of pipeline.

J.f. Penry - One of the best experts on this subject based on the ideXlab platform.

  • association of quarter milking measurements and cow level factors in an automatic milking system
    Journal of Dairy Science, 2018
    Co-Authors: J.f. Penry, P M Crump, Laura L Hernandez, D J Reinemann
    Abstract:

    ABSTRACT The primary aim of this observational study, in a single herd milked using multiple automatic milking system units, was to describe associations of quarter milk yield variability and quarter peak milk flow rate with cow-level factors. Information from the current lactation of 1,549 primiparous and multiparous cows was collected from January to December 2015. Data from each individual milking used in the analysis included quarter milk yield (QMY), udder milk yield, quarter peak milk flow rate (QPMF), quarter average milk flow rate (QAMF), quarter milking time, and milking interval. Milking interval and milk yield were used to calculate milk production rate (kg/h) at the quarter and udder levels. We investigated associations between QPMF and milking interval, QPMF and days in milk, and QMY and QAMF. A strong association between QPMF and both QAMF and milking interval was observed. A moderate association was found between QPMF and stage of lactation. However, QMY was not a useful indicator of QPMF because of the weak association observed between these variables. In this study, rear quarter QPMF was significantly increased by 3% compared with front quarter QPMF (1.45 vs 1.41 kg/min). Quarter milk yield was calculated as a percentage contribution of total udder milk yield per 10-d in milk window and ranked from lowest to highest contribution. Quarter contribution to udder milk yield showed a high level of variability, with 39% of animals having all 4 quarters change contribution rank at least once during part of or the whole lactation. Only 14% of cows were observed to have no change in quarter rank. When quarter contribution was assessed, irrespective of physical position of quarter within the udder, the percent of highest to lowest contribution across the lactation was relatively stable. The standard deviation of quarter milk production rate for each cow was regressed against the same cow's peak udder milk production rate, within a lactation, to ascertain whether quarter milk production rate variance could be used to predict peak udder milk production rate. Knowledge of the intra-udder quarter milk production rate standard deviation for an individual cow is not useful in predicting peak udder milk production rate. Quarter milking time appears to be a useful indicator to predict the optimal order of teatcup attachment. Analysis from this large, single-herd population indicates that QPMF is associated with the cow-level factors milking interval and days in milk, and that intra-udder QMY is highly variable.

  • A method for assessing teatcup liner performance during the peak milk flow period.
    Journal of Dairy Science, 2017
    Co-Authors: J.f. Penry, P. D. Thompson, J Upton, S. Leonardi, Douglas J Reinemann
    Abstract:

    The objective of this study was to develop a method to quantify the milking conditions under which circulatory impairment of teat tissues occurs during the peak flow period of milking. A secondary objective was to quantify the effect of the same milking conditions on milk flow rate during the peak flow rate period of milking. Additionally, the observed milk flow rate was a necessary input to the calculation of canal area, our quantitative measure of circulatory impairment. A central composite experimental design was used with 5 levels of each of 2 explanatory variables (system vacuum and pulsator ratio), creating 9 treatments including the center point. Ten liners, representing a wide range of liner compression (as indicated by overpressure), were assessed, with treatments applied using a novel quarter-milking device. Eight cows (32 cow-quarters) were used across 10 separate evening milkings, with quarter being the experimental unit. The 9 treatments, with the exception of a repeated center point, were randomly applied to all quarters within each individual milking. Analysis was confined to the peak milk flow period. Milk flow rate (MFR) and teat canal cross sectional area (CA) were normalized by dividing individual MFR, or CA, values by their within-quarter average value across all treatments. A multiple explanatory variable regression model was developed for normalized MFR and normalized CA. The methods presented in this paper provided sufficient precision to estimate the effects of vacuum (both at teat-end and in the liner mouthpiece), pulsation, and liner compression on CA, as an indicator of teat-end congestion, during the peak flow period of milking. Liner compression (as indicated by overpressure), teat-end vacuum, vacuum in the liner mouthpiece, milk-phase time, and their interactions are all important predictors of MFR and teat-end congestion during the peak milk flow period of milking. Increasing teat-end vacuum and milk-phase time increases MFR and reduces CA (indicative of increased teat-end congestion). Increasing vacuum in the liner mouthpiece also acts to reduce CA and MFR. Increasing liner compression reduces the effects of teat-end congestion, resulting in increased MFR and increased CA at high levels of teat-end vacuum and milk-phase time. These results provide a better understanding of the balance between milking speed and milking gentleness.

  • Estimating teat canal cross-sectional area to determine the effects of teat-end and mouthpiece chamber vacuum on teat congestion.
    Journal of Dairy Science, 2016
    Co-Authors: J.f. Penry, P. D. Thompson, J Upton, G. A. Mein, M.d. Rasmussen, I. Ohnstad, Douglas J Reinemann
    Abstract:

    Abstract The primary objective of this experiment was to assess the effect of mouthpiece chamber vacuum on teat-end congestion. The secondary objective was to assess the interactive effects of mouthpiece chamber vacuum with teat-end vacuum and pulsation setting on teat-end congestion. The influence of system vacuum, pulsation settings, mouthpiece chamber vacuum, and teat-end vacuum on teat-end congestion were tested in a 2×2 factorial design. The low-risk conditions for teat-end congestion (TEL) were 40 kPa system vacuum (Vs) and 400-ms pulsation b-phase. The high-risk conditions for teat-end congestion (TEH) were 49 kPa Vs and 700-ms b-phase. The low-risk condition for teat-barrel congestion (TBL) was created by venting the liner mouthpiece chamber to atmosphere. In the high-risk condition for teat-barrel congestion (TBH) the mouthpiece chamber was connected to short milk tube vacuum. Eight cows (32 quarters) were used in the experiment conducted during 0400 h milkings. All cows received all treatments over the entire experimental period. Teatcups were removed after 150 s for all treatments to standardize the exposure period. Calculated teat canal cross-sectional area (CA) was used to assess congestion of teat tissue. The main effect of the teat-end treatment was a reduction in CA of 9.9% between TEL and TEH conditions, for both levels of teat-barrel congestion risk. The main effect of the teat-barrel treatment was remarkably similar, with a decrease of 9.7% in CA between TBL and TBH conditions for both levels of teat-end congestion risk. No interaction between treatments was detected, hence the main effects are additive. The most aggressive of the 4 treatment combinations (TEH plus TBH) had a CA estimate 20% smaller than for the most gentle treatment combination (TEL plus TBL). The conditions designed to impair circulation in the teat barrel also had a deleterious effect on circulation at the teat end. This experiment highlights the importance of elevated mouthpiece chamber vacuum on teat-end congestion and resultant decreases in CA.

  • Methods of estimating liner compression
    Journal of Dairy Science, 2015
    Co-Authors: Stefano Leonardi, J.f. Penry, P. D. Thompson, Francesco M. Tangorra, Douglas J Reinemann
    Abstract:

    The aim of this study was to compare 2 methods of measuring overpressure (OP) using a new test device designed to make OP measurements more quickly and accurately. Overpressure was measured with no pulsa-tion (OP np) and with limited pulsation (OP lp) repeat-edly on the same cow during a single milking. Each of the 6 liners (3 round liners and 3 triangular liners) used in this study were tested on the same 6 experimental cows. Both OP np and OP lp were measured on all 4 teats of each experimental cow twice for each liner. The order of OP np and OP lp alternated sequentially for each cow test. The OP results for the 6 liners were also compared with liner compression estimated on the same liners with a novel artificial teat sensor (ATS). The OP lp method showed small but significantly higher values than the OP np method (13.9 vs. 13.4 kPa). The OP lp method is recommended as the preferred method as it more closely approximates normal milking condition. Overpressure values decreased significantly between the first and the following measurements, (from 15.0 to 12.4 kPa). We recommend performing the OP test at a consistent time, 1 min after attaching the teatcup to a well-stimulated teat, to reduce the variability produced by OP changing during the peak flow period. The new test device had several advantages over previously pub-lished methods of measuring OP. A high correlation between OP and liner compression estimated by the ATS was found, but difficulties were noted when using the ATS with triangular liners.

Silva P Bolona - One of the best experts on this subject based on the ideXlab platform.

  • short communication effects of changing teatcup removal and vacuum settings on milking efficiency of an automatic milking system
    Journal of Dairy Science, 2019
    Co-Authors: J Upton, Silva P Bolona, D J Reinemann
    Abstract:

    ABSTRACT The aim of this experiment was to assess strategies to reduce milking time in a pasture-based automatic milking system (AMS). Milking time is an important factor in automatic milking because any reductions in box time can facilitate more milkings per day and hence higher production levels per AMS. This study evaluated 2 end-of-milking criteria treatments (teatcup removal at 30% and 50% of average milk flowrate at the quarter-level), 2 milking system vacuum treatments (static and dynamic, where the milking system vacuum could change during the peak milk flowrate period), and the interaction of these treatment effects on milking time in a Lely Astronaut A4 AMS (Maassluis, the Netherlands). The experiment was carried out at the research facility at Teagasc Moorepark, Cork, Ireland, and used 77 spring-calved cows, which were managed on a grass-based system. Cows were 179 DIM, with an average parity of 3. No significant differences in milk flowrate, milk yield, box time, milking time, or milking interval were found between treatments in this study on cows milked in an AMS on a pasture-based system. Average and peak milk flowrates of 2.15 kg/min and 3.48 kg/min, respectively, were observed during the experiment. Small increases in maximum milk flowrate were detected (+0.09 kg/min) due to the effect of increasing the system vacuum during the peak milk flow period. These small increases in maximum milk flowrate were not sufficient to deliver a significant reduction in milking time or box time. Furthermore, increasing the removal setting from 30% of the average milk flowrate to 50% of the average milk flowrate was not an effective means of reducing box time, because the resultant increase in removal flowrate of 0.12 kg/min was not enough to deliver practical or statistically significant decreases in milking time or box time. Hence, to make significant reductions in milking time, where cows have an average milk flow of 2 kg/min and yield per milking of 10 kg, end-of-milking criteria above 50% of average milk flowrate at the quarter level would be required.

  • effect of teatcup removal settings on milking efficiency and milk quality in a pasture based automatic milking system
    Journal of Dairy Science, 2019
    Co-Authors: Silva P Bolona, D J Reinemann, J Upton
    Abstract:

    ABSTRACT In automatic milking systems (AMS), it is important to maximize the amount of milk harvested per day to increase profitability. One strategy to achieve this goal is to reduce the time it takes to milk each cow. Several studies in conventional milking systems have shown that milking time can be reduced by increasing the milk flow rate at which the teatcup is removed. One study analyzed the effect of increasing the milk flow switch point on milking time in a confinement AMS. No research has been conducted on teatcup removal settings in pasture-based automatic milking systems. Furthermore, not all AMS remove the Teatcups based on absolute milk flow rate (kg/min); hence, it is important to study alternative strategies. The aim of this experiment was to measure the effect of 3 novel teatcup removal strategies on box time (time in the AMS), milking time, somatic cell count (SCC), and milk production rate of cows milked in a pasture-based automatic milking system. Each teatcup removal strategy in this study was applied for a period of 1 wk to 1 of 3 groups of cows and then switched to the following group until cows had transitioned through all treatments. The teatcup removal strategies consisted of removing the teatcup when the quarter flow rate fell below 20% of the quarter rolling average milk flow rate (TRS20), when quarter milk flow rate was below 30% of the rolling average milk flow rate (TRS30), and when quarter milk flow rate dropped below 50% of the rolling average milk flow rate (TRS50). A limit prevented teatcup removal if the calculated milk flow rate for teatcup removal was above 0.5 kg/min. This limit was in place for all treatments; however, it only affected the TRS50 treatment. The TRS30 strategy had 9-s shorter milking time and 11-s shorter box time than the TRS20 removal strategy. The TRS50 strategy had 8-s shorter milking time and 9-s shorter box time than the TRS20 teatcup removal strategy. There was no significant difference in milking time or box time between the TRS30 and TRS50 teatcup removal strategies, probably due to the large variability in milk flow rate at teatcup removal. The TRS20 and TRS30 strategies did not differ in SCC or milk production rate. The 0.5 kg/min limit, which affected roughly 25% of milkings in the TRS50 treatment, may have distorted the effect that this setting had on milk time, box time, milk production rate, or SCC. The difference in box time for the TRS30 and TRS50 strategies could allow for more than 3 extra milkings per day.