UBQLN2

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 534 Experts worldwide ranked by ideXlab platform

Robert H Brown - One of the best experts on this subject based on the ideXlab platform.

  • association of ubqln1 mutation with brown vialetto van laere syndrome but not typical als
    Neurobiology of Disease, 2012
    Co-Authors: Paloma Gonzalezperez, Ruju Chian, Peter C Sapp, Rudolph E Tanzi, Lars Bertram, Diane Mckennayasek, Fenbiao Gao, Robert H Brown
    Abstract:

    Abstract Genetic variants in UBQLN1 gene have been linked to neurodegeneration and mutations in UBQLN2 have recently been identified as a rare cause of amyotrophic lateral sclerosis (ALS). Objective To test if genetic variants in UBQLN1 are involved in ALS. Methods 102 and 94 unrelated patients with familial and sporadic forms of ALS were screened for UBQLN1 gene mutations. Single nucleotide variants were further screened in a larger set of sporadic ALS (SALS) patients and unrelated control subjects using high-throughput Taqman genotyping; variants were further assessed for novelty using the 1000Genomes and NHLBI databases. In vitro studies tested the effect of UBQLN1 variants on the ubiquitin–proteasome system (UPS). Results Only two UBQLN1 coding variants were detected in the familial and sporadic ALS DNA set; one, the missense mutation p.E54D, was identified in a single patient with atypical motor neuron disease consistent with Brown–Vialetto–Van Laere syndrome (BVVLS), for whom c20orf54 mutations had been excluded. Functional studies revealed that UBQLN1 E54D protein forms cytosolic aggregates that contain mislocalized TDP-43 and impairs degradation of ubiquitinated proteins through the proteasome. Conclusions Genetic variants in UBQLN1 are not commonly associated with ALS. A novel UBQLN1 mutation (E45D) detected in a patient with BVVLS altered nuclear TDP-43 localization in vitro , suggesting that UPS dysfunction may also underlie the pathogenesis of this condition.

Nathaniel Safren - One of the best experts on this subject based on the ideXlab platform.

  • development of a specific live cell assay for native autophagic flux
    Journal of Biological Chemistry, 2021
    Co-Authors: Nathaniel Safren, Elizabeth M H Tank, Ahmed M Malik, Jason P Chua, Nicholas Santoro, Sami J Barmada
    Abstract:

    Autophagy is an evolutionarily conserved pathway mediating the breakdown of cellular proteins and organelles. Emphasizing its pivotal nature, autophagy dysfunction contributes to many diseases; nevertheless, development of effective autophagy modulating drugs is hampered by fundamental deficiencies in available methods for measuring autophagic activity or flux. To overcome these limitations, we introduced the photoconvertible protein Dendra2 into the MAP1LC3B locus of human cells via CRISPR/Cas9 genome editing, enabling accurate and sensitive assessments of autophagy in living cells by optical pulse labeling. We used this assay to perform high-throughput drug screens of four chemical libraries comprising over 30,000 diverse compounds, identifying several clinically relevant drugs and novel autophagy modulators. A select series of candidate compounds also modulated autophagy flux in human motor neurons modified by CRISPR/Cas9 to express GFP-labeled LC3. Using automated microscopy, we tested the therapeutic potential of autophagy induction in several distinct neuronal models of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In doing so, we found that autophagy induction exhibited discordant effects, improving survival in disease models involving the RNA binding protein TDP-43, while exacerbating toxicity in neurons expressing mutant forms of UBQLN2 and C9ORF72 associated with familial ALS/FTD. These studies confirm the utility of the Dendra2-LC3 assay, while illustrating the contradictory effects of autophagy induction in different ALS/FTD subtypes.

  • motor neuron disease tdp 43 pathology and memory deficits in mice expressing als ftd linked UBQLN2 mutations
    Proceedings of the National Academy of Sciences of the United States of America, 2016
    Co-Authors: Lydia Chang, Nathaniel Safren, Kerstin E Braunstein, Irina Kovlyagina, Polymnia Georgiou, Mark D Kvarta, Adam M Van Dyke, Tara A Legates, Thomas Philips, Brett M Morrison
    Abstract:

    Missense mutations in ubiquilin 2 (UBQLN2) cause ALS with frontotemporal dementia (ALS-FTD). Animal models of ALS are useful for understanding the mechanisms of pathogenesis and for preclinical investigations. However, previous rodent models carrying UBQLN2 mutations failed to manifest any sign of motor neuron disease. Here, we show that lines of mice expressing either the ALS-FTD-linked P497S or P506T UBQLN2 mutations have cognitive deficits, shortened lifespans, and develop motor neuron disease, mimicking the human disease. Neuropathologic analysis of the mice with end-stage disease revealed the accumulation of ubiquitinated inclusions in the brain and spinal cord, astrocytosis, a reduction in the number of hippocampal neurons, and reduced staining of TAR-DNA binding protein 43 in the nucleus, with concomitant formation of ubiquitin+ inclusions in the cytoplasm of spinal motor neurons. Moreover, both lines displayed denervation muscle atrophy and age-dependent loss of motor neurons that correlated with a reduction in the number of large-caliber axons. By contrast, two mouse lines expressing WT UBQLN2 were mostly devoid of clinical and pathological signs of disease. These UBQLN2 mouse models provide valuable tools for identifying the mechanisms underlying ALS-FTD pathogenesis and for investigating therapeutic strategies to halt disease.

  • Generation of transgenic mice that overexpress human ubiquilin-1.
    2014
    Co-Authors: Nathaniel Safren, Lydia Chang, Amina El Ayadi, Chantelle E. Terrillion, Todd D. Gould, Darren F. Boehning, Mervyn J Monteiro
    Abstract:

    (A) Schematic of the Thy1.2 expression construct used to generate ubiquilin-1 transgenic mice. Human ubiquilin-1 with an N-terminal FLAG tag was cloned in the appropriate orientation between the XhoI site of the Thy1.2 expression cassette. (B) Southern Blot of the first generation offspring of two founder mice (48 and 62). (C) Validation of a PCR genotyping protocol. Amplification of the transgene was only observed in mice that Southern blotting revealed to be positive. (D) Immunoblots of brain cortical lysates with an anti-FLAG antibody and for tubulin indicated that line 62 offspring express higher levels of FLAG-ubiquilin-1 than line 48. (E) Immunoblots of equal amounts of total brain lysates from 12 month-old WT mouse, 12 month-old Ubqln-1 48 transgenic mouse, 12 month-old Ubqln-1 62 transgenic mouse and end stage 15 week-old R6/2 transgenic mouse. The top panel was probed with a monoclonal anti-ubiquilin antibody (Invitrogen antibody clone 3D5E2) and the lower panel with a different monoclonal anti-ubiquilin antibody (Novus antibody clone 5F5). Note two immunoreactive ubiquilin bands are seen at ∼70 kDa and at ∼90 kDa, which we presume is a modified form of ubiquilin. Both blots were also probed for actin to ensure equal loading. (F) Cryostat sections of a Ubqln-1 62 transgenic mouse brain (a–f) and WT mouse brain (g-i) showing anti-FLAG antibody staining (Alexa 594, left panels) and corresponding DAPI staining (center panels) and the result of merging the fluorescent and DAPI signals (right hand panels). The brain sections shown are of the hippocampus (a–c and g–i) and cerebellum (d–f). Identical exposure settings were used for the left hand panels.

  • pattern of ubiquilin pathology in als and ftld indicates presence of c9orf72 hexanucleotide expansion
    Acta Neuropathologica, 2012
    Co-Authors: Edward B. Lee, Vivianna M. Van Deerlin, Johannes Brettschneider, John L Robinson, Linda Kwong, Yousuf O Ali, Nathaniel Safren, Mervyn J Monteiro, Jon B Toledo
    Abstract:

    C9ORF72-hexanucleotide repeat expansions and ubiquilin-2 (UBQLN2) mutations are recently identified genetic markers in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). We investigate the relationship between C9ORF72 expansions and the clinical phenotype and neuropathology of ALS and FTLD. Genetic analysis and immunohistochemistry (IHC) were performed on autopsy-confirmed ALS (N = 75), FTLD-TDP (N = 30), AD (N = 14), and controls (N = 11). IHC for neurodegenerative disease pathology consisted of C9ORF72, UBQLN, p62, and TDP-43. A C9ORF72 expansion was identified in 19.4 % of ALS and 31 % of FTLD-TDP cases. ALS cases with C9ORF72 expansions frequently showed a bulbar onset of disease (57 %) and more rapid disease progression to death compared to non-expansion cases. Staining with C9ORF72 antibodies did not yield specific pathology. UBQLN pathology showed a highly distinct pattern in ALS and FTLD-TDP cases with the C9ORF72 expansion, with UBQLN-positive cytoplasmic inclusions in the cerebellar granular layer and extensive UBQLN-positive aggregates and dystrophic neurites in the hippocampal molecular layer and CA regions. These UBQLN pathologies were sufficiently unique to allow correct prediction of cases that were later confirmed to have C9ORF72 expansions by genetic analysis. UBQLN pathology partially co-localized with p62, and to a minor extent with TDP-43 positive dystrophic neurites and spinal cord skein-like inclusions. Our data indicate a pathophysiological link between C9ORF72 expansions and UBQLN proteins in ALS and FTLD-TDP that is associated with a highly characteristic pattern of UBQLN pathology. Our study indicates that this pathology is associated with alterations in clinical phenotype, and suggests that the presence of C9ORF72 repeat expansions may indicate a worse prognosis in ALS.

Jiou Wang - One of the best experts on this subject based on the ideXlab platform.

  • ubiquilin 2 modulates als ftd linked fus rna complex dynamics and stress granule formation
    Proceedings of the National Academy of Sciences of the United States of America, 2018
    Co-Authors: Elizabeth J Alexander, Amirhossein Ghanbari Niaki, Tao Zhang, Jaya Sarkar, Raja Sekhar Nirujogi, Akhilesh Pandey, Sua Myong, Jiou Wang
    Abstract:

    The ubiquitin-like protein ubiquilin 2 (UBQLN2) has been genetically and pathologically linked to the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but its normal cellular functions are not well understood. In a search for UBQLN2-interacting proteins, we found an enrichment of stress granule (SG) components, including ALS/FTD-linked heterogeneous ribonucleoprotein fused in sarcoma (FUS). Through the use of an optimized SG detection method, we observed UBQLN2 and its interactors at SGs. A low complexity, Sti1-like repeat region in UBQLN2 was sufficient for its localization to SGs. Functionally, UBQLN2 negatively regulated SG formation. UBQLN2 increased the dynamics of FUS–RNA interaction and promoted the fluidity of FUS–RNA complexes at a single-molecule level. This solubilizing effect corresponded to a dispersal of FUS liquid droplets in vitro and a suppression of FUS SG formation in cells. ALS-linked mutations in UBQLN2 reduced its association with FUS and impaired its function in regulating FUS–RNA complex dynamics and SG formation. These results reveal a previously unrecognized role for UBQLN2 in regulating the early stages of liquid–liquid phase separation by directly modulating the fluidity of protein–RNA complexes and the dynamics of SG formation.

Paloma Gonzalezperez - One of the best experts on this subject based on the ideXlab platform.

  • association of ubqln1 mutation with brown vialetto van laere syndrome but not typical als
    Neurobiology of Disease, 2012
    Co-Authors: Paloma Gonzalezperez, Ruju Chian, Peter C Sapp, Rudolph E Tanzi, Lars Bertram, Diane Mckennayasek, Fenbiao Gao, Robert H Brown
    Abstract:

    Abstract Genetic variants in UBQLN1 gene have been linked to neurodegeneration and mutations in UBQLN2 have recently been identified as a rare cause of amyotrophic lateral sclerosis (ALS). Objective To test if genetic variants in UBQLN1 are involved in ALS. Methods 102 and 94 unrelated patients with familial and sporadic forms of ALS were screened for UBQLN1 gene mutations. Single nucleotide variants were further screened in a larger set of sporadic ALS (SALS) patients and unrelated control subjects using high-throughput Taqman genotyping; variants were further assessed for novelty using the 1000Genomes and NHLBI databases. In vitro studies tested the effect of UBQLN1 variants on the ubiquitin–proteasome system (UPS). Results Only two UBQLN1 coding variants were detected in the familial and sporadic ALS DNA set; one, the missense mutation p.E54D, was identified in a single patient with atypical motor neuron disease consistent with Brown–Vialetto–Van Laere syndrome (BVVLS), for whom c20orf54 mutations had been excluded. Functional studies revealed that UBQLN1 E54D protein forms cytosolic aggregates that contain mislocalized TDP-43 and impairs degradation of ubiquitinated proteins through the proteasome. Conclusions Genetic variants in UBQLN1 are not commonly associated with ALS. A novel UBQLN1 mutation (E45D) detected in a patient with BVVLS altered nuclear TDP-43 localization in vitro , suggesting that UPS dysfunction may also underlie the pathogenesis of this condition.

Brett M Morrison - One of the best experts on this subject based on the ideXlab platform.

  • motor neuron disease tdp 43 pathology and memory deficits in mice expressing als ftd linked UBQLN2 mutations
    Proceedings of the National Academy of Sciences of the United States of America, 2016
    Co-Authors: Lydia Chang, Nathaniel Safren, Kerstin E Braunstein, Irina Kovlyagina, Polymnia Georgiou, Mark D Kvarta, Adam M Van Dyke, Tara A Legates, Thomas Philips, Brett M Morrison
    Abstract:

    Missense mutations in ubiquilin 2 (UBQLN2) cause ALS with frontotemporal dementia (ALS-FTD). Animal models of ALS are useful for understanding the mechanisms of pathogenesis and for preclinical investigations. However, previous rodent models carrying UBQLN2 mutations failed to manifest any sign of motor neuron disease. Here, we show that lines of mice expressing either the ALS-FTD-linked P497S or P506T UBQLN2 mutations have cognitive deficits, shortened lifespans, and develop motor neuron disease, mimicking the human disease. Neuropathologic analysis of the mice with end-stage disease revealed the accumulation of ubiquitinated inclusions in the brain and spinal cord, astrocytosis, a reduction in the number of hippocampal neurons, and reduced staining of TAR-DNA binding protein 43 in the nucleus, with concomitant formation of ubiquitin+ inclusions in the cytoplasm of spinal motor neurons. Moreover, both lines displayed denervation muscle atrophy and age-dependent loss of motor neurons that correlated with a reduction in the number of large-caliber axons. By contrast, two mouse lines expressing WT UBQLN2 were mostly devoid of clinical and pathological signs of disease. These UBQLN2 mouse models provide valuable tools for identifying the mechanisms underlying ALS-FTD pathogenesis and for investigating therapeutic strategies to halt disease.