Anoctamin - Explore the Science & Experts | ideXlab


Scan Science and Technology

Contact Leading Edge Experts & Companies

Anoctamin

The Experts below are selected from a list of 1440 Experts worldwide ranked by ideXlab platform

Anoctamin – Free Register to Access Experts & Abstracts

Karl Kunzelmann – One of the best experts on this subject based on the ideXlab platform.

  • tmem16f Anoctamin 6 in ferroptotic cell death
    Cancers, 2019
    Co-Authors: Jiraporn Ousingsawat, Rainer Schreiber, Karl Kunzelmann

    Abstract:

    Ca2+ activated Cl− channels (TMEM16A; ANO1) support cell proliferation and cancer growth. Expression of TMEM16A is strongly enhanced in different types of malignomas. In contrast, TMEM16F (ANO6) operates as a Ca2+ activated chloride/nonselective ion channel and scrambles membrane phospholipids to expose phosphatidylserine at the cell surface. Both phospholipid scrambling and cell swelling induced through activation of nonselective ion currents appear to destabilize the plasma membrane thereby causing cell death. There is growing evidence that activation of TMEM16F contributes to various forms of regulated cell death. In the present study, we demonstrate that ferroptotic cell death, occurring during peroxidation of plasma membrane phospholipids activates TMEM16F. Ferroptosis was induced by erastin, an inhibitor of the cystine-glutamate antiporter and RSL3, an inhibitor of glutathione peroxidase 4 (GPX4). Cell death was largely reduced in the intestinal epithelium, and in peritoneal macrophages isolated from mice with tissue-specific knockout of TMEM16F. We show that TMEM16F is activated during erastin and RSL3-induced ferroptosis. In contrast, inhibition of ferroptosis by ferrostatin-1 and by inhibitors of TMEM16F block TMEM16F currents and inhibit cell death. We conclude that activation of TMEM16F is a crucial component during ferroptotic cell death, a finding that may be useful to induce cell death in cancer cells.

    Free Register to Access Article

  • Contribution of Anoctamins to Cell Survival and Cell Death
    Cancers, 2019
    Co-Authors: Karl Kunzelmann, Jiraporn Ousingsawat, Ines Cabrita, Roberta Benedetto, Rainer Schreiber

    Abstract:

    Before Anoctamins (TMEM16 proteins) were identified as a family of Ca2+-activated chloride channels and phospholipid scramblases, the founding member Anoctamin 1 (ANO1, TMEM16A) was known as DOG1, a marker protein for gastrointestinal stromal tumors (GIST). Meanwhile, ANO1 has been examined in more detail, and the role of ANO1 in cell proliferation and the development of different types of malignomas is now well established. While ANO5, ANO7, and ANO9 may also be relevant for growth of cancers, evidence has been provided for a role of ANO6 (TMEM16F) in regulated cell death. The cellular mechanisms by which Anoctamins control cell proliferation and cell death, respectively, are just emerging; however, the pronounced effects of Anoctamins on intracellular Ca2+ levels are likely to play a significant role. Recent results suggest that some Anoctamins control membrane exocytosis by setting Ca2+i levels near the plasma membrane, and/or by controlling the intracellular Cl− concentration. Exocytosis and increased membrane trafficking induced by ANO1 and ANO6 may enhance membrane expression of other chloride channels, such as CFTR and volume activated chloride channels (VRAC). Notably, ANO6-induced phospholipid scrambling with exposure of phosphatidylserine is pivotal for the sheddase function of disintegrin and metalloproteinase (ADAM). This may support cell death and tumorigenic activity of IL-6 by inducing IL-6 trans-signaling. The reported anticancer effects of the anthelminthic drug niclosamide are probably related to the potent inhibitory effect on ANO1, apart from inducing cell cycle arrest through the Let-7d/CDC34 axis. On the contrary, pronounced activation of ANO6 due to a large increase in intracellular calcium, activation of phospholipase A2 or lipid peroxidation, can lead to ferroptotic death of cancer cells. It therefore appears reasonable to search for both inhibitors and potent activators of TMEM16 in order to interfere with cancer growth and metastasis.

    Free Register to Access Article

  • Anoctamin-6 regulates ADAM sheddase function
    Biochimica et Biophysica Acta (BBA) – Molecular Cell Research, 2018
    Co-Authors: Martin Veit, Rainer Schreiber, Karl Kunzelmann, Katharina Isabelle Koyro, Björn Ahrens, Florian Bleibaum, Martin Munz, Hagen Rövekamp, Jörg Andrä, Anselm Sommer

    Abstract:

    Abstract ADAM17, a prominent member of the “Disintegrin and Metalloproteinase” (ADAM) family, controls vital cellular functions through cleavage of transmembrane substrates including TGF-alpha, Amphiregulin (AREG) and TNF-Receptor 1 (TNFR1). We recently presented evidence that surface exposure of phosphatidylserine (PS) is pivotal for ADAM17 to exert sheddase activity. Anoctamin-6 (ANO6) has Ca2+-dependent phospholipid scramblase activity and it followed that the functions of ANO6 and ADAM17 might be linked. We report that overexpression of ANO6 in HEK293T cells led to increased Ca2+-mediated PS-exposure that was indeed accompanied by enhanced release of AREG and TGF-alpha. The effect was not observed when cells were treated with the PKC-dependent ADAM17 activator PMA. Transformation of cells with a constitutively active ANO6 mutant led to spontaneous PS-exposure and to the release of ADAM17-substrates in the absence of any stimuli. Inhibitor experiments indicated that ANO6-mediated enhancement of substrate cleavage simultaneously broadened the spectrum of participating metalloproteinases. In complementary experiments, siRNA-mediated downregulation of ANO6 was shown to decrease ionophore-mediated release of TNFR1 in human umbilical vein endothelial cells (HUVECs). We conclude that ANO6, by virtue of its scramblase activity, may play a role as an important regulator of the ADAM-network in the plasma membrane.

    Free Register to Access Article

Rainer Schreiber – One of the best experts on this subject based on the ideXlab platform.

  • tmem16f Anoctamin 6 in ferroptotic cell death
    Cancers, 2019
    Co-Authors: Jiraporn Ousingsawat, Rainer Schreiber, Karl Kunzelmann

    Abstract:

    Ca2+ activated Cl− channels (TMEM16A; ANO1) support cell proliferation and cancer growth. Expression of TMEM16A is strongly enhanced in different types of malignomas. In contrast, TMEM16F (ANO6) operates as a Ca2+ activated chloride/nonselective ion channel and scrambles membrane phospholipids to expose phosphatidylserine at the cell surface. Both phospholipid scrambling and cell swelling induced through activation of nonselective ion currents appear to destabilize the plasma membrane thereby causing cell death. There is growing evidence that activation of TMEM16F contributes to various forms of regulated cell death. In the present study, we demonstrate that ferroptotic cell death, occurring during peroxidation of plasma membrane phospholipids activates TMEM16F. Ferroptosis was induced by erastin, an inhibitor of the cystine-glutamate antiporter and RSL3, an inhibitor of glutathione peroxidase 4 (GPX4). Cell death was largely reduced in the intestinal epithelium, and in peritoneal macrophages isolated from mice with tissue-specific knockout of TMEM16F. We show that TMEM16F is activated during erastin and RSL3-induced ferroptosis. In contrast, inhibition of ferroptosis by ferrostatin-1 and by inhibitors of TMEM16F block TMEM16F currents and inhibit cell death. We conclude that activation of TMEM16F is a crucial component during ferroptotic cell death, a finding that may be useful to induce cell death in cancer cells.

    Free Register to Access Article

  • Contribution of Anoctamins to Cell Survival and Cell Death
    Cancers, 2019
    Co-Authors: Karl Kunzelmann, Jiraporn Ousingsawat, Ines Cabrita, Roberta Benedetto, Rainer Schreiber

    Abstract:

    Before Anoctamins (TMEM16 proteins) were identified as a family of Ca2+-activated chloride channels and phospholipid scramblases, the founding member Anoctamin 1 (ANO1, TMEM16A) was known as DOG1, a marker protein for gastrointestinal stromal tumors (GIST). Meanwhile, ANO1 has been examined in more detail, and the role of ANO1 in cell proliferation and the development of different types of malignomas is now well established. While ANO5, ANO7, and ANO9 may also be relevant for growth of cancers, evidence has been provided for a role of ANO6 (TMEM16F) in regulated cell death. The cellular mechanisms by which Anoctamins control cell proliferation and cell death, respectively, are just emerging; however, the pronounced effects of Anoctamins on intracellular Ca2+ levels are likely to play a significant role. Recent results suggest that some Anoctamins control membrane exocytosis by setting Ca2+i levels near the plasma membrane, and/or by controlling the intracellular Cl− concentration. Exocytosis and increased membrane trafficking induced by ANO1 and ANO6 may enhance membrane expression of other chloride channels, such as CFTR and volume activated chloride channels (VRAC). Notably, ANO6-induced phospholipid scrambling with exposure of phosphatidylserine is pivotal for the sheddase function of disintegrin and metalloproteinase (ADAM). This may support cell death and tumorigenic activity of IL-6 by inducing IL-6 trans-signaling. The reported anticancer effects of the anthelminthic drug niclosamide are probably related to the potent inhibitory effect on ANO1, apart from inducing cell cycle arrest through the Let-7d/CDC34 axis. On the contrary, pronounced activation of ANO6 due to a large increase in intracellular calcium, activation of phospholipase A2 or lipid peroxidation, can lead to ferroptotic death of cancer cells. It therefore appears reasonable to search for both inhibitors and potent activators of TMEM16 in order to interfere with cancer growth and metastasis.

    Free Register to Access Article

  • Anoctamin-6 regulates ADAM sheddase function
    Biochimica et Biophysica Acta (BBA) – Molecular Cell Research, 2018
    Co-Authors: Martin Veit, Rainer Schreiber, Karl Kunzelmann, Katharina Isabelle Koyro, Björn Ahrens, Florian Bleibaum, Martin Munz, Hagen Rövekamp, Jörg Andrä, Anselm Sommer

    Abstract:

    Abstract ADAM17, a prominent member of the “Disintegrin and Metalloproteinase” (ADAM) family, controls vital cellular functions through cleavage of transmembrane substrates including TGF-alpha, Amphiregulin (AREG) and TNF-Receptor 1 (TNFR1). We recently presented evidence that surface exposure of phosphatidylserine (PS) is pivotal for ADAM17 to exert sheddase activity. Anoctamin-6 (ANO6) has Ca2+-dependent phospholipid scramblase activity and it followed that the functions of ANO6 and ADAM17 might be linked. We report that overexpression of ANO6 in HEK293T cells led to increased Ca2+-mediated PS-exposure that was indeed accompanied by enhanced release of AREG and TGF-alpha. The effect was not observed when cells were treated with the PKC-dependent ADAM17 activator PMA. Transformation of cells with a constitutively active ANO6 mutant led to spontaneous PS-exposure and to the release of ADAM17-substrates in the absence of any stimuli. Inhibitor experiments indicated that ANO6-mediated enhancement of substrate cleavage simultaneously broadened the spectrum of participating metalloproteinases. In complementary experiments, siRNA-mediated downregulation of ANO6 was shown to decrease ionophore-mediated release of TNFR1 in human umbilical vein endothelial cells (HUVECs). We conclude that ANO6, by virtue of its scramblase activity, may play a role as an important regulator of the ADAM-network in the plasma membrane.

    Free Register to Access Article

Anna Menini – One of the best experts on this subject based on the ideXlab platform.

  • conditional knockout of tmem16a Anoctamin1 abolishes the calcium activated chloride current in mouse vomeronasal sensory neurons
    The Journal of General Physiology, 2015
    Co-Authors: Asma Amjad, Devendra Kumar Maurya, Jason R Rock, Anna Boccaccio, Simone Pifferi, Andres Hernandezclavijo, Jessica Franzot, Anna Menini

    Abstract:

    Pheromones are substances released from animals that, when detected by the vomeronasal organ of other individuals of the same species, affect their physiology and behavior. Pheromone binding to receptors on microvilli on the dendritic knobs of vomeronasal sensory neurons activates a second messenger cascade to produce an increase in intracellular Ca2+ concentration. Here, we used whole-cell and inside-out patch-clamp analysis to provide a functional characterization of currents activated by Ca2+ in isolated mouse vomeronasal sensory neurons in the absence of intracellular K+. In whole-cell recordings, the average current in 1.5 µM Ca2+ and symmetrical Cl− was −382 pA at −100 mV. Ion substitution experiments and partial blockade by commonly used Cl− channel blockers indicated that Ca2+ activates mainly anionic currents in these neurons. Recordings from inside-out patches from dendritic knobs of mouse vomeronasal sensory neurons confirmed the presence of Ca2+-activated Cl− channels in the knobs and/or microvilli. We compared the electrophysiological properties of the native currents with those mediated by heterologously expressed TMEM16A/Anoctamin1 or TMEM16B/Anoctamin2 Ca2+-activated Cl− channels, which are coexpressed in microvilli of mouse vomeronasal sensory neurons, and found a closer resemblance to those of TMEM16A. We used the Cre–loxP system to selectively knock out TMEM16A in cells expressing the olfactory marker protein, which is found in mature vomeronasal sensory neurons. Immunohistochemistry confirmed the specific ablation of TMEM16A in vomeronasal neurons. Ca2+-activated currents were abolished in vomeronasal sensory neurons of TMEM16A conditional knockout mice, demonstrating that TMEM16A is an essential component of Ca2+-activated Cl− currents in mouse vomeronasal sensory neurons.

    Free Register to Access Article

  • calcium activated chloride channels in the apical region of mouse vomeronasal sensory neurons
    The Journal of General Physiology, 2012
    Co-Authors: Michele Dibattista, Asma Amjad, Devendra Kumar Maurya, Claudia Sagheddu, Giorgia Montani, Roberto Tirindelli, Anna Menini

    Abstract:

    The rodent vomeronasal organ plays a crucial role in several social behaviors. Detection of pheromones or other emitted signaling molecules occurs in the dendritic microvilli of vomeronasal sensory neurons, where the binding of molecules to vomeronasal receptors leads to the influx of sodium and calcium ions mainly through the transient receptor potential canonical 2 (TRPC2) channel. To investigate the physiological role played by the increase in intracellular calcium concentration in the apical region of these neurons, we produced localized, rapid, and reproducible increases in calcium concentration with flash photolysis of caged calcium and measured calcium-activated currents with the whole cell voltage-clamp technique. On average, a large inward calcium-activated current of −261 pA was measured at −50 mV, rising with a time constant of 13 ms. Ion substitution experiments showed that this current is anion selective. Moreover, the chloride channel blockers niflumic acid and 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid partially inhibited the calcium-activated current. These results directly demonstrate that a large chloride current can be activated by calcium in the apical region of mouse vomeronasal sensory neurons. Furthermore, we showed by immunohistochemistry that the calcium-activated chloride channels TMEM16A/Anoctamin1 and TMEM16B/Anoctamin2 are present in the apical layer of the vomeronasal epithelium, where they largely colocalize with the TRPC2 transduction channel. Immunocytochemistry on isolated vomeronasal sensory neurons showed that TMEM16A and TMEM16B coexpress in the neuronal microvilli. Therefore, we conclude that microvilli of mouse vomeronasal sensory neurons have a high density of calcium-activated chloride channels that may play an important role in vomeronasal transduction.

    Free Register to Access Article

  • Anoctamin 2/TMEM16B: a calcium-activated chloride channel in olfactory transduction.
    Experimental physiology, 2011
    Co-Authors: Simone Pifferi, Valentina Cenedese, Anna Menini

    Abstract:

    In vertebrate olfactory transduction, a Ca(2+)-dependent Cl(-) efflux greatly amplifies the odorant response. The binding of odorants to receptors in the cilia of olfactory sensory neurons activates a transduction cascade that involves the opening of cyclic nucleotide-gated channels and the entry of Ca(2+) into the cilia. The Ca(2+) activates a Cl(-) current that, in the presence of a maintained elevated intracellular Cl(-) concentration, produces an efflux of Cl(-) ions and amplifies the depolarization. In this review, we summarize evidence supporting the hypothesis that Anoctamin 2/TMEM16B is the main, or perhaps the only, constituent of the Ca(2+)-activated Cl(-) channels involved in olfactory transduction. Indeed, studies from several laboratories have shown that Anoctamin 2/TMEM16B is expressed in the ciliary layer of the olfactory epithelium, that there are remarkable functional similarities between currents in olfactory sensory neurons and in HEK 293 cells transfected with Anoctamin 2/TMEM16B, and that knockout mice for Anoctamin 2/TMEM16B did not show any detectable Ca(2+)-activated Cl(-) current. Finally, we discuss the involvement of Ca(2+)-activated Cl(-) channels in the transduction process of vomeronasal sensory neurons and the physiological role of these channels in olfaction.

    Free Register to Access Article