APOBEC3F - Explore the Science & Experts | ideXlab

Scan Science and Technology

Contact Leading Edge Experts & Companies

APOBEC3F

The Experts below are selected from a list of 6668202 Experts worldwide ranked by ideXlab platform

APOBEC3F – Free Register to Access Experts & Abstracts

Reuben S. Harris – One of the best experts on this subject based on the ideXlab platform.

  • HIV-1 restriction by endogenous APOBEC3G in the myeloid cell line THP-1
    Journal of General Virology, 2019
    Co-Authors: Terumasa Ikeda, Amy M. Molan, Matthew C. Jarvis, Michael A. Carpenter, Daniel J. Salamango, William L. Brown, Reuben S. Harris

    Abstract:

    HIV-1 replication in CD4-positive T lymphocytes requires counteraction of multiple different innate antiviral mechanisms. Macrophage cells are also thought to provide a reservoir for HIV-1 replication but less is known in this cell type about virus restriction and counteraction mechanisms. Many studies have combined to demonstrate roles for APOBEC3D, APOBEC3F, APOBEC3G and APOBEC3H in HIV-1 restriction and mutation in CD4-positive T lymphocytes, whereas the APOBEC enzymes involved in HIV-1 restriction in macrophages have yet to be delineated fully. We show that multiple APOBEC3 genes including APOBEC3G are expressed in myeloid cell lines such as THP-1. Vif-deficient HIV-1 produced from THP-1 is less infectious than Vif-proficient virus, and proviral DNA resulting from such Vif-deficient infections shows strong G to A mutation biases in the dinucleotide motif preferred by APOBEC3G. Moreover, Vif mutant viruses with selective sensitivity to APOBEC3G show Vif null-like infectivity levels and similarly strong APOBEC3G-biased mutation spectra. Importantly, APOBEC3G-null THP-1 cells yield Vif-deficient particles with significantly improved infectivities and proviral DNA with background levels of G to A hypermutation. These studies combine to indicate that APOBEC3G is the main HIV-1 restricting APOBEC3 family member in THP-1 cells.

  • APOBEC Enzymes as Targets for Virus and Cancer Therapy
    Cell chemical biology, 2017
    Co-Authors: Margaret E. Olson, Reuben S. Harris, Daniel A. Harki

    Abstract:

    Human DNA cytosine-to-uracil deaminases catalyze mutations in both pathogen and cellular genomes. APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H restrict human immunodeficiency virus 1 (HIV-1) infection in cells deficient in the viral infectivity factor (Vif), and have the potential to catalyze sublethal levels of mutation in viral genomes in Vif-proficient cells. At least two APOBEC3 enzymes, and in particular APOBEC3B, are sources of somatic mutagenesis in cancer cells that drive tumor evolution and may manifest clinically as recurrence, metastasis, and/or therapy resistance. Consequently, APOBEC3 enzymes are tantalizing targets for developing chemical probes and therapeutic molecules to harness mutational processes in human disease. This review highlights recent efforts to chemically manipulate APOBEC3 activities.

  • APOBEC3F determinants of HIV-1 Vif sensitivity.
    Journal of virology, 2014
    Co-Authors: Allison M. Land, Judd F. Hultquist, John S Albin, Leah Evans, Nadine M. Shaban, Reuben S. Harris

    Abstract:

    HIV-1 Vif counteracts restrictive APOBEC3 proteins by targeting them for proteasomal degradation. To determine the regions mediating sensitivity to Vif, we compared human APOBEC3F, which is HIV-1 Vif sensitive, with rhesus APOBEC3F, which is HIV-1 Vif resistant. Rhesus-human APOBEC3F chimeras and amino acid substitution mutants were tested for sensitivity to HIV-1 Vif. This approach identified the α3 and α4 helices of human APOBEC3F as important determinants of the interaction with HIV-1 Vif.

Bryan R. Cullen – One of the best experts on this subject based on the ideXlab platform.

  • inhibition of alpharetrovirus replication by a range of human apobec3 proteins
    Journal of Virology, 2007
    Co-Authors: Heather L Wiegand, Bryan R. Cullen

    Abstract:

    The mammalian APOBEC3 family of cytidine deaminases includes members that can act as potent inhibitors of retroviral infectivity and retrotransposon mobility. Here, we have examined whether the alpharetrovirus Rous sarcoma virus (RSV) is susceptible to inhibition by a range of human APOBEC3 proteins. We report that RSV is highly susceptible to inhibition by human APOBEC3G, APOBEC3F, and APOBEC3B and moderately susceptible to inhibition by human APOBEC3C and APOBEC3A. For all five proteins, inhibition of RSV infectivity was associated with selective virion incorporation and with C-to-T editing of the proviral DNA minus strand. In the case of APOBEC3G, editing appeared to be critical for effective inhibition. These data represent the first report of inhibition of retroviral infectivity and induction of proviral DNA editing by human APOBEC3A and reveal that alpharetroviruses, which do not normally encounter APOBEC3 proteins in their avian hosts, are susceptible to inhibition by all human APOBEC3 proteins tested. These data further suggest that the resistance of mammalian retroviruses to inhibition by the APOBEC3 proteins expressed in their normal host species is likely to have evolved subsequent to the appearance of this family of mammalian antiretroviral proteins some 35 million years ago; i.e., the base state of a naive retrovirus is susceptibility to inhibition.

  • apobec3a and apobec3b are potent inhibitors of ltr retrotransposon function in human cells
    Nucleic Acids Research, 2006
    Co-Authors: Hal P Bogerd, Heather L Wiegand, Brian Doehle, Kira K Lueders, Bryan R. Cullen

    Abstract:

    While the ability of APOBEC3G to reduce the replication of a range of exogenous retroviruses is now well established, recent evidence has suggested that APOBEC3G can also inhibit the replication of endogenous retrotransposons that bear long terminal repeats. Here, we extend this earlier work by showing that two other members of the human APOBEC3 protein family, APOBEC3B and APOBEC3A, can reduce retrotransposition by the intracisternal A-particle (IAP) retrotransposon in human cells by 20-fold to up to 100-fold, respectively. This compares to an � 4-fold inhibition in IAP retrotransposition induced by APOBEC3G. While both APOBEC3G and APOBEC3B specifically interact with the IAP Gag protein in co-expressing cells, and induce extensive editing of IAP reverse transcripts, APOBEC3A fails to package detectably into IAP virus-like particles and does not edit IAP reverse transcripts. These data, which identify human APOBEC3A as a highly potent inhibitor of LTR-retrotransposon function, are the first to ascribe a biological activity to APOBEC3A. Moreover, these results argue that APOBEC3A inhibits IAP retrotransposition via a novel mechanism that is distinct from, and in this case more effective than, the DNA editing mechanism characteristic of APOBEC3G and APOBEC3B.

  • human apobec3b is a potent inhibitor of hiv 1 infectivity and is resistant to hiv 1 vif
    Virology, 2005
    Co-Authors: Brian P Doehle, Alexandra Schafer, Bryan R. Cullen

    Abstract:

    While the human antiretroviral defense factors APOBEC3F and APOBEC3G are potent inhibitors of the replication of HIV-1 mutants lacking a functional vif gene, the Vif protein expressed by wild-type HIV-1 blocks the function of both host cell proteins. Here, we report that a third human protein, APOBEC3B, is able to suppress the infectivity of both Vif-deficient and wild-type HIV-1 with equal efficiency. APOBEC3B, which shows ∼58% sequence identity to both APOBEC3F and APOBEC3G, shares the ability of these other human proteins to bind the nucleocapsid domain of HIV-1 Gag specifically and to thereby package into progeny virion particles. However, APOBEC3B differs from APOBEC3F and APOBEC3G in that it is unable to bind to HIV-1 Vif in co-expressing cells and is therefore efficiently packaged into HIV-1 virions regardless of Vif expression. Unfortunately, APOBEC3B also differs from APOBEC3F and APOBEC3G in that it is not normally expressed in the lymphoid cells that serve as targets for HIV-1 infection. These studies therefore raise the possibility that activation of the endogenous APOBEC3B gene in primary human lymphoid cells could form a novel and effective strategy for inhibition of HIV-1 replication in vivo.

William L. Brown – One of the best experts on this subject based on the ideXlab platform.

  • the dna cytosine deaminase apobec3b is a molecular determinant of platinum responsiveness in clear cell ovarian cancer
    Clinical Cancer Research, 2020
    Co-Authors: Artur A Serebrenik, Matthew C. Jarvis, William L. Brown, Prokopios P Argyris, Martina Bazzaro, Rachel Isaksson Vogel, Britt K Erickson, Sun Hee Lee, Krista M Goergen, Matthew J. Maurer

    Abstract:

    Purpose: Clear cell ovarian carcinoma (CCOC) is an aggressive disease that often demonstrates resistance to standard chemotherapies. Approximately 25% of CCOC show a strong APOBEC mutation signature. Here, we determine which APOBEC3 enzymes are expressed in CCOC, establish clinical correlates, and identify a new biomarker for detection and intervention. Experimental Design: APOBEC3 expression was analyzed by immunohistochemistry and RT-qPCR in a pilot set of CCOC specimens (n=9 tumors). The immunohistochemistry analysis of APOBEC3B was extended to a larger cohort to identify clinical correlates (n=48). Dose response experiments with platinum-based drugs in CCOC cell lines and carboplatin treatment of patient-derived xenografts (PDX) were done to address mechanistic linkages. Results: One DNA deaminase, APOBEC3B, is overexpressed in a formidable subset of CCOC tumors and is low or absent in normal ovarian and fallopian tube epithelial tissues. High APOBEC3B expression associates with improved progression-free survival (p=0.026) and moderately with overall survival (p=0.057). Cell-based studies link APOBEC3B activity and subsequent uracil processing to sensitivity to cisplatin and carboplatin. PDX studies extend this mechanistic relationship to CCOC tissues. Conclusions: These studies demonstrate that APOBEC3B is overexpressed in a subset of CCOC and, contrary to initial expectations, associated with improved (not worse) clinical outcomes. A likely molecular explanation is that DNA damage caused APOBEC3B sensitizes cells to additional genotoxic stress by cisplatin. Thus, APOBEC3B is a molecular determinant and a candidate predictive biomarker of the therapeutic response to platinum-based chemotherapy. These findings may have broader translational relevance, as APOBEC3B is overexpressed in many different cancer types.

  • HIV-1 restriction by endogenous APOBEC3G in the myeloid cell line THP-1
    Journal of General Virology, 2019
    Co-Authors: Terumasa Ikeda, Amy M. Molan, Matthew C. Jarvis, Michael A. Carpenter, Daniel J. Salamango, William L. Brown, Reuben S. Harris

    Abstract:

    HIV-1 replication in CD4-positive T lymphocytes requires counteraction of multiple different innate antiviral mechanisms. Macrophage cells are also thought to provide a reservoir for HIV-1 replication but less is known in this cell type about virus restriction and counteraction mechanisms. Many studies have combined to demonstrate roles for APOBEC3D, APOBEC3F, APOBEC3G and APOBEC3H in HIV-1 restriction and mutation in CD4-positive T lymphocytes, whereas the APOBEC enzymes involved in HIV-1 restriction in macrophages have yet to be delineated fully. We show that multiple APOBEC3 genes including APOBEC3G are expressed in myeloid cell lines such as THP-1. Vif-deficient HIV-1 produced from THP-1 is less infectious than Vif-proficient virus, and proviral DNA resulting from such Vif-deficient infections shows strong G to A mutation biases in the dinucleotide motif preferred by APOBEC3G. Moreover, Vif mutant viruses with selective sensitivity to APOBEC3G show Vif null-like infectivity levels and similarly strong APOBEC3G-biased mutation spectra. Importantly, APOBEC3G-null THP-1 cells yield Vif-deficient particles with significantly improved infectivities and proviral DNA with background levels of G to A hypermutation. These studies combine to indicate that APOBEC3G is the main HIV-1 restricting APOBEC3 family member in THP-1 cells.

  • Catalytic activity of APOBEC3F is required for efficient restriction of Vif-deficient human immunodeficiency virus.
    Virology, 2013
    Co-Authors: John S Albin, William L. Brown, Reuben S. Harris

    Abstract:

    APOBEC3 proteins are DNA cytosine deaminases that restrict the replication of human immunodeficiency virus deficient in the counterdefense protein Vif. Here, we address the capacity of APOBEC3F to restrict via deaminase-dependent and -independent mechanisms by monitoring spreading infections in diverse T cell lines. Our data indicate that only a deaminase-proficient protein is capable of long-term restriction of Vif-deficient HIV in T cells, analogous to prior reports for APOBEC3G. This indicates that the principal mechanism of APOBEC3F restriction is deaminase-dependent.