Aspalathus linearis - Explore the Science & Experts | ideXlab

Scan Science and Technology

Contact Leading Edge Experts & Companies

Aspalathus linearis

The Experts below are selected from a list of 1080 Experts worldwide ranked by ideXlab platform

Elizabeth Joubert – One of the best experts on this subject based on the ideXlab platform.

  • Impact of Cold versus Hot Brewing on the Phenolic Profile and Antioxidant Capacity of Rooibos (Aspalathus linearis) Herbal Tea
    Antioxidants, 2019
    Co-Authors: Elisabetta Damiani, Elizabeth Joubert, Dalene De Beer, Patricia Carloni, Gabriele Rocchetti, Biancamaria Senizza, Luca Tiano, Luigi Lucini

    Abstract:

    Consumption of rooibos (Aspalathus linearis) as herbal tea is growing in popularity worldwide and its health-promoting attributes are mainly ascribed to its phenolic composition, which may be affected by the brewing conditions used. An aspect so far overlooked is the impact of cold brewing vs regular brewing and microwave boiling on the (poly) phenolic profile and in vitro antioxidant capacity of infusions prepared from red (‘fermented’, oxidized) and green (‘unfermented’, unoxidized) rooibos, the purpose of the present study. By using an untargeted metabolomics-based approach (UHPLC-QTOF mass spectrometry), 187 phenolic compounds were putatively annotated in both rooibos types, with flavonoids, tyrosols, and phenolic acids the most represented type of phenolic classes. Multivariate statistics (OPLS-DA) highlighted the phenolic classes most affected by the brewing conditions. Similar antioxidant capacities (ORAC and ABTS assays) were observed between cold- and regular-brewed green rooibos and boiled-brewed red rooibos. However, boiling green and red rooibos delivered infusions with the highest antioxidant capacities and total polyphenol content. The polyphenol content strongly correlated with the in vitro antioxidant capacities, especially for flavonoids and phenolic acids. These results contribute to a better understanding of the impact of the preparation method on the potential health benefits of rooibos tea.

  • Aspalathin from Rooibos (Aspalathus linearis): A Bioactive C-glucosyl Dihydrochalcone with Potential to Target the Metabolic Syndrome.
    Planta Medica, 2018
    Co-Authors: Rabia Johnson, Daneel Ferreira, Christo J. F. Muller, Dalene De Beer, Phiwayinkosi V. Dludla, Elizabeth Joubert

    Abstract:

    Aspalathin is a C-glucosyl dihydrochalcone that is abundantly present in Aspalathus linearis. This endemic South African plant, belonging to the Cape Floristic region, is normally used for production of rooibos, a herbal tea. Aspalathin was valued initially only as precursor in the formation of the characteristic red-brown colour of “fermented” rooibos, but the hype about the potential role of natural antioxidants to alleviate oxidative stress, shifted interest in aspalathin to its antioxidant properties and subsequently, its potential role to improve metabolic syndrome, a disease condition interrelated with oxidative stress. The potential use of aspalathin or aspalathin-rich rooibos extracts as a condition-specific nutraceutical is hampered by the limited supply of green rooibos (i.e., “unfermented” plant material) and low levels in “fermented” rooibos, providing incentive for its synthesis. In vitro and in vivo studies relating to the metabolic activity of aspalathin are discussed and cellular mechanisms by which aspalathin improves glucose and lipid metabolism are proposed. Other aspects covered in this review, which are relevant in view of the potential use of aspalathin as an adjunctive therapy, include its poor stability and bioavailability, as well as potential adverse herb-drug interactions, in particular interference with the metabolism of certain commonly prescribed chronic medications for hyperglycaemia and dyslipidaemia.

  • effects of fermented rooibos Aspalathus linearis on adipocyte differentiation
    Phytomedicine, 2014
    Co-Authors: Micheline Sanderson, Elizabeth Joubert, Sithandiwe E. Mazibuko, Dalene De Beer, Rabia Johnson, Carmen Pheiffer, Johan Louw, Christo J. F. Muller

    Abstract:

    Rooibos (Aspalathus linearis) contains a rich complement of polyphenols, including flavonoids, considered to be largely responsible for its health promoting effects, including combatting obesity. The purpose of this study was to examine the effect of fermented rooibos hot water soluble solids on in vitro adipocyte differentiation by using differentiating 3T3-L1 adipocytes. Hot water soluble solids were obtained when preparing an infusion of fermented rooibos at “cup-of-tea” strength. The major phenolic compounds (>5 mg/g) were isoorientin, orientin, quercetin-3-O-robinobioside and enolic phenylpyruvic acid-2-O-β-D-glucoside. Treatment of 3T3-L1 adipocytes with 10 μg/ml and 100 μg/ml of the rooibos soluble solids inhibited intracellular lipid accumulation by 22% (p<0.01) and 15% (p<0.05), respectively. Inhibition of adipogenesis was accompanied by decreased messenger RNA (mRNA) expression of PPARγ, PPARα, SREBF1 and FASN. Western blot analysis exhibited decreased PPARα, SREBF1 and AMPK protein expression. Impeded glycerol release into the culture medium was observed after rooibos treatment. None of the concentrations of rooibos hot water soluble solids was cytotoxic, in terms of ATP content. Interestingly, the higher concentration of hot water soluble solids increased ATP concentrations which were associated with increased basal glucose uptake. Decreased leptin secretion was observed after rooibos treatment. Our data show that hot water soluble solids from fermented rooibos inhibit adipogenesis and affect adipocyte metabolism, suggesting its potential in preventing obesity.

Dalene De Beer – One of the best experts on this subject based on the ideXlab platform.

  • Impact of Cold versus Hot Brewing on the Phenolic Profile and Antioxidant Capacity of Rooibos (Aspalathus linearis) Herbal Tea
    Antioxidants, 2019
    Co-Authors: Elisabetta Damiani, Elizabeth Joubert, Dalene De Beer, Patricia Carloni, Gabriele Rocchetti, Biancamaria Senizza, Luca Tiano, Luigi Lucini

    Abstract:

    Consumption of rooibos (Aspalathus linearis) as herbal tea is growing in popularity worldwide and its health-promoting attributes are mainly ascribed to its phenolic composition, which may be affected by the brewing conditions used. An aspect so far overlooked is the impact of cold brewing vs regular brewing and microwave boiling on the (poly) phenolic profile and in vitro antioxidant capacity of infusions prepared from red (‘fermented’, oxidized) and green (‘unfermented’, unoxidized) rooibos, the purpose of the present study. By using an untargeted metabolomics-based approach (UHPLC-QTOF mass spectrometry), 187 phenolic compounds were putatively annotated in both rooibos types, with flavonoids, tyrosols, and phenolic acids the most represented type of phenolic classes. Multivariate statistics (OPLS-DA) highlighted the phenolic classes most affected by the brewing conditions. Similar antioxidant capacities (ORAC and ABTS assays) were observed between cold- and regular-brewed green rooibos and boiled-brewed red rooibos. However, boiling green and red rooibos delivered infusions with the highest antioxidant capacities and total polyphenol content. The polyphenol content strongly correlated with the in vitro antioxidant capacities, especially for flavonoids and phenolic acids. These results contribute to a better understanding of the impact of the preparation method on the potential health benefits of rooibos tea.

  • Aspalathin from Rooibos (Aspalathus linearis): A Bioactive C-glucosyl Dihydrochalcone with Potential to Target the Metabolic Syndrome.
    Planta Medica, 2018
    Co-Authors: Rabia Johnson, Daneel Ferreira, Christo J. F. Muller, Dalene De Beer, Phiwayinkosi V. Dludla, Elizabeth Joubert

    Abstract:

    Aspalathin is a C-glucosyl dihydrochalcone that is abundantly present in Aspalathus linearis. This endemic South African plant, belonging to the Cape Floristic region, is normally used for production of rooibos, a herbal tea. Aspalathin was valued initially only as precursor in the formation of the characteristic red-brown colour of “fermented” rooibos, but the hype about the potential role of natural antioxidants to alleviate oxidative stress, shifted interest in aspalathin to its antioxidant properties and subsequently, its potential role to improve metabolic syndrome, a disease condition interrelated with oxidative stress. The potential use of aspalathin or aspalathin-rich rooibos extracts as a condition-specific nutraceutical is hampered by the limited supply of green rooibos (i.e., “unfermented” plant material) and low levels in “fermented” rooibos, providing incentive for its synthesis. In vitro and in vivo studies relating to the metabolic activity of aspalathin are discussed and cellular mechanisms by which aspalathin improves glucose and lipid metabolism are proposed. Other aspects covered in this review, which are relevant in view of the potential use of aspalathin as an adjunctive therapy, include its poor stability and bioavailability, as well as potential adverse herb-drug interactions, in particular interference with the metabolism of certain commonly prescribed chronic medications for hyperglycaemia and dyslipidaemia.

  • effects of fermented rooibos Aspalathus linearis on adipocyte differentiation
    Phytomedicine, 2014
    Co-Authors: Micheline Sanderson, Elizabeth Joubert, Sithandiwe E. Mazibuko, Dalene De Beer, Rabia Johnson, Carmen Pheiffer, Johan Louw, Christo J. F. Muller

    Abstract:

    Rooibos (Aspalathus linearis) contains a rich complement of polyphenols, including flavonoids, considered to be largely responsible for its health promoting effects, including combatting obesity. The purpose of this study was to examine the effect of fermented rooibos hot water soluble solids on in vitro adipocyte differentiation by using differentiating 3T3-L1 adipocytes. Hot water soluble solids were obtained when preparing an infusion of fermented rooibos at “cup-of-tea” strength. The major phenolic compounds (>5 mg/g) were isoorientin, orientin, quercetin-3-O-robinobioside and enolic phenylpyruvic acid-2-O-β-D-glucoside. Treatment of 3T3-L1 adipocytes with 10 μg/ml and 100 μg/ml of the rooibos soluble solids inhibited intracellular lipid accumulation by 22% (p<0.01) and 15% (p<0.05), respectively. Inhibition of adipogenesis was accompanied by decreased messenger RNA (mRNA) expression of PPARγ, PPARα, SREBF1 and FASN. Western blot analysis exhibited decreased PPARα, SREBF1 and AMPK protein expression. Impeded glycerol release into the culture medium was observed after rooibos treatment. None of the concentrations of rooibos hot water soluble solids was cytotoxic, in terms of ATP content. Interestingly, the higher concentration of hot water soluble solids increased ATP concentrations which were associated with increased basal glucose uptake. Decreased leptin secretion was observed after rooibos treatment. Our data show that hot water soluble solids from fermented rooibos inhibit adipogenesis and affect adipocyte metabolism, suggesting its potential in preventing obesity.

W C A Gelderblom – One of the best experts on this subject based on the ideXlab platform.

  • south african herbal teas Aspalathus linearis cyclopia spp and athrixia phylicoides a review
    Journal of Ethnopharmacology, 2008
    Co-Authors: Elizabeth Joubert, Ann Louw, W C A Gelderblom, Dalene De Beer

    Abstract:

    Rooibos (Aspalathus linearis (Brum.f) Dahlg.) and honeybush (Cyclopia Vent. species) are popular indigenous South African herbal teas enjoyed for their taste and aroma. Traditional medicinal uses of rooibos in South Africa include alleviation of infantile colic, allergies, asthma and dermatological problems, while a decoction of honeybush was used as a restorative and as an expectorant in chronic catarrh and pulmonary tuberculosis. Traditional medicinal uses of Athrixia phylicoides DC., or bush tea, another indigenous South African plant with very limited localised use as herbal tea, include treatment of boils, acne, infected wounds and infected throats. Currently rooibos and honeybush are produced for the herbal tea market, while bush tea has potential for commercialisation. A summary of the historical and modern uses, botany, distribution, industry and chemical composition of these herbal teas is presented. A comprehensive discussion of in vitro, ex vivo and in vivo biological properties, required to expand their applications as nutraceutical and cosmeceutical products, is included, with the main emphasis on rooibos. Future research needs include more comprehensive chemical characterisation of extracts, identification of marker compounds for extract standardisation and quality control, bioavailability and identification of bio-markers of dietary exposure, investigation of possible herb-drug interactions and plant improvement with regards to composition and bioactivity.

  • inhibition of tumour promotion in mouse skin by extracts of rooibos Aspalathus linearis and honeybush cyclopia intermedia unique south african herbal teas
    Cancer Letters, 2005
    Co-Authors: Jeanine L. Marnewick, Elizabeth Joubert, Shamiel Joseph, Sonja Swanevelder, Pieter Swart, W C A Gelderblom

    Abstract:

    The modulating effect of ethanol/acetone (E/A) soluble fractions, prepared from methanolic extracts of processed and unprocessed rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia) as well as green (Camellia sinensis) teas was established in a two-stage mouse skin carcinogenesis assay. Topical application of the tea fractions prior to the tumour promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA), on ICR mouse skin initiated with 7,12-dimethylbenz[a]anthracene (DMBA) suppressed skin tumorigenesis significantly (P<0.001) with the green tea E/A fraction exhibiting a 100% inhibition, unprocessed honeybush 90%, processed honeybush 84.2%, processed rooibos 75% and unprocessed rooibos 60%. The green tea fraction, with the highest flavanol/proanthocyanidin content, also exhibited the highest protective activity (99%) against hepatic microsomal lipid peroxidation, and completely inhibited skin tumour formation. Differences in the flavanol/proanthocyanidin and flavonol/flavone composition and/or non polyphenolic constituents are likely to be important determinants in the inhibition of tumour promotion by the herbal tea E/A fractions in mouse skin.