HCN1

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 360 Experts worldwide ranked by ideXlab platform

Martin Biel - One of the best experts on this subject based on the ideXlab platform.

  • hcn3 ion channels roles in sensory neuronal excitability and pain
    The Journal of Physiology, 2019
    Co-Authors: Sergio Lainez, Martin Biel, Christoforos Tsantoulas, Peter A Mcnaughton
    Abstract:

    KEY POINTS: HCN ion channels conducting the Ih current control the frequency of firing in peripheral sensory neurons signalling pain. Previous studies have demonstrated a major role for the HCN2 subunit in chronic pain but the potential involvement of HCN3 in pain has not been investigated. HCN3 was found to be widely expressed in all classes of sensory neurons (small, medium, large) where it contributes to Ih . HCN3 deletion increased the firing rate of medium but not small, sensory neurons. Pain sensitivity both acutely and following neuropathic injury was largely unaffected by HCN3 deletion, with the exception of a small decrease of mechanical hyperalgesia in response to a pinprick. We conclude that HCN3 plays little role in either acute or chronic pain sensation. ABSTRACT: HCN ion channels govern the firing rate of action potentials in the pacemaker region of the heart and in pain-sensitive (nociceptive) nerve fibres. Intracellular cAMP promotes activation of the HCN4 and HCN2 isoforms, whereas HCN1 and HCN3 are relatively insensitive to cAMP. HCN2 modulates action potential firing rate in nociceptive neurons and plays a critical role in all modes of inflammatory and neuropathic pain, although the role of HCN3 in nociceptive excitability and pain is less studied. Using antibody staining, we found that HCN3 is expressed in all classes of somatosensory neurons. In small nociceptive neurons, genetic deletion of HCN2 abolished the voltage shift of the Ih current carried by HCN isoforms following cAMP elevation, whereas the voltage shift was retained following deletion of HCN3, consistent with the sensitivity of HCN2 but not HCN3 to cAMP. Deletion of HCN3 had little effect on the evoked firing frequency in small neurons but enhanced the firing of medium-sized neurons, showing that HCN3 makes a significant contribution to the input resistance only in medium-sized neurons. Genetic deletion of HCN3 had no effect on acute thresholds to heat or mechanical stimuli in vivo and did not affect inflammatory pain measured with the formalin test. Nerve-injured HCN3 knockout mice exhibited similar levels of mechanical allodynia and thermal hyperalgesia to wild-type mice but reduced mechanical hyperalgesia in response to a pinprick. These results show that HCN3 makes some contribution to excitability, particularly in medium-sized neurons, although it has no major influence on acute or neuropathic pain processing.

  • regulation of hyperpolarization activated cyclic nucleotide gated hcn channel activity by ccmp
    Journal of Biological Chemistry, 2012
    Co-Authors: Xiangang Zong, Christian Gruner, Xiaochun Caoehlker, Stefanie Fenske, Christian Wahlschott, Jens Krüger, Chengchang Chen, Martin Biel
    Abstract:

    Abstract Activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is facilitated in vivo by direct binding of the second messenger cAMP. This process plays a fundamental role in the fine tuning of HCN channel activity and is critical for the modulation of cardiac and neuronal rhythmicity. Here, we identify the pyrimidine cyclic nucleotide, cyclic cytidine 3′, 5′-monophosphate (cCMP) as another regulator of HCN channels. We demonstrate that cCMP shifts the activation curves of two members of the HCN channel family, HCN2 and HCN4, to more depolarized voltages. Moreover, cCMP speeds up activation and slows down deactivation kinetics of these channels. The two other members of the HCN channel family, HCN1 and HCN3, are not sensitive to cCMP. The modulatory effect of cCMP is reversible and requires the presence of a functional cyclic nucleotide binding domain. We determined EC50 values of around 30 μM for cCMP as compared to 1 μM for cAMP. Notably, cCMP is a partial agonist of HCN channels displaying an efficacy of about 0.6. Cyclic CMP increased the frequency of pacemaker potentials from isolated sinoatrial pacemaker cells in presence of endogenous cAMP concentrations. Electrophysiological recordings indicated that this increase was caused by a depolarizing shift of the activation curve of the native HCN current which in turn leads to an enhancement of the slope of the diastolic depolarization of SAN cells. In conclusion, our findings establish cCMP as gating regulator of HCN channels and indicate that this cyclic nucleotide has to be considered in HCN channel regulated processes.

  • The enhancement of HCN channel instantaneous current facilitated by slow deactivation is regulated by intracellular chloride concentration
    PFLUG ARCH EUR J PHY, 2006
    Co-Authors: Martin Biel
    Abstract:

    The hyperpolarization-activated cation current if plays a key role in the modulation of rhythmic activity in cardiac pacemaker cells and spontaneously firing neurons. I-f is generated by hyperpolarization-activated cyclic nucleotide-gated channels (HCN1-HCN4) and comprises two components: the fast instantaneous current (I-INS) and the slowly developing steady-state current (I-SS). We found that in If traces evoked by consecutive hyperpolarization, the I-INS amplitude of the second trace was up to 50% larger than the first. I-SS was identical. This pre-hyperpolarization mediated enhancement of I-INS was maximal in channels displaying slow kinetics (sinoatrial I-f, HCN3, and HCN4), while it was almost negligible for fast channels (HCN1 and HCN2). The enhancement quantitatively correlated with the frequency of hyperpolarization. Analysis of HCN4 currents suggested that enhancement was facilitated by incomplete deactivation, confirmed by HCN2-HCN4 chimeric studies. It is important to note that intracellular Cl- was found to be a cellular suppressor of I-INS enhancement. Cl- inhibited the enhancement with an IC50 around 25 mM and Hill coefficients between 2 and 6 Cl- shifted V-0.5 by +7 mV when [Cl-]i was increased from 11 to 141 mM. In conclusion, IINS represents a quantitatively important component of If at low Cl- (as found in most cell types). Moreover, an increase in cellular Cl- will suppress enhancement of I-INS and, hence, potentially affect the electrical properties of cells.

  • The murine HCN3 gene encodes a hyperpolarization-activated cation channel with slow kinetics and unique response to cyclic nucleotides
    J BIOL CHEM, 2005
    Co-Authors: Martin Biel
    Abstract:

    Hyperpolarization-activated cation channels of the HCN gene family are crucial for the regulation of cell excitability. Importantly, these channels play a pivotal role in the control of cardiac and neuronal pacemaker activity. Dysfunction of HCN channels has been associated with human diseases, including cardiac arrhythmia, epilepsy, and neuropathic pain. The properties of three HCN channel isoforms (HCN1, HCN2, and HCN4) have been extensively investigated. By contrast, due to the lack of an efficient heterologous expression system, the functional characteristics of HCN3 were by and large unknown so far. Here, we have used lentiviral gene transfer to overexpress HCN3 in HEK293T cells. HCN3 currents revealed slow activation and deactivation kinetics and were effectively blocked by extracellular Cs+ and the bradycardic agent ivabradine. Cyclic AMP and cGMP had no significant impact on activation kinetics but induced a 5-mV shift of the half-maximal activation voltage (V-0.5) to more hyperpolarized potentials. A negative shift of V-0.5 induced by cyclic nucleotides is an unprecedented feature within the HCN channel family. The expression of HCN3 in mouse brain was examined by Western blot analysis using a specific antibody. High levels of protein were detected in olfactory bulb and hypothalamus. In contrast, only very low expression was found in cortex. Using reverse transcriptase PCR transcripts of HCN3 were also detected in heart ventricle. In conclusion, the distinct expression pattern in conjunction with the unusual biophysical properties implies that HCN3 may play an unique role in the body.

  • role of subunit heteromerization and n linked glycosylation in the formation of functional hyperpolarization activated cyclic nucleotide gated channels
    Journal of Biological Chemistry, 2003
    Co-Authors: Barbara Much, Xiangang Zong, Christian Wahlschott, Angela Schneider, Andreas Ludwig, Sven Moosmang, Ludwig Baumann, Martin Biel
    Abstract:

    The coassembly of homologous subunits to heteromeric complexes serves as an important mechanism in generating ion channel diversity. Here, we have studied heteromerization in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel family. Using a combination of fluorescence confocal microscopy, coimmunoprecipitation, and electrophysiology we found that upon coexpression in HEK293 cells almost all dimeric combinations of HCN channel subunits give rise to the formation of stable channel complexes in the plasma membrane. We also identified HCN1/HCN2 heteromers in mouse brain indicating that heteromeric channels exist in vivo. Surprisingly, HCN2 and HCN3 did not coassemble to heteromeric channels. This finding indicates that heteromerization requires specific structural determinants that are not present in all HCN channel combinations. Using N-glycosidase F we show that native as well as recombinant HCN channels are glycosylated resulting in a 10–20-kDa shift in the molecular weight. Tunicamycin, an inhibitor of N-linked glycosylation, blocked surface membrane expression of HCN2. Similarly, a mutant HCN2 channel in which the putative N-glycosylation site in the loop between S5 and the pore helix was replaced by glutamine (HCN2N380Q) was not inserted into the plasma membrane and did not yield detectable whole-cell currents. These results indicate that N-linked glycosylation is required for cell surface trafficking of HCN channels. Cotransfection of HCN2N380Q with HCN4, but not with HCN3, rescued cell surface expression of HCN2N380Q. Immunoprecipitation revealed that this rescue was due to the formation of a HCN2N380Q/HCN4 heteromeric channel. Taken together our results indicate that subunit heteromerization and glycosylation are important determinants of the formation of native HCN channels.

Andreas Ludwig - One of the best experts on this subject based on the ideXlab platform.

  • ventricular hcn channels decrease the repolarization reserve in the hypertrophic heart
    Cardiovascular Research, 2012
    Co-Authors: Florian Hofmann, Juliane Stieber, Andreas Ludwig, Larissa Fabritz, Joachim P Schmitt, Paulus Kirchhof, Stefan Herrmann
    Abstract:

    Aims Cardiac hypertrophy is accompanied by reprogramming of gene expression, where the altered expression of ion channels decreases electrical stability and increases the risk of life-threatening arrhythmias. However, the underlying mechanisms are not fully understood. Here, we analysed the role of the depolarizing current If which has been hypothesized to contribute to arrhythmogenesis in the hypertrophied ventricle. Methods and results We used transverse aortic constriction in mice to induce ventricular hypertrophy. This resulted in an increased number of If positive ventricular myocytes as well as a strongly enhanced and accelerated If when compared with controls. Of the four HCN (hyperpolarization-activated cyclic nucleotide-gated channels) isoforms mediating If , HCN2 and HCN4 were the predominantly expressed subunits in healthy as well as hypertrophied hearts. Unexpectedly, only the HCN1 transcript was significantly upregulated in response to hypertrophy. However, the combined deletion of HCN2 and HCN4 disrupted ventricular If completely. The lack of If in hypertrophic double-knockouts resulted in a strong attenuation of pro-arrhythmogenic parameters characteristically observed in hypertrophic hearts. In particular, prolongation of the action potential was significantly decreased and lengthening of the QT interval was reduced. Conclusions We suggest that the strongly increased HCN channel activity in hypertrophied myocytes prolongs the repolarization of the ventricular action potential and thereby may increase the arrhythmogenic potential. Our results provide for the first time a direct link between an upregulation of ventricular If and a diminished repolarization reserve in cardiac hypertrophy.

  • novel insights into the distribution of cardiac hcn channels an expression study in the mouse heart
    Journal of Molecular and Cellular Cardiology, 2011
    Co-Authors: Stefan Herrmann, Beate Layh, Andreas Ludwig
    Abstract:

    Abstract HCN pacemaker channels (I f channels) are believed to contribute to important functions in the heart; thus these channels became an attractive target for generating transgenic mouse mutants to elucidate their role in physiological and pathophysiological cardiac conditions. A full understanding of cardiac I f and the interpretation of studies using HCN mouse mutants require detailed information about the expression profile of the individual HCN subunits. Here we investigate the cardiac expression pattern of the HCN isoforms at the mRNA as well as at the protein level. The specificity of antibodies used was strictly confirmed by the use of HCN1, HCN2 and HCN4 knockout animals. We find a low, but highly differential HCN expression profile outside the cardiac conduction pathway including left and right atria and ventricles. Additionally HCN distribution was investigated in tissue slices of the sinoatrial node, the atrioventricular node, the bundle of His and the bundle branches. The conduction system was marked by acetylcholine esterase staining. HCN4 was confirmed as the predominant isoform of the primary pacemaker followed by a distinct expression of HCN1. In contrast HCN2 shows only a confined expression to individual pacemaker cells. Immunolabeling of the AV-node reveals also a pronounced specificity for HCN1 and HCN4. Compared to the SN and AVN we found a low but selective expression of HCN4 as the only isoform in the atrioventricular bundle. However in the bundle branches HCN1, HCN4 and also HCN2 show a prominent and selective expression pattern. Our results display a characteristic distribution of individual HCN isoforms in several cardiac compartments and reveal that beside HCN4, HCN1 represents the isoform which is selectively expressed in most parts of the conduction system suggesting a substantial contribution of HCN1 to pacemaking.

  • Bradycardic and proarrhythmic properties of sinus node inhibitors.
    Molecular Pharmacology, 2005
    Co-Authors: Juliane Stieber, Karen Wieland, Georg Stöckl, Andreas Ludwig, Franz Hofmann
    Abstract:

    Sinus node inhibitors reduce the heart rate presumably by blocking the pacemaker current If in the cardiac conduction system. This pacemaker current is carried by four hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels. We tested the potential subtype-specificity of the sinus node inhibitors cilobradine, ivabradine, and zatebradine using cloned HCN channels. All three substances blocked the slow inward current through human HCN1, HCN2, HCN3, and HCN4 channels. There was no subtype-specificity for the steady-state block, with mean IC50 values of 0.99, 2.25, and 1.96 microM for cilobradine, ivabradine, and zatebradine, respectively. Native If, recorded from mouse sinoatrial node cells, was slightly more efficiently blocked by cilobradine (IC50 value of 0.62 microM) than were the HCN currents. The block of I(f) in sinoatrial node cells resulted in slower and dysrhythmic spontaneous action potentials. The in vivo action of these blockers was analyzed using telemetric ECG recordings in mice. Each compound reduced the heart rate dose-dependently from 600 to 200 bpm with ED50 values of 1.2, 4.7, and 1.8 mg/kg for cilobradine, ivabradine, and zatebradine, respectively. beta-Adrenergic stimulation or forced physical activity only partly reversed this bradycardia. In addition to bradycardia, all three drugs induced increasing arrhythmia at concentrations greater than 5 mg/kg for cilobradine, greater than 10 mg/kg for zatebradine, or greater than 15 mg/kg for ivabradine. This dysrhythmic heart rate is characterized by periodic fluctuations of the duration between the T and P wave, resembling a form of sick sinus syndrome in humans. Hence, all available sinus node inhibitors possess an as-yet-unrecognized proarrhythmic potential.

  • role of subunit heteromerization and n linked glycosylation in the formation of functional hyperpolarization activated cyclic nucleotide gated channels
    Journal of Biological Chemistry, 2003
    Co-Authors: Barbara Much, Xiangang Zong, Christian Wahlschott, Angela Schneider, Andreas Ludwig, Sven Moosmang, Ludwig Baumann, Martin Biel
    Abstract:

    The coassembly of homologous subunits to heteromeric complexes serves as an important mechanism in generating ion channel diversity. Here, we have studied heteromerization in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel family. Using a combination of fluorescence confocal microscopy, coimmunoprecipitation, and electrophysiology we found that upon coexpression in HEK293 cells almost all dimeric combinations of HCN channel subunits give rise to the formation of stable channel complexes in the plasma membrane. We also identified HCN1/HCN2 heteromers in mouse brain indicating that heteromeric channels exist in vivo. Surprisingly, HCN2 and HCN3 did not coassemble to heteromeric channels. This finding indicates that heteromerization requires specific structural determinants that are not present in all HCN channel combinations. Using N-glycosidase F we show that native as well as recombinant HCN channels are glycosylated resulting in a 10–20-kDa shift in the molecular weight. Tunicamycin, an inhibitor of N-linked glycosylation, blocked surface membrane expression of HCN2. Similarly, a mutant HCN2 channel in which the putative N-glycosylation site in the loop between S5 and the pore helix was replaced by glutamine (HCN2N380Q) was not inserted into the plasma membrane and did not yield detectable whole-cell currents. These results indicate that N-linked glycosylation is required for cell surface trafficking of HCN channels. Cotransfection of HCN2N380Q with HCN4, but not with HCN3, rescued cell surface expression of HCN2N380Q. Immunoprecipitation revealed that this rescue was due to the formation of a HCN2N380Q/HCN4 heteromeric channel. Taken together our results indicate that subunit heteromerization and glycosylation are important determinants of the formation of native HCN channels.

  • cellular expression and functional characterization of four hyperpolarization activated pacemaker channels in cardiac and neuronal tissues
    FEBS Journal, 2001
    Co-Authors: Sven Moosmang, Xiangang Zong, Martin Biel, Juliane Stieber, Franz Hofmann, Andreas Ludwig
    Abstract:

    Hyperpolarization-activated cation currents (I(h)) have been identified in cardiac pacemaker cells and a variety of central and peripheral neurons. Four members of a gene family encoding hyperpolarization-activated, cyclic nucleotide-gated cation channels (HCN1--4) have been cloned recently. Native I(h) currents recorded from different cell types exhibit distinct activation kinetics. To determine if this diversity of I(h) currents may be caused by differential expression of HCN channel isoforms, we investigated the cellular distribution of the transcripts of HCN1--4 in the murine sinoatrial node, retina and dorsal root ganglion (DRG) by in situ hybridization. In the sinoatrial node, the most prominently expressed HCN channel is HCN4, whereas HCN2 and HCN1 are detected there at moderate and low levels, respectively. Retinal photoreceptors express high levels of HCN1, whereas HCN2, 3 and 4 were not found in these cells. In DRG neurons, the dominant HCN transcript is HCN1, followed by HCN2. We next determined the functional properties of recombinant HCN1--4 channels expressed in HEK293 cells. All four channel types gave rise to I(h) currents but displayed marked differences in their activation kinetics. Our results suggest that the heterogeneity of native I(h) currents is generated, at least in part, by the tissue-specific expression of HCN channel genes.

Steven A Siegelbaum - One of the best experts on this subject based on the ideXlab platform.

  • regulation of hyperpolarization activated hcn channel gating and camp modulation due to interactions of cooh terminus and core transmembrane regions
    The Journal of General Physiology, 2001
    Co-Authors: Jing W Wang, Shan Chen, Steven A Siegelbaum
    Abstract:

    Members of the hyperpolarization-activated cation (HCN) channel family generate HCN currents (Ih) that are directly regulated by cAMP and contribute to pacemaking activity in heart and brain. The four different HCN isoforms show distinct biophysical properties. In cell-free patches from Xenopus oocytes, the steady-state activation curve of HCN2 channels is 20 mV more hyperpolarized compared with HCN1. Whereas the binding of cAMP to a COOH-terminal cyclic nucleotide binding domain (CNBD) markedly shifts the activation curve of HCN2 by 17 mV to more positive potentials, the response of HCN1 is much less pronounced (4 mV shift). A previous deletion mutant study suggested that the CNBD inhibits hyperpolarization-gating in the absence of cAMP; the binding of cAMP shifts gating to more positive voltages by relieving this inhibition. The differences in basal gating and cAMP responsiveness between HCN1 and HCN2 were proposed to result from a greater inhibitory effect of the CNBD in HCN2 compared with HCN1. Here, we use a series of chimeras between HCN1 and HCN2, in which we exchange the NH2 terminus, the transmembrane domain, or distinct domains of the COOH terminus, to investigate further the molecular bases for the modulatory action of cAMP and for the differences in the functional properties of the two channels. Differences in cAMP regulation between HCN1 and HCN2 are localized to sequence differences within the COOH terminus of the two channels. Surprisingly, exchange of the CNBDs between HCN1 and HCN2 has little effect on basal gating and has only a modest one on cAMP modulation. Rather, differences in cAMP modulation depend on the interaction between the CNBD and the C-linker, a conserved 80–amino acid region that connects the last (S6) transmembrane segment to the CNBD. Differences in basal gating depend on both the core transmembrane domain and the COOH terminus. These data, taken in the context of the previous data on deletion mutants, suggest that the inhibitory effect of the CNBD on basal gating depends on its interactions with both the C-linker and core transmembrane domain of the channel. The extent to which cAMP binding is able to relieve this inhibition is dependent on the interaction between the C-linker and the CNBD.

  • properties of hyperpolarization activated pacemaker current defined by coassembly of HCN1 and hcn2 subunits and basal modulation by cyclic nucleotide
    The Journal of General Physiology, 2001
    Co-Authors: Shan Chen, Jing W Wang, Steven A Siegelbaum
    Abstract:

    Members of the HCN channel family generate hyperpolarization-activated cation currents (Ih) that are directly regulated by cAMP and contribute to pacemaker activity in heart and brain. The four HCN isoforms show distinct but overlapping patterns of expression in different tissues. Here, we report that HCN1 and HCN2, isoforms coexpressed in neocortex and hippocampus that differ markedly in their biophysical properties, coassemble to generate heteromultimeric channels with novel properties. When expressed in Xenopus oocytes, HCN1 channels activate 5–10-fold more rapidly than HCN2 channels. HCN1 channels also activate at voltages that are 10–20 mV more positive than those required to activate HCN2. In cell-free patches, the steady-state activation curve of HCN1 channels shows a minimal shift in response to cAMP (+4 mV), whereas that of HCN2 channels shows a pronounced shift (+17 mV). Coexpression of HCN1 and HCN2 yields Ih currents that activate with kinetics and a voltage dependence that tend to be intermediate between those of HCN1 and HCN2 homomers, although the coexpressed channels do show a relatively large shift by cAMP (+14 mV). Neither the kinetics, steady-state voltage dependence, nor cAMP dose–response curve for the coexpressed Ih can be reproduced by the linear sum of independent populations of HCN1 and HCN2 homomers. These results are most simply explained by the formation of heteromeric channels with novel properties. The properties of these heteromeric channels closely resemble the properties of Ih in hippocampal CA1 pyramidal neurons, cells that coexpress HCN1 and HCN2. Finally, differences in Ih channel properties recorded in cell-free patches versus intact oocytes are shown to be due, in part, to modulation of Ih by basal levels of cAMP in intact cells.

Robert G. Webster - One of the best experts on this subject based on the ideXlab platform.

  • lethal h5n1 influenza viruses escape host anti viral cytokine responses
    Nature Medicine, 2002
    Co-Authors: Sang Heui Seo, Erich Hoffmann, Robert G. Webster
    Abstract:

    The H5N1 influenza viruses transmitted to humans in 1997 were highly virulent, but the mechanism of their virulence in humans is largely unknown. Here we show that lethal H5N1 influenza viruses, unlike other human, avian and swine influenza viruses, are resistant to the antiviral effects of interferons and tumor necrosis factor α. The nonstructural (NS) gene of H5N1 viruses is associated with this resistance. Pigs infected with recombinant human H1N1 influenza virus that carried the H5N1 NS gene experienced significantly greater and more prolonged viremia, fever and weight loss than did pigs infected with wild-type human H1N1 influenza virus. These effects required the presence of glutamic acid at position 92 of the NS1 molecule. These findings may explain the mechanism of the high virulence of H5N1 influenza viruses in humans.

  • molecular evolution of h6 influenza viruses from poultry in southeastern china prevalence of h6n1 influenza viruses possessing seven a hong kong 156 97 h5n1 like genes in poultry
    Journal of Virology, 2002
    Co-Authors: P S Chin, Erich Hoffmann, Robert G. Webster, Richard J Webby, Yi Guan, Malik Peiris, K F Shortridge
    Abstract:

    The A/teal/Hong Kong/W312/97 (H6N1) influenza virus and the human H5N1 and H9N2 influenza viruses possess similar genes encoding internal proteins, suggesting that H6N1 viruses could become novel human pathogens. The molecular epidemiology and evolution of H6 influenza viruses were characterized by antigenic and genetic analyses of 29 H6 influenza viruses isolated from 1975 to 1981 and 1997 to 2000. Two distinct groups were identified on the basis of their antigenic characteristics. Phylogenetic analysis revealed that all H6N1 viruses isolated from terrestrial poultry in 1999 and 2000 are closely related to A/teal/Hong Kong/W312/97 (H6N1), and the nucleotide sequences of these viruses and of A/Hong Kong/156/97 (H5N1) were more than 96% homologous. The hemagglutinin (HA) of the 1999 and 2000 terrestrial viruses does not have multiple basic amino acids at the site of cleavage of HA1 to HA2; however, a unique insertion of aspartic acid in HA1 between positions 144 and 145 (H3 numbering) was found. The neuraminidase of these terrestrial H6N1 viruses has a deletion of 19 amino acids characteristic of A/Hong Kong/156/97 (H5N1). Evolutionary analysis suggested that these H6N1 viruses coevolved with A/quail/Hong Kong/G1/97-like H9N2 viruses and became more adapted to terrestrial poultry. These terrestrial 1999 and 2000 A/teal/Hong Kong/W312/97 (H6N1)-like viruses, along with the H9N2 viruses, could have been involved in the genesis of the pathogenic H5N1 influenza viruses of 1997. The presence of H6N1 viruses in poultry markets in Hong Kong that possess seven of the eight genes of the A/Hong Kong/156/97 (H5N1) virus raises the following fundamental questions relevant to influenza pandemic preparedness: could the pathogenic H5N1 virus reemerge and could the H6N1 viruses directly cross the species barrier to mammals?

  • characterization of the influenza a virus gene pool in avian species in southern china was h6n1 a derivative or a precursor of h5n1
    Journal of Virology, 2000
    Co-Authors: Erich Hoffmann, Robert G. Webster, Malik Peiris, K F Shortridge, Juergen Stech, Irina A Leneva, Scott Krauss, Christoph Scholtissek, Po San Chin
    Abstract:

    In 1997, an H5N1 influenza virus outbreak occurred in chickens in Hong Kong, and the virus was transmitted directly to humans. Because there is limited information about the avian influenza virus reservoir in that region, we genetically characterized virus strains isolated in Hong Kong during the 1997 outbreak. We sequenced the gene segments of a heterogeneous group of viruses of seven different serotypes (H3N8, H4N8, H6N1, H6N9, H11N1, H11N9, and H11N8) isolated from various bird species. The phylogenetic relationships divided these viruses into several subgroups. An H6N1 virus isolated from teal (A/teal/Hong Kong/W312/97 [H6N1]) showed very high (>98%) nucleotide homology to the human influenza virus A/Hong Kong/156/97 (H5N1) in the six internal genes. The N1 neuraminidase sequence showed 97% nucleotide homology to that of the human H5N1 virus, and the N1 protein of both viruses had the same 19-amino-acid deletion in the stalk region. The deduced hemagglutinin amino acid sequence of the H6N1 virus was most similar to that of A/shearwater/Australia/1/72 (H6N5). The H6N1 virus is the first known isolate with seven H5N1-like segments and may have been the donor of the neuraminidase and the internal genes of the H5N1 viruses. The high homology between the internal genes of H9N2, H6N1, and the H5N1 isolates indicates that these subtypes are able to exchange their internal genes and are therefore a potential source of new pathogenic influenza virus strains. Our analysis suggests that surveillance for influenza A viruses should be conducted for wild aquatic birds as well as for poultry, pigs, and humans and that H6 isolates should be further characterized.

Zhiguo Wang - One of the best experts on this subject based on the ideXlab platform.

  • Down-regulation of miR-1/miR-133 Contributes to Re-expression of Pacemaker Channel Genes HCN2 and HCN4 in Hypertrophic Heart
    Journal of Biological Chemistry, 2008
    Co-Authors: Xiaobin Luo, Huixian Lin, Jiening Xiao, Baofeng Yang, Zhengwei Pan, Yong Zhang, Zhiguo Wang
    Abstract:

    Abstract Cardiac hypertrophy is characterized by electrical remolding with increased risk of arrhythmogenesis. Enhanced abnormal automaticity of ventricular cells contributes critically to hypertrophic arrhythmias. The pacemaker current If, carried by the hyperpolarization-activated channels encoded mainly by the HCN2 and HCN4 genes in the heart, plays an important role in determining cardiac automaticity. Their expressions reportedly increase in hypertrophic and failing hearts, contributing to arrhythmogenesis under these conditions. We performed a study on post-transcriptional regulation of expression of HCN2 and HCN4 genes by microRNAs. We experimentally established HCN2 as a target for repression by the muscle-specific microRNAs miR-1 and miR-133 and established HCN4 as a target for miR-1 only. We unraveled robust increases in HCN2 and HCN4 protein levels in a rat model of left ventricular hypertrophy and in angiotensin II-induced neonatal ventricular hypertrophy. The up-regulation of HCN2/HCN4 was accompanied by pronounced reduction of miR-1/miR-133 levels. Forced expression of miR-1/miR-133 by transfection prevented overexpression of HCN2/HCN4 in hypertrophic cardiomyocytes. The serum-responsive factor protein level was found significantly decreased in hypertrophic hearts, and silencing of this protein by RNA interference resulted in increased levels of miR-1/miR-133 and concomitant increases in HCN2 and HCN4 protein levels. We conclude that down-regulation of miR-1 and miR-133 expression contributes to re-expression of HCN2/HCN4 and thereby the electrical remodeling process in hypertrophic hearts. Our study also sheds new light on the cellular function and pathological role of miR-1/miR-133 in the heart.

  • Abstract 836: Downregulation of microRNA-1/microRNA-133 and Overexpression of Sp1 activates Re-expression of Pacemaker Channel Genes HCN2 and HCN4 in Hypertrophic Heart
    Circulation, 2007
    Co-Authors: Xiaobin Luo, Huixian Lin, Jiening Xiao, Baofeng Yang, Zhiguo Wang
    Abstract:

    The pacemaker current If, carried by hyperpolarization-activated channels encoded mainly by HCN2 and HCN4 genes in the heart, plays an important role in rhythmogenesis. Their expressions reportedly increase in hypertrophic and failing hearts, contributing to arrhythmogenesis under these pathological conditions. However, how their expressions are controlled remained unclear. We performed a mechanistic study on transcriptional and posttranscriptional regulation of HCN2 and HCN4 by transcription factors and microRNAs. We identified the transcription start sites and core promoter regions of these genes, and revealed striking similarities between HCN2 and HCN4 promoter regions and ubiquitous Sp1 protein as a common transactivator of HCN2/HCN4. We experimentally established HCN2 mRNA as a target for repression by the muscle-specific miRNAs miR-1 and miR-133, and HCN4 as a target for miR-1 only. We further unraveled robust increases in HCN2/HCN4 transcripts and protein levels in a rat model of left ventricular h...

  • Novel approaches for gene-specific interference via manipulating actions of microRNAs: examination on the pacemaker channel genes HCN2 and HCN4.
    Journal of Cellular Physiology, 2007
    Co-Authors: Jiening Xiao, Xiaobin Luo, Huixian Lin, Baofeng Yang, Zhiguo Wang
    Abstract:

    Recent evidence has suggested microRNAs as viable therapeutic targets for a wide range of human disease. However, lack of gene-specificity of microRNA actions may hinder this application. Here we developed two new approaches, the gene-specific microRNA mimic and microRNA-masking antisense approaches, to explore the possibility of using microRNA's principle of actions in a gene-specific manner. We examined the value of these strategies as rational approaches to develop heart rate-reducing agents and "biological pacemakers" by manipulating the expression of the cardiac pacemaker channel genes HCN2 and HCN4. We showed that the gene-specific microRNA mimics, 22-nt RNAs designed to target the 3'untranslated regions (3'UTRs) of HCN2 and HCN4, respectively, were efficient in abrogating expression and function of HCN2 and HCN4. The gene-specific microRNA mimics repressed protein levels, accompanied by depressed f-channel conductance and the associated rhythmic activity, without affecting mRNA levels of HCN2 and HCN4. Meanwhile, we also designed the microRNA-masking antisense based on the miR-1 and miR-133 target sites in the 3'UTRs of HCN2 and HCN4 and found that these antisense oligodeoxynucleotides markedly enhanced HCN2/HCN4 expression and function, as reflected by increased protein levels of HCN2/HCN4 and If conductance, by removing the repression of HCN2/HCN4 expression induced by endogenous miR-1/miR-133. The experimental examination of these techniques and the resultant findings not only indicate feasibility of interfering miRNA action in a gene-specific fashion but also may provide a new research tool for studying function of miRNAs. The new approaches also have the potential of becoming alternative gene therapy strategies.