Ryanodine Receptor 1

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 14601 Experts worldwide ranked by ideXlab platform

Noriaki Ikemoto - One of the best experts on this subject based on the ideXlab platform.

  • postulated role of interdomain interaction between regions 1 and 2 within type 1 Ryanodine Receptor in the pathogenesis of porcine malignant hyperthermia
    Biochemical Journal, 2007
    Co-Authors: Takashi Murayama, Noriaki Ikemoto, Hiroshi Hara, Kikuo Wakebe, Yasuo Ogawa
    Abstract:

    We have demonstrated recently that CICR (Ca2+-induced Ca2+ release) activity of RyR1 (Ryanodine Receptor 1) is held to a low level in mammalian skeletal muscle (‘suppression’ of the channel) and that this is largely caused by the interdomain interaction within RyR1 [Murayama, Oba, Kobayashi, Ikemoto and Ogawa (2005) Am. J. Physiol. Cell Physiol. 288, C1222–C1230]. To test the hypothesis that aberration of this suppression mechanism is involved in the development of channel dysfunctions in MH (malignant hyperthermia), we investigated properties of the RyR1 channels from normal and MHS (MH-susceptible) pig skeletal muscles with an Arg615→Cys mutation using [3H]Ryanodine binding, single-channel recordings and SR (sarcoplasmic reticulum) Ca2+ release. The RyR1 channels from MHS muscle (RyR1MHS) showed enhanced CICR activity compared with those from the normal muscle (RyR1N), although there was little or no difference in the sensitivity to several ligands tested (Ca2+, Mg2+ and adenine nucleotide), nor in the FKBP12 (FK506-binding protein 12) regulation. DP4, a domain peptide matching the Leu2442–Pro2477 region of RyR1 which was reported to activate the Ca2+ channel by weakening the interdomain interaction, activated the RyR1N channel in a concentration-dependent manner, and the highest activity of the affected channel reached a level comparable with that of the RyR1MHS channel with no added peptide. The addition of DP4 to the RyR1MHS channel produced virtually no further effect on the channel activity. These results suggest that stimulation of the RyR1MHS channel caused by affected inter-domain interaction between regions 1 and 2 is an underlying mechanism for dysfunction of Ca2+ homoeostasis seen in the MH phenotype.

  • malignant hyperthermia mutation sites in the leu2442 pro2477 dp4 region of ryr1 Ryanodine Receptor 1 are clustered in a structurally and functionally definable area
    Biochemical Journal, 2007
    Co-Authors: Mark L Bannister, Noriaki Ikemoto, Takashi Murayama, Angela F Dulhunty, Tomoyo Hamada, Peta J Harvey, Marco G Casarotto
    Abstract:

    To explain the mechanism of pathogenesis of channel disorder in MH (malignant hyperthermia), we have proposed a model in which tight interactions between the N-terminal and central domains of RyR1 (Ryanodine Receptor 1) stabilize the closed state of the channel, but mutation in these domains weakens the interdomain interaction and destabilizes the channel. DP4 (domain peptide 4), a peptide corresponding to residues Leu2442–Pro2477 of the central domain, also weakens the domain interaction and produces MH-like channel destabilization, whereas an MH mutation (R2458C) in DP4 abolishes these effects. Thus DP4 and its mutants serve as excellent tools for structure–function studies. Other MH mutations have been reported in the literature involving three other amino acid residues in the DP4 region (Arg2452, Ile2453 and Arg2454). In the present paper we investigated the activity of several mutants of DP4 at these three residues. The ability to activate Ryanodine binding or to effect Ca2+ release was severely diminished for each of the MH mutants. Other substitutions were less effective. Structural studies, using NMR analysis, revealed that the peptide has two α-helical regions. It is apparent that the MH mutations are clustered at the C-terminal end of the first helix. The data in the present paper indicates that mutation of residues in this region disrupts the interdomain interactions that stabilize the closed state of the channel.

  • probing a putative dantrolene binding site on the cardiac Ryanodine Receptor
    Biochemical Journal, 2005
    Co-Authors: Kalanethee Paulpletzer, Noriaki Ikemoto, Leslie S Jimenez, Hiromi Morimoto, Philip G. Williams, Takeshi Yamamoto, Jerome Parness
    Abstract:

    Dantrolene is an inhibitor of intracellular Ca2+ release from skeletal muscle SR (sarcoplasmic reticulum). Direct photoaffinity labelling experiments using [3H]azidodantrolene and synthetic domain peptides have demonstrated that this drug targets amino acids 590–609 [termed DP1 (domain peptide 1)] of RyR1 (Ryanodine Receptor 1), the skeletal muscle RyR isoform. Although the identical sequence exists in the cardiac isoform, RyR2 (residues 601–620), specific labelling of RyR2 by dantrolene has not been demonstrated, even though some functional studies show protective effects of dantrolene on heart function. Here we test whether dantrolene-active domains exist within RyR2 and if so, whether this domain can be modulated. We show that elongated DP1 sequences from RyR1 (DP1-2s; residues 590–628) and RyR2 (DP1-2c; residues 601–639) can be specifically photolabelled by [3H]azidodantrolene. Monoclonal anti-RyR1 antibody, whose epitope is the DP1 region, can recognize RyR1 but not RyR2 in Western blot and immunoprecipitation assays, yet it recognizes both DP1-2c and DP1-2s. This suggests that although the RyR2 sequence has an intrinsic capacity to bind dantrolene in vitro, this site may be poorly accessible in the native channel protein. To examine whether it is possible to modulate this site, we measured binding of [3H]dantrolene to cardiac SR as a function of free Ca2+. We found that ≥10 mM EGTA increased [3H]dantrolene binding to RyR2 by ∼2-fold. The data suggest that the dantrolene-binding site on RyR2 is conformationally sensitive. This site may be a potential therapeutic target in cardiovascular diseases sensitive to dysfunctional intracellular Ca2+ release.

  • dantrolene stabilizes domain interactions within the Ryanodine Receptor
    Journal of Biological Chemistry, 2005
    Co-Authors: Shigeki Kobayashi, Jerome Parness, Mark L Bannister, Tomoyo Hamada, Jaya Gangopadhyay, Noriaki Ikemoto
    Abstract:

    Abstract Interdomain interactions between N-terminal and central domains serving as a “domain switch” are believed to be essential to the functional regulation of the skeletal muscle Ryanodine Receptor-1 Ca2+ channel. Mutational destabilization of the domain switch in malignant hyperthermia (MH), a genetic sensitivity to volatile anesthetics, causes functional instability of the channel. Dantrolene, a drug used to treat MH, binds to a region within this proposed domain switch. To explore its mechanism of action, the effect of dantrolene on MH-like channel activation by the synthetic domain peptide DP4 or anti-DP4 antibody was examined. A fluorescence probe, methylcoumarin acetate, was covalently attached to the domain switch using DP4 as a delivery vehicle. The magnitude of domain unzipping was determined from the accessibility of methylcoumarin acetate to a macromolecular fluorescence quencher. The Stern-Volmer quenching constant (KQ) increased with the addition of DP4 or anti-DP4 antibody. This increase was reversed by dantrolene at both 37 and 22 °C and was unaffected by calmodulin. [3H]Ryanodine binding to the sarcoplasmic reticulum and activation of sarcoplasmic reticulum Ca2+ release, both measures of channel activation, were enhanced by DP4. These activities were inhibited by dantrolene at 37 °C, yet required the presence of calmodulin at 22 °C. These results suggest that the mechanism of action of dantrolene involves stabilization of domain-domain interactions within the domain switch, preventing domain unzipping-induced channel dysfunction. We suggest that temperature and calmodulin primarily affect the coupling between the domain switch and the downstream mechanism of regulation of Ca2+ channel opening rather than the domain switch itself.

  • antibody probe study of ca2 channel regulation by interdomain interaction within the Ryanodine Receptor
    Biochemical Journal, 2004
    Co-Authors: Shigeki Kobayashi, Jerome Parness, Noriaki Ikemoto, Takeshi Yamamoto
    Abstract:

    N-terminal and central domains of Ryanodine Receptor 1 (RyR1), where many reported malignant hyperthermia (MH) mutations are localized, represent putative channel regulatory domains. Recent domain peptide (DP) probe studies led us to the hypothesis that these domains interact to stabilize the closed state of channel (zipping), while weakening of domain–domain interactions (unzipping) by mutation de-stabilizes the channel, making it leaky to Ca 2+ or sensitive to the agonists of RyR1. As shown previously, DP1 (N-terminal domain peptide) and DP4 (central domain peptide) produced MH-like channel activation/sensitization effects, presumably by peptide binding to sites critical to stabilizing domain–domain interactions and resultant loss of conformational constraints. Here we report that polyclonal anti-DP1 and antiDP4 antibodies also produce MH-like channel activation and sensitization effects as evidenced by about 4-fold enhancement of high affinity [ 3 H]Ryanodine binding to RyR1 and by a significant left-shift of the concentration-dependence of activation of sarcoplasmic reticulum Ca 2+ release by polylysine. Fluorescence quenching experiments demonstrate that the accessibility of a DP4-directed, conformationally sensitive fluorescence probe linked to the RyR1 N-terminal domain is increased in the presence of domain-specific antibodies, consistent with the view that these antibodies produce unzipping of interacting domains that are of hindered accessibility to the surrounding aqueous environment. Our results suggest that domain-specific antibody binding induces a conformational change resulting in channel activation, and are consistent with the hypothesis that interacting N-terminal and central domains are intimately involved in the regulation of RyR1 channel function.

Joshua J. Todd - One of the best experts on this subject based on the ideXlab platform.

  • preclinical model systems of Ryanodine Receptor 1 related myopathies and malignant hyperthermia a comprehensive scoping review of works published 1990 2019
    Orphanet Journal of Rare Diseases, 2020
    Co-Authors: Tokunbor A. Lawal, James J. Dowling, Emily S Wires, Nancy Terry, Joshua J. Todd
    Abstract:

    Pathogenic variations in the gene encoding the skeletal muscle Ryanodine Receptor (RyR1) are associated with malignant hyperthermia (MH) susceptibility, a life-threatening hypermetabolic condition and RYR1-related myopathies (RYR1-RM), a spectrum of rare neuromuscular disorders. In RYR1-RM, intracellular calcium dysregulation, post-translational modifications, and decreased protein expression lead to a heterogenous clinical presentation including proximal muscle weakness, contractures, scoliosis, respiratory insufficiency, and ophthalmoplegia. Preclinical model systems of RYR1-RM and MH have been developed to better understand underlying pathomechanisms and test potential therapeutics. We conducted a comprehensive scoping review of scientific literature pertaining to RYR1-RM and MH preclinical model systems in accordance with the PRISMA Scoping Reviews Checklist and the framework proposed by Arksey and O’Malley. Two major electronic databases (PubMed and EMBASE) were searched without language restriction for articles and abstracts published between January 1, 1990 and July 3, 2019. Our search yielded 5049 publications from which 262 were included in this review. A majority of variants tested in RYR1 preclinical models were localized to established MH/central core disease (MH/CCD) hot spots. A total of 250 unique RYR1 variations were reported in human/rodent/porcine models with 95% being missense substitutions. The most frequently reported RYR1 variant was R614C/R615C (human/porcine total n = 39), followed by Y523S/Y524S (rabbit/mouse total n = 30), I4898T/I4897T/I4895T (human/rabbit/mouse total n = 20), and R163C/R165C (human/mouse total n = 18). The dyspedic mouse was utilized by 47% of publications in the rodent category and its RyR1-null (1B5) myotubes were transfected in 23% of publications in the cellular model category. In studies of transfected HEK-293 cells, 57% of RYR1 variations affected the RyR1 channel and activation core domain. A total of 15 RYR1 mutant mouse strains were identified of which ten were heterozygous, three were compound heterozygous, and a further two were knockout. Porcine, avian, zebrafish, C. elegans, canine, equine, and drosophila model systems were also reported. Over the past 30 years, there were 262 publications on MH and RYR1-RM preclinical model systems featuring more than 200 unique RYR1 variations tested in a broad range of species. Findings from these studies have set the foundation for therapeutic development for MH and RYR1-RM.

  • Ryanodine Receptor 1-Related Myopathies: Diagnostic and Therapeutic Approaches
    Neurotherapeutics, 2018
    Co-Authors: Tokunbor A. Lawal, Joshua J. Todd, Katherine G. Meilleur
    Abstract:

    Ryanodine Receptor type 1-related myopathies ( RYR1 -RM) are the most common class of congenital myopathies. Historically, RYR1 -RM classification and diagnosis have been guided by histopathologic findings on muscle biopsy. Main histological subtypes of RYR1 -RM include central core disease, multiminicore disease, core–rod myopathy, centronuclear myopathy, and congenital fiber-type disproportion. A range of RYR1 -RM clinical phenotypes has also emerged more recently and includes King Denborough syndrome, RYR1 rhabdomyolysis-myalgia syndrome, atypical periodic paralysis, congenital neuromuscular disease with uniform type 1 fibers, and late-onset axial myopathy. This expansion of the RYR1 -RM disease spectrum is due, in part, to implementation of next-generation sequencing methods, which include the entire RYR1 coding sequence rather than being restricted to hotspot regions. These methods enhance diagnostic capabilities, especially given historic limitations of histopathologic and clinical overlap across RYR1 -RM. Both dominant and recessive modes of inheritance have been documented, with the latter typically associated with a more severe clinical phenotype. As with all congenital myopathies, no FDA-approved treatments exist to date. Here, we review histopathologic, clinical, imaging, and genetic diagnostic features of the main RYR1 -RM subtypes. We also discuss the current state of treatments and focus on disease-modulating (nongenetic) therapeutic strategies under development for RYR1 -RM. Finally, perspectives for future approaches to treatment development are broached.

  • correlation of phenotype with genotype and protein structure in ryr1 related disorders
    Journal of Neurology, 2018
    Co-Authors: Joshua J. Todd, Tokunbor A. Lawal, Muslima S Razaqyar, Irene C Chrismer, Carolyn Allen, Monique Shelton, Mary M. Cosgrove, Vatsala Sagar, Xuemin Zhang, Anna Kuo
    Abstract:

    Variants in the skeletal muscle Ryanodine Receptor 1 gene (RYR1) result in a spectrum of RYR1-related disorders. Presentation during infancy is typical and ranges from delayed motor milestones and proximal muscle weakness to severe respiratory impairment and ophthalmoplegia. We aimed to elucidate correlations between genotype, protein structure and clinical phenotype in this rare disease population. Genetic and clinical data from 47 affected individuals were analyzed and variants mapped to the cryo-EM RyR1 structure. Comparisons of clinical severity, motor and respiratory function and symptomatology were made according to the mode of inheritance and affected RyR1 structural domain(s). Overall, 49 RYR1 variants were identified in 47 cases (dominant/de novo, n = 35; recessive, n = 12). Three variants were previously unreported. In recessive cases, facial weakness, neonatal hypotonia, ophthalmoplegia/paresis, ptosis, and scapular winging were more frequently observed than in dominant/de novo cases (all, p < 0.05). Both dominant/de novo and recessive cases exhibited core myopathy histopathology. Clinically severe cases were typically recessive or had variants localized to the RyR1 cytosolic shell domain. Motor deficits were most apparent in the MFM-32 standing and transfers dimension, [median (IQR) 85.4 (18.8)% of maximum score] and recessive cases exhibited significantly greater overall motor function impairment compared to dominant/de novo cases [79.7 (18.8)% vs. 87.5 (17.7)% of maximum score, p = 0.03]. Variant mapping revealed patterns of clinical severity across RyR1 domains, including a structural plane of interest within the RyR1 cytosolic shell, in which 84% of variants affected the bridging solenoid. We have corroborated genotype-phenotype correlations and identified RyR1 regions that may be especially sensitive to structural modification.

  • novel variants in individuals with ryr1 related congenital myopathies genetic laboratory and clinical findings
    Frontiers in Neurology, 2018
    Co-Authors: Joshua J. Todd, Tokunbor A. Lawal, Muslima S Razaqyar, Jessica W Witherspoon, Ami Mankodi, Irene C Chrismer, Carolyn Allen, Mary D Meyer, Anna Kuo, Monique Shelton
    Abstract:

    The Ryanodine Receptor 1-related congenital myopathies (RYR1-RM) comprise a spectrum of slow, rare neuromuscular diseases. Affected individuals present with a mild-to-severe symptomatology ranging from proximal muscle weakness, hypotonia and joint contractures to scoliosis, ophthalmoplegia, and respiratory involvement. Although there is currently no FDA-approved treatment for RYR1-RM, our group recently conducted the first clinical trial in this patient population (NCT02362425). This study aimed to characterize novel RYR1 variants with regard to genetic, laboratory, muscle magnetic resonance imaging (MRI), and clinical findings. Genetic and histopathology reports were obtained from participant's medical records. Alamut Visual Software was used to determine if participant's variants had been previously reported and to assess predicted pathogenicity. Physical exams, pulmonary function tests, T1-weighted muscle MRI scans, and blood measures were completed during the abovementioned clinical trial. Six novel variants (two de novo, three dominant, and one recessive) were identified in individuals with RYR1-RM. Consistent with established RYR1-RM histopathology, cores were observed in all biopsies, except Case 6 who exhibited fiber-type disproportion. Muscle atrophy and impaired mobility with Trendelenburg gait were the most common clinical symptoms and were identified in all cases. Muscle MRI revealed substantial inter-individual variation in fatty infiltration corroborating the heterogeneity of the disease. Two individuals with dominant RYR1 variants exhibited respiratory insufficiency: a clinical symptom more commonly associated with recessive RYR1-RM cases. This study demonstrates that a genetics-led approach is suitable for the diagnosis of suspected RYR1-RM which can be corroborated through histopathology, muscle MRI and clinical examination.

  • presentation_1.PDF
    2018
    Co-Authors: Joshua J. Todd, Tokunbor A. Lawal, Muslima S Razaqyar, Jessica W Witherspoon, Ami Mankodi, Irene C Chrismer, Carolyn Allen, Mary D Meyer, Anna Kuo, Monique S. Shelton
    Abstract:

    The Ryanodine Receptor 1-related congenital myopathies (RYR1-RM) comprise a spectrum of slow, rare neuromuscular diseases. Affected individuals present with a mild-to-severe symptomatology ranging from proximal muscle weakness, hypotonia and joint contractures to scoliosis, ophthalmoplegia, and respiratory involvement. Although there is currently no FDA-approved treatment for RYR1-RM, our group recently conducted the first clinical trial in this patient population (NCT02362425). This study aimed to characterize novel RYR1 variants with regard to genetic, laboratory, muscle magnetic resonance imaging (MRI), and clinical findings. Genetic and histopathology reports were obtained from participant’s medical records. Alamut Visual Software was used to determine if participant’s variants had been previously reported and to assess predicted pathogenicity. Physical exams, pulmonary function tests, T1-weighted muscle MRI scans, and blood measures were completed during the abovementioned clinical trial. Six novel variants (two de novo, three dominant, and one recessive) were identified in individuals with RYR1-RM. Consistent with established RYR1-RM histopathology, cores were observed in all biopsies, except Case 6 who exhibited fiber-type disproportion. Muscle atrophy and impaired mobility with Trendelenburg gait were the most common clinical symptoms and were identified in all cases. Muscle MRI revealed substantial inter-individual variation in fatty infiltration corroborating the heterogeneity of the disease. Two individuals with dominant RYR1 variants exhibited respiratory insufficiency: a clinical symptom more commonly associated with recessive RYR1-RM cases. This study demonstrates that a genetics-led approach is suitable for the diagnosis of suspected RYR1-RM which can be corroborated through histopathology, muscle MRI and clinical examination.

Richard J. Piercy - One of the best experts on this subject based on the ideXlab platform.

  • Calcium Homeostasis in Myogenic Differentiation Factor 1 (MyoD)-Transformed, Virally-Transduced, Skin-Derived
    2016
    Co-Authors: Equine Myotubes, Pilar Martin-Duque, G Vassaux, Susan C. Brown, Cesare M. Terracciano, Marta Fern, Richard J. Piercy
    Abstract:

    Dysfunctional skeletal muscle calcium homeostasis plays a central role in the pathophysiology of several human and animal skeletal muscle disorders, in particular, genetic disorders associated with Ryanodine Receptor 1 (RYR1) mutations, such as malignant hyperthermia, central core disease, multiminicore disease and certain centronuclear myopathies. In addition, aberrant skeletal muscle calcium handling is believed to play a pivotal role in the highly prevalent disorder of Thoroughbred racehorses, known as Recurrent Exertional Rhabdomyolysis. Traditionally, such defects were studied in human and equine subjects by examining the contractile responses of biopsied muscle strips exposed to caffeine, a potent RYR1 agonist. However, this test is not widely available and, due to its invasive nature, is potentially less suitable for valuable animals in training or in the human paediatric setting. Furthermore, increasingly, RYR1 gene polymorphisms (of unknown pathogenicity and significance) are being identified through next generation sequencing projects. Consequently, we have investigated a less invasive test that can be used to study calcium homeostasis in cultured, skin-derived fibroblasts that are converted to the muscle lineage by viral transduction with a MyoD (myogenic differentiation 1) transgene. Similar models have been utilised to examine calcium homeostasis in human patient cells, however, to date, there has been no detailed assessment of the cells ’ calcium homeostasis, and in particular, the responses to agonists and antagonists of RYR1. Here w

  • Calcium homeostasis in myogenic differentiation factor 1 (MyoD)-transformed, virally-transduced, skin-derived equine myotubes
    PLoS ONE, 2014
    Co-Authors: Marta Fernández-fuente, Pilar Martin-Duque, G Vassaux, Susan C. Brown, Cesare M. Terracciano, Richard J. Piercy
    Abstract:

    Dysfunctional skeletal muscle calcium homeostasis plays a central role in the pathophysiology of several human and animal skeletal muscle disorders, in particular, genetic disorders associated with Ryanodine Receptor 1 (RYR1) mutations, such as malignant hyperthermia, central core disease, multiminicore disease and certain centronuclear myopathies. In addition, aberrant skeletal muscle calcium handling is believed to play a pivotal role in the highly prevalent disorder of Thoroughbred racehorses, known as Recurrent Exertional Rhabdomyolysis. Traditionally, such defects were studied in human and equine subjects by examining the contractile responses of biopsied muscle strips exposed to caffeine, a potent RYR1 agonist. However, this test is not widely available and, due to its invasive nature, is potentially less suitable for valuable animals in training or in the human paediatric setting. Furthermore, increasingly, RYR1 gene polymorphisms (of unknown pathogenicity and significance) are being identified through next generation sequencing projects. Consequently, we have investigated a less invasive test that can be used to study calcium homeostasis in cultured, skin-derived fibroblasts that are converted to the muscle lineage by viral transduction with a MyoD (myogenic differentiation 1) transgene. Similar models have been utilised to examine calcium homeostasis in human patient cells, however, to date, there has been no detailed assessment of the cells' calcium homeostasis, and in particular, the responses to agonists and antagonists of RYR1. Here we describe experiments conducted to assess calcium handling of the cells and examine responses to treatment with dantrolene, a drug commonly used for prophylaxis of recurrent exertional rhabdomyolysis in horses and malignant hyperthermia in humans.

Tokunbor A. Lawal - One of the best experts on this subject based on the ideXlab platform.

  • preclinical model systems of Ryanodine Receptor 1 related myopathies and malignant hyperthermia a comprehensive scoping review of works published 1990 2019
    Orphanet Journal of Rare Diseases, 2020
    Co-Authors: Tokunbor A. Lawal, James J. Dowling, Emily S Wires, Nancy Terry, Joshua J. Todd
    Abstract:

    Pathogenic variations in the gene encoding the skeletal muscle Ryanodine Receptor (RyR1) are associated with malignant hyperthermia (MH) susceptibility, a life-threatening hypermetabolic condition and RYR1-related myopathies (RYR1-RM), a spectrum of rare neuromuscular disorders. In RYR1-RM, intracellular calcium dysregulation, post-translational modifications, and decreased protein expression lead to a heterogenous clinical presentation including proximal muscle weakness, contractures, scoliosis, respiratory insufficiency, and ophthalmoplegia. Preclinical model systems of RYR1-RM and MH have been developed to better understand underlying pathomechanisms and test potential therapeutics. We conducted a comprehensive scoping review of scientific literature pertaining to RYR1-RM and MH preclinical model systems in accordance with the PRISMA Scoping Reviews Checklist and the framework proposed by Arksey and O’Malley. Two major electronic databases (PubMed and EMBASE) were searched without language restriction for articles and abstracts published between January 1, 1990 and July 3, 2019. Our search yielded 5049 publications from which 262 were included in this review. A majority of variants tested in RYR1 preclinical models were localized to established MH/central core disease (MH/CCD) hot spots. A total of 250 unique RYR1 variations were reported in human/rodent/porcine models with 95% being missense substitutions. The most frequently reported RYR1 variant was R614C/R615C (human/porcine total n = 39), followed by Y523S/Y524S (rabbit/mouse total n = 30), I4898T/I4897T/I4895T (human/rabbit/mouse total n = 20), and R163C/R165C (human/mouse total n = 18). The dyspedic mouse was utilized by 47% of publications in the rodent category and its RyR1-null (1B5) myotubes were transfected in 23% of publications in the cellular model category. In studies of transfected HEK-293 cells, 57% of RYR1 variations affected the RyR1 channel and activation core domain. A total of 15 RYR1 mutant mouse strains were identified of which ten were heterozygous, three were compound heterozygous, and a further two were knockout. Porcine, avian, zebrafish, C. elegans, canine, equine, and drosophila model systems were also reported. Over the past 30 years, there were 262 publications on MH and RYR1-RM preclinical model systems featuring more than 200 unique RYR1 variations tested in a broad range of species. Findings from these studies have set the foundation for therapeutic development for MH and RYR1-RM.

  • Ryanodine Receptor 1-Related Myopathies: Diagnostic and Therapeutic Approaches
    Neurotherapeutics, 2018
    Co-Authors: Tokunbor A. Lawal, Joshua J. Todd, Katherine G. Meilleur
    Abstract:

    Ryanodine Receptor type 1-related myopathies ( RYR1 -RM) are the most common class of congenital myopathies. Historically, RYR1 -RM classification and diagnosis have been guided by histopathologic findings on muscle biopsy. Main histological subtypes of RYR1 -RM include central core disease, multiminicore disease, core–rod myopathy, centronuclear myopathy, and congenital fiber-type disproportion. A range of RYR1 -RM clinical phenotypes has also emerged more recently and includes King Denborough syndrome, RYR1 rhabdomyolysis-myalgia syndrome, atypical periodic paralysis, congenital neuromuscular disease with uniform type 1 fibers, and late-onset axial myopathy. This expansion of the RYR1 -RM disease spectrum is due, in part, to implementation of next-generation sequencing methods, which include the entire RYR1 coding sequence rather than being restricted to hotspot regions. These methods enhance diagnostic capabilities, especially given historic limitations of histopathologic and clinical overlap across RYR1 -RM. Both dominant and recessive modes of inheritance have been documented, with the latter typically associated with a more severe clinical phenotype. As with all congenital myopathies, no FDA-approved treatments exist to date. Here, we review histopathologic, clinical, imaging, and genetic diagnostic features of the main RYR1 -RM subtypes. We also discuss the current state of treatments and focus on disease-modulating (nongenetic) therapeutic strategies under development for RYR1 -RM. Finally, perspectives for future approaches to treatment development are broached.

  • correlation of phenotype with genotype and protein structure in ryr1 related disorders
    Journal of Neurology, 2018
    Co-Authors: Joshua J. Todd, Tokunbor A. Lawal, Muslima S Razaqyar, Irene C Chrismer, Carolyn Allen, Monique Shelton, Mary M. Cosgrove, Vatsala Sagar, Xuemin Zhang, Anna Kuo
    Abstract:

    Variants in the skeletal muscle Ryanodine Receptor 1 gene (RYR1) result in a spectrum of RYR1-related disorders. Presentation during infancy is typical and ranges from delayed motor milestones and proximal muscle weakness to severe respiratory impairment and ophthalmoplegia. We aimed to elucidate correlations between genotype, protein structure and clinical phenotype in this rare disease population. Genetic and clinical data from 47 affected individuals were analyzed and variants mapped to the cryo-EM RyR1 structure. Comparisons of clinical severity, motor and respiratory function and symptomatology were made according to the mode of inheritance and affected RyR1 structural domain(s). Overall, 49 RYR1 variants were identified in 47 cases (dominant/de novo, n = 35; recessive, n = 12). Three variants were previously unreported. In recessive cases, facial weakness, neonatal hypotonia, ophthalmoplegia/paresis, ptosis, and scapular winging were more frequently observed than in dominant/de novo cases (all, p < 0.05). Both dominant/de novo and recessive cases exhibited core myopathy histopathology. Clinically severe cases were typically recessive or had variants localized to the RyR1 cytosolic shell domain. Motor deficits were most apparent in the MFM-32 standing and transfers dimension, [median (IQR) 85.4 (18.8)% of maximum score] and recessive cases exhibited significantly greater overall motor function impairment compared to dominant/de novo cases [79.7 (18.8)% vs. 87.5 (17.7)% of maximum score, p = 0.03]. Variant mapping revealed patterns of clinical severity across RyR1 domains, including a structural plane of interest within the RyR1 cytosolic shell, in which 84% of variants affected the bridging solenoid. We have corroborated genotype-phenotype correlations and identified RyR1 regions that may be especially sensitive to structural modification.

  • novel variants in individuals with ryr1 related congenital myopathies genetic laboratory and clinical findings
    Frontiers in Neurology, 2018
    Co-Authors: Joshua J. Todd, Tokunbor A. Lawal, Muslima S Razaqyar, Jessica W Witherspoon, Ami Mankodi, Irene C Chrismer, Carolyn Allen, Mary D Meyer, Anna Kuo, Monique Shelton
    Abstract:

    The Ryanodine Receptor 1-related congenital myopathies (RYR1-RM) comprise a spectrum of slow, rare neuromuscular diseases. Affected individuals present with a mild-to-severe symptomatology ranging from proximal muscle weakness, hypotonia and joint contractures to scoliosis, ophthalmoplegia, and respiratory involvement. Although there is currently no FDA-approved treatment for RYR1-RM, our group recently conducted the first clinical trial in this patient population (NCT02362425). This study aimed to characterize novel RYR1 variants with regard to genetic, laboratory, muscle magnetic resonance imaging (MRI), and clinical findings. Genetic and histopathology reports were obtained from participant's medical records. Alamut Visual Software was used to determine if participant's variants had been previously reported and to assess predicted pathogenicity. Physical exams, pulmonary function tests, T1-weighted muscle MRI scans, and blood measures were completed during the abovementioned clinical trial. Six novel variants (two de novo, three dominant, and one recessive) were identified in individuals with RYR1-RM. Consistent with established RYR1-RM histopathology, cores were observed in all biopsies, except Case 6 who exhibited fiber-type disproportion. Muscle atrophy and impaired mobility with Trendelenburg gait were the most common clinical symptoms and were identified in all cases. Muscle MRI revealed substantial inter-individual variation in fatty infiltration corroborating the heterogeneity of the disease. Two individuals with dominant RYR1 variants exhibited respiratory insufficiency: a clinical symptom more commonly associated with recessive RYR1-RM cases. This study demonstrates that a genetics-led approach is suitable for the diagnosis of suspected RYR1-RM which can be corroborated through histopathology, muscle MRI and clinical examination.

  • presentation_1.PDF
    2018
    Co-Authors: Joshua J. Todd, Tokunbor A. Lawal, Muslima S Razaqyar, Jessica W Witherspoon, Ami Mankodi, Irene C Chrismer, Carolyn Allen, Mary D Meyer, Anna Kuo, Monique S. Shelton
    Abstract:

    The Ryanodine Receptor 1-related congenital myopathies (RYR1-RM) comprise a spectrum of slow, rare neuromuscular diseases. Affected individuals present with a mild-to-severe symptomatology ranging from proximal muscle weakness, hypotonia and joint contractures to scoliosis, ophthalmoplegia, and respiratory involvement. Although there is currently no FDA-approved treatment for RYR1-RM, our group recently conducted the first clinical trial in this patient population (NCT02362425). This study aimed to characterize novel RYR1 variants with regard to genetic, laboratory, muscle magnetic resonance imaging (MRI), and clinical findings. Genetic and histopathology reports were obtained from participant’s medical records. Alamut Visual Software was used to determine if participant’s variants had been previously reported and to assess predicted pathogenicity. Physical exams, pulmonary function tests, T1-weighted muscle MRI scans, and blood measures were completed during the abovementioned clinical trial. Six novel variants (two de novo, three dominant, and one recessive) were identified in individuals with RYR1-RM. Consistent with established RYR1-RM histopathology, cores were observed in all biopsies, except Case 6 who exhibited fiber-type disproportion. Muscle atrophy and impaired mobility with Trendelenburg gait were the most common clinical symptoms and were identified in all cases. Muscle MRI revealed substantial inter-individual variation in fatty infiltration corroborating the heterogeneity of the disease. Two individuals with dominant RYR1 variants exhibited respiratory insufficiency: a clinical symptom more commonly associated with recessive RYR1-RM cases. This study demonstrates that a genetics-led approach is suitable for the diagnosis of suspected RYR1-RM which can be corroborated through histopathology, muscle MRI and clinical examination.

Susan Treves - One of the best experts on this subject based on the ideXlab platform.

  • gain of function in the immune system caused by a Ryanodine Receptor 1 mutation
    Journal of Cell Science, 2013
    Co-Authors: Mirko Vukcevic, Francesco Zorzato, Simone Keck, Dimitrios A Tsakiris, Jennifer Keiser, Rick M Maizels, Susan Treves
    Abstract:

    Mutations in RYR1, the gene encoding Ryanodine Receptor 1, are linked to a variety of neuromuscular disorders including malignant hyperthermia (MH), a pharmacogenetic hypermetabolic disease caused by dysregulation of Ca(2+) in skeletal muscle. RYR1 encodes a Ca(2+) channel that is predominantly expressed in skeletal muscle sarcoplasmic reticulum, where it is involved in releasing the Ca(2+) necessary for muscle contraction. Other tissues, however, including cells of the immune system, have been shown to express Ryanodine Receptor 1; in dendritic cells its activation leads to increased surface expression of major histocompatibility complex II molecules and provides synergistic signals leading to cell maturation. In the present study, we investigated the impact of an MH mutation on the immune system by studying the RYR1Y522S knock-in mouse. Our results show that there are subtle but significant differences both in resting 'non-challenged' mice as well as in mice treated with antigenic stimuli, in particular the knock-in mice: (i) have dendritic cells that are more efficient at stimulating T cell proliferation, (ii) have higher levels of natural IgG1 and IgE antibodies, and (iii) are faster and more efficient at mounting a specific immune response in the early phases of immunization. We suggest that some gain-of-function MH-linked RYR1 mutations might offer selective immune advantages to their carriers. Furthermore, our results raise the intriguing possibility that pharmacological activation of RyR1 might be exploited for the development of new classes of vaccines and adjuvants.

  • functional properties of Ryanodine Receptors carrying three amino acid substitutions identified in patients affected by multi minicore disease and central core disease expressed in immortalized lymphocytes
    Biochemical Journal, 2006
    Co-Authors: Sylvie Ducreux, Francesco Zorzato, Susan Treves, Heinz Jungbluth, C R Muller, Francesco Muntoni, Ana Ferreiro, Nicole Monnier
    Abstract:

    More than 80 mutations in the skeletal muscle Ryanodine Receptor gene have been found to be associated with autosomal dominant forms of malignant hyperthermia and central core disease, and with recessive forms of multi-minicore disease. Studies on the functional effects of pathogenic dominant mutations have shown that they mostly affect intracellular Ca2+ homoeostasis, either by rendering the channel hypersensitive to activation (malignant hyperthermia) or by altering the amount of Ca2+ released subsequent to physiological or pharmacological activation (central core disease). In the present paper, we show, for the first time, data on the functional effect of two recently identified recessive Ryanodine Receptor 1 amino acid substitutions, P3527S and V4849I, as well as that of R999H, another substitution that was identified in two siblings that were affected by multi-minicore disease. We studied the intracellular Ca2+ homoeostasis of EBV (Epstein–Barr virus)-transformed lymphoblastoid cells from the affected patients, their healthy relatives and control individuals. Our results show that the P3527S substitution in the homozygous state affected the amount of Ca2+ released after pharmacological activation with 4-chloro-m-cresol and caffeine, but did not affect the size of the thapsigargin-sensitive Ca2+ stores. The other substitutions had no effect on either the size of the intracellular Ca2+ stores, or on the amount of Ca2+ released after Ryanodine Receptor activation; however, both the P3527S and V4849I substitutions had a small but significant effect on the resting Ca2+ concentration.