Scedosporium

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 2913 Experts worldwide ranked by ideXlab platform

G S De Hoog - One of the best experts on this subject based on the ideXlab platform.

  • Susceptibility and diversity in the therapy-refractory genus Scedosporium
    'American Society for Microbiology', 2014
    Co-Authors: Lackner M., Hagen F., Meis J.f.g.m., Gerrits-van Den Ende A.h., Vu D., Fritz J., Moussa T.a., G S De Hoog
    Abstract:

    Contains fulltext : 136891.pdf (publisher's version ) (Open Access)Scedosporium species show decreased susceptibility to the majority of systemic antifungal drugs. Acquired resistance is likely to disseminate differentially with the mode of exchange of genetic material between lineages. Inter- and intraspecific diversities of Scedosporium species were analyzed for three partitions (rDNA internal transcribed spacer gene [ITS], partial beta-tubulin gene, and amplified fragment length polymorphism profiles), with the aim to establish distribution of resistance between species, populations, and strains. Heterogeneity of and recombination between lineages were determined, and distances between clusters were calculated using a centroid approach. Clinical, geographic, and antifungal data were plotted on diversity networks. Scedosporium minutisporum, Scedosporium desertorum, and Scedosporium aurantiacum were distinguished unambiguously in all partitions and had differential antifungal susceptibility profiles (ASP). Pseudallescheria fusoidea and Pseudallescheria ellipsoidea were indistinguishable from Scedosporium boydii. Pseudallescheria angusta took an intermediate position between Scedosporium apiospermum and S. boydii. Scedosporium boydii and S. apiospermum had identical ASP. Differences in (multi)resistance were linked to individual strains. S. apiospermum and S. boydii showed limited interbreeding and were recognized as valid, sympatric species. The S. apiospermum/S. boydii group, comprising the main clinically relevant Scedosporium species, consists of separate lineages and is interpreted as a complex undergoing sympatric evolution with incomplete lineage sorting. In routine diagnostics, the lineages in S. apiospermum/S. boydii are indicated with the umbrella descriptor "S. apiospermum complex"; individual species can be identified with rDNA ITS with 96.3% confidence. Voriconazole is recommended as the first-line treatment; resistance against this compound is rare

  • Susceptibility and diversity in the therapy-refractory genus Scedosporium
    2014
    Co-Authors: Lackner M., Hagen F., Meis J.f.g.m., Gerrits-van Den Ende A.h., Vu D., Fritz J., Moussa T.a., G S De Hoog
    Abstract:

    Scedosporium species show decreased susceptibility to the majority of systemic antifungal drugs. Acquired resistance is likely to disseminate differentially with the mode of exchange of genetic material between lineages. Inter- and intraspecific diversities of Scedosporium species were analyzed for three partitions (rDNA internal transcribed spacer gene [ITS], partial beta-tubulin gene, and amplified fragment length polymorphism profiles), with the aim to establish distribution of resistance between species, populations, and strains. Heterogeneity of and recombination between lineages were determined, and distances between clusters were calculated using a centroid approach. Clinical, geographic, and antifungal data were plotted on diversity networks. Scedosporium minutisporum, Scedosporium desertorum, and Scedosporium aurantiacum were distinguished unambiguously in all partitions and had differential antifungal susceptibility profiles (ASP). Pseudallescheria fusoidea and Pseudallescheria ellipsoidea were indistinguishable from Scedosporium boydii. Pseudallescheria angusta took an intermediate position between Scedosporium apiospermum and S. boydii. Scedosporium boydii and S. apiospermum had identical ASP. Differences in (multi)resistance were linked to individual strains. S. apiospermum and S. boydii showed limited interbreeding and were recognized as valid, sympatric species. The S. apiospermum/S. boydii group, comprising the main clinically relevant Scedosporium species, consists of separate lineages and is interpreted as a complex undergoing sympatric evolution with incomplete lineage sorting. In routine diagnostics, the lineages in S. apiospermum/S. boydii are indicated with the umbrella descriptor "S. apiospermum complex"; individual species can be identified with rDNA ITS with 96.3% confidence. Voriconazole is recommended as the first-line treatment; resistance against this compound is rare

  • reverse line blot hybridisation screening of pseudallescheria Scedosporium species in patients with cystic fibrosis
    Mycoses, 2011
    Co-Authors: A Gerrits H G Van Den Ende, G S De Hoog, I Accoceberry, J-p Bouchara, F Hernandez, Isabelle Durandjoly, L Delhaes
    Abstract:

    The PCR-RLB (reverse line blot hybridisation) was applied as a molecular technique for the detection of members of Pseudallescheria and Scedosporium from sputum of patients with cystic fibrosis (CF). Fifty-nine sputum samples were collected from 52 CF patients, which were analysed by culture and PCR-RLB. Conventional and semi-selective culture yielded five positive samples, but the PCR-RLB hybridisation assay permitted the detection of members of Pseudallescheria/Scedosporium in 32 out of 52 patients (61.5%). In total, PCR-RLB yielded 47 positives. Pseudallescheria apiosperma was detected in 20 samples, while Pseudallescheria boydii and Pseudallescheria aurantiacum were detected in 17 and eight samples, respectively. Six samples gave a positive reaction with two distinct species-specific probes and one sample with three probes. In conclusion, the PCR-RLB assay described in this study allows the detection of Scedosporium spp. in CF sputum samples and the identification of Pseudallescheria apiosperma, P. boydii, S. aurantiacum, Scedosporium prolificans and Pseudallescheria minutispora.

  • Reverse line blot hybridisation screening of Pseudallescheria/Scedosporium species in patients with cystic fibrosis.
    Mycoses, 2011
    Co-Authors: A H G Gerrits Van Den Ende, G S De Hoog, I Accoceberry, I Durand-joly, J-p Bouchara, F Hernandez, L Delhaes
    Abstract:

    The PCR-RLB (reverse line blot hybridisation) was applied as a molecular technique for the detection of members of Pseudallescheria and Scedosporium from sputum of patients with cystic fibrosis (CF). Fifty-nine sputum samples were collected from 52 CF patients, which were analysed by culture and PCR-RLB. Conventional and semi-selective culture yielded five positive samples, but the PCR-RLB hybridisation assay permitted the detection of members of Pseudallescheria/Scedosporium in 32 out of 52 patients (61.5%). In total, PCR-RLB yielded 47 positives. Pseudallescheria apiosperma was detected in 20 samples, while Pseudallescheria boydii and Pseudallescheria aurantiacum were detected in 17 and eight samples, respectively. Six samples gave a positive reaction with two distinct species-specific probes and one sample with three probes. In conclusion, the PCR-RLB assay described in this study allows the detection of Scedosporium spp. in CF sputum samples and the identification of Pseudallescheria apiosperma, P. boydii, S. aurantiacum, Scedosporium prolificans and Pseudallescheria minutispora.

  • Identification of Pseudallescheria and Scedosporium species by three molecular methods
    'American Society for Microbiology', 2011
    Co-Authors: Lu Q., Lackner M., Gerrits Van Den Ende, A.h., Bakkers J.m.j.e., Sun J., Najafzadeh M.j., Melchers W.j.g., Li R., G S De Hoog
    Abstract:

    Item does not contain fulltextThe major clinically relevant species in Scedosporium (teleomorph Pseudallescheria) are Pseudallescheria boydii, Scedosporium aurantiacum, Scedosporium apiospermum, and Scedosporium prolificans, while Pseudallescheria minutispora, Petriellopsis desertorum, and Scedosporium dehoogii are exceptional agents of disease. Three molecular methods targeting the partial beta-tubulin gene were developed and evaluated to identify six closely related species of the S. apiospermum complex using quantitative real-time PCR (qPCR), PCR-based reverse line blot (PCR-RLB), and loop-mediated isothermal amplification (LAMP). qPCR was not specific enough for the identification of all species but had the highest sensitivity. The PCR-RLB assay was efficient for the identification of five species. LAMP distinguished all six species unambiguously. The analytical sensitivities of qPCR, PCR-RLB, and LAMP combined with MagNAPure, CTAB (cetyltrimethylammonium bromide), and FTA filter (Whatman) extraction were 50, 5 x 10(3), and 5 x 10(2) cells/mul, respectively. When LAMP was combined with a simplified DNA extraction method using an FTA filter, identification to the species level was achieved within 2 h, including DNA extraction. The FTA-LAMP assay is therefore recommended as a cost-effective, simple, and rapid method for the identification of Scedosporium species

J-p Bouchara - One of the best experts on this subject based on the ideXlab platform.

  • Lower Funneling Pathways in Scedosporium Species
    'Frontiers Media SA', 2021
    Co-Authors: Wilfried Poirier, J-p Bouchara, Kevin Ravenel, Sandrine Giraud
    Abstract:

    Lignin, a natural polyaromatic macromolecule, represents an essential component of the lignocellulose biomass. Due to its complexity, the natural degradation of this molecule by microorganisms still remains largely misunderstood. Extracellular oxidative degradation is followed by intracellular metabolic degradation of conserved aromatic intermediate compounds (protocatechuate, catechol, hydroxyquinol, and gentisic acid) that are used as carbon and energy sources. The lower funneling pathways are characterized by the opening of the aromatic ring of these molecules through dioxygenases, leading to degradation products that finally enter into the tricarboxylic acid (TCA) cycle. In order to better understand the adaptation mechanisms of Scedosporium species to their environment, these specific catabolism pathways were studied. Genes encoding ring-cleaving dioxygenases were identified in Scedosporium genomes by sequence homology, and a bioinformatic analysis of the organization of the corresponding gene clusters was performed. In addition, these predictions were confirmed by evaluation of the expression level of the genes of the gentisic acid cluster. When the fungus was cultivated in the presence of lignin or gentisic acid as sole carbon source, experiments revealed that the genes of the gentisic acid cluster were markedly overexpressed in the two Scedosporium species analyzed (Scedosporium apiospermum and Scedosporium aurantiacum). Only the gene encoding a membrane transporter was not overexpressed in the gentisic acid-containing medium. Together, these data suggest the involvement of the lower funneling pathways in Scedosporium adaptation to their environment

  • Gene Disruption in Scedosporium aurantiacum: Proof of Concept with the Disruption of SODC Gene Encoding a Cytosolic Cu,Zn-Superoxide Dismutase
    Mycopathologia, 2018
    Co-Authors: Victoire Pateau, J-p Bouchara, Bienvenue Razafimandimby, Patrick Vandeputte, Christopher R. Thornton, Thomas Guillemette, Sandrine Giraud
    Abstract:

    Scedosporium species are opportunistic pathogens responsible for a large variety of infections in humans. An increasing occurrence was observed in patients with underlying conditions such as immunosuppression or cystic fibrosis. Indeed, the genus Scedosporium ranks the second among the filamentous fungi colonizing the respiratory tracts of the CF patients. To date, there is very scarce information on the pathogenic mechanisms, at least in part because of the limited genetic tools available. In the present study, we successfully developed an efficient transformation and targeted gene disruption approach on the species Scedosporium aurantiacum . The disruption cassette was constructed using double-joint PCR procedure, and resistance to hygromycin B as the selection marker. This proof of concept was performed on the functional gene SODC encoding the Cu,Zn-superoxide dismutase. Disruption of the SODC gene improved susceptibility of the fungus to oxidative stress. This technical advance should open new research areas and help to better understand the biology of Scedosporium species.

  • Varying susceptibility of clinical and environmental Scedosporium isolates to chemical oxidative stress in conidial germination
    Archives of Microbiology, 2018
    Co-Authors: Cindy Staerck, J-p Bouchara, Charlotte Godon, Maxime Fleury
    Abstract:

    Scedosporium species are opportunistic pathogens causing a great variety of infections in both immunocompetent and immunocompromised individuals. The Scedosporium genus ranks the second among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF), after Aspergillus fumigatus, and most species are capable to chronically colonize the respiratory tract of these patients. Nevertheless, few data are available regarding evasion of the inhaled conidia to the host immune response. Upon microbial infection, macrophages and neutrophils release reactive oxygen species (ROS). To colonize the respiratory tract, the conidia need to germinate despite the oxidative stress generated by phagocytic cells. Germination of spores from different clinical or environmental isolates of the major Scedosporium species was investigated in oxidative stress conditions. All tested species showed susceptibility to oxidative stress. However, when comparing clinical and environmental isolates, differences in germination capabilities under oxidative stress conditions were seen between species as well as within each species. Among environmental isolates, Scedosporium aurantiacum isolates were the most resistant to oxidative stress whereas Scedosporium dehoogii were the most susceptible. Overall, the differences observed between Scedosporium species in the capacity to germinate under oxidative stress conditions could explain their varying prevalence and pathogenicity.

  • Scedosporium boydii cata1 and sodc recombinant proteins new tools for serodiagnosis of Scedosporium infection of patients with cystic fibrosis
    Diagnostic Microbiology and Infectious Disease, 2017
    Co-Authors: Sara Mina, Agnès Marot, J-p Bouchara, Cindy Staerck, Alphonse Calenda, Charlotte Godon, Maxime Fleury
    Abstract:

    Scedosporium species rank the second among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF), after Aspergillus fumigatus. In CF, these fungi may cause various respiratory infections similar to those caused by A. fumigatus, including bronchitis and allergic broncho-pulmonary mycoses. Diagnosis of these infections relies on the detection of serum antibodies using crude antigenic extracts. However, many components of these extracts are common to Scedosporium and Aspergillus species, leading to cross-reactions. Here, 5 recombinant proteins from S. apiospermum or S. boydii were produced, and their value in serodiagnosis of Scedosporium infections was investigated by enzyme-linked immunosorbent assay. Two of them, corresponding to the Scedosporium catalase A1 or cytosolic Cu,Zn-superoxyde dismutase, allowed the detection of Scedosporium infection, and the differentiation with an Aspergillus infection. These recombinant proteins therefore may serve as a basis for the development of a standardized serological test.

  • draft genome sequence of the human pathogenic fungus Scedosporium boydii
    Genome Announcements, 2017
    Co-Authors: Ludovic Duvaux, J-p Bouchara, Patrick Vandeputte, Christopher R. Thornton, Jason Shiller, Thomas Duge De Bernonville, Nicolas Papon, Bruno Le Cam, Amandine Gastebois
    Abstract:

    The opportunistic fungal pathogen Scedosporium boydii is the most common Scedosporium species in French patients with cystic fibrosis. Here we present the first genome report for S. boydii, providing a resource which may enable the elucidation of the pathogenic mechanisms in this species.

Michaela Lackner - One of the best experts on this subject based on the ideXlab platform.

  • Prognostic factors in 264 adults with invasive Scedosporium spp. and Lomentospora prolificans infection reported in the literature and FungiScope®
    2019
    Co-Authors: Danila Seidel, Arne Meißner, Michaela Lackner, Ellen Piepenbrock, Jon Salmanton-garcía, Melanie Stecher, Sibylle C. Mellinghoff, Axel Hamprecht, Luisa Durán Graeff, Philipp Köhler
    Abstract:

    Invasive Scedosporium spp. and Lomentospora prolificans infections are an emerging threat in immunocompromised and occasionally in healthy hosts. Scedosporium spp. is intrinsically resistant to most, L. prolificans to all the antifungal drugs currently approved, raising concerns about appropriate treatment decisions. High mortality rates of up to 90% underline the need for comprehensive diagnostic workup and even more for new, effective antifungal drugs to improve patient outcome. For a comprehensive analysis, we identified cases of severe Scedosporium spp. and L. prolificans infections from the literature diagnosed in 2000 or later and the FungiScope® registry. For 208 Scedosporium spp. infections solid organ transplantation (n = 58, 27.9%) and for 56 L. prolificans infection underlying malignancy (n = 28, 50.0%) were the most prevalent risk factors. L. prolificans infections frequently presented as fungemia (n = 26, 46.4% versus n = 12, 5.8% for Scedosporium spp.). Malignancy, fungemia, CNS and lung involvement predicted worse outcome for scedosporiosis and lomentosporiosis. Patients treated with voriconazole had a better overall outcome in both groups compared to treatment with amphotericin B formulations. This review discusses the epidemiology, prognostic factors, pathogen susceptibility to approved and investigational antifungals, and treatment strategies of severe infections caused by Scedosporium spp. and L. prolificans.

  • the species complex issue in clinically relevant fungi a case study in Scedosporium apiospermum
    Fungal Biology, 2016
    Co-Authors: Min Chen, A Gerrits H G Van Den Ende, Sybren G De Hoog, Jingsi Zeng, B Stielow, Wanqing Liao, Michaela Lackner
    Abstract:

    The genus Scedosporium currently comprises six species, Scedosporium apiospermum, Scedosporium boydii, Pseudallescheria angusta, Scedosporium minutisporum, Scedosporium dehoogii, and Scedosporium aurantiacum, most of which can be distinguished with the primary fungal DNA barcode, the ITS1/2 region of the rDNA gene cluster. In the present study, four additional genetic loci were explored from a phylogenetic point of view enabling a barcoding approach based on K2P pairwise distances to resolve the taxa Scedosporium. We included partial γ-actin (ACT), β-tubulin (BT2), elongation factor 1α (TEF1), and the small ribosomal protein 60S L10 (L1) (RP60S). Phylogenetic inference of each marker individually showed that four out of six species within Scedosporium can be distinguished unambiguously, while strains of S. apiospermum, S. boydii, and P. angusta showed occasional recombination, and accordingly, no genealogical concordance between markers was obtainable. We defined S. apiospermum, S. boydii, and P. angusta as the 'S. apiospermum species complex' since observed differences were not consistent between lineages, and no clinical differences are known between entities within the complex. While BT2 revealed the best performance among the genetic loci tested at the lineage level, barcoding of the ITS region is sufficient for distinction of all entities in Scedosporium at the species or 'complex' level.

  • Proposed nomenclature for Pseudallescheria, Scedosporium and related genera
    Fungal Diversity, 2014
    Co-Authors: Michaela Lackner, G. Sybren De Hoog, Markus Nagl, Liyue Yang, Leandro F. Moreno, Sarah A. Ahmed, Fritz Andreas, Josef Kaltseis, Cornelia Lass-flörl, Brigitte Risslegger
    Abstract:

    As a result of fundamental changes in the International Code of Nomenclature on the use of separate names for sexual and asexual stages of fungi, generic names of many groups should be reconsidered. Members of the ECMM/ISHAM working group on Pseudallescheria/Scedosporium infections herein advocate a novel nomenclature for genera and species in Pseudallescheria, Scedosporium and allied taxa. The generic names ParaScedosporium, Lomentospora, Petriella, Petriellopsis, and Scedosporium are proposed for a lineage within Microascaceae with mostly Scedosporium anamorphs producing slimy, annellidic conidia. Considering that Scedosporium has priority over Pseudallescheria and that Scedosporium prolificans is phylogenetically distinct from the other Scedosporium species, some name changes are proposed. Pseudallescheria minutispora and Petriellidium desertorum are renamed as Scedosporium minutisporum and S. desertorum, respectively. Scedosporium prolificans is renamed as Lomentospora prolificans.

  • rapid identification of pseudallescheria and Scedosporium strains by using rolling circle amplification
    Applied and Environmental Microbiology, 2012
    Co-Authors: Michaela Lackner, Mohammad Javad Najafzadeh, Jiufeng Sun, Sybren G De Hoog
    Abstract:

    The Pseudallescheria boydii complex, comprising environmental pathogens with Scedosporium anamorphs, has recently been subdivided into five main species: Scedosporium dehoogii, S. aurantiacum, Pseudallescheria minutispora, P. apiosperma, and P. boydii, while the validity of some other taxa is being debated. Several Pseudallescheria and Scedosporium species are indicator organisms of pollution in soil and water. Scedosporium dehoogii in particular is enriched in soils contaminated by aliphatic hydrocarbons. In addition, the fungi may cause life-threatening infections involving the central nervous system in severely impaired patients. For screening purposes, rapid and economic tools for species recognition are needed. Our aim is to establish rolling circle amplification (RCA) as a screening tool for species-specific identification of Pseudallescheria and Scedosporium. With this aim, a set of padlock probes was designed on the basis of the internal transcribed spacer (ITS) region, differing by up to 13 fixed mutations. Padlock probes were unique as judged from sequence comparison by BLAST search in GenBank and in dedicated research databases at CBS (Centraalbureau voor Schimmelcultures Fungal Biodiversity Centre). RCA was applied as an in vitro tool, tested with pure DNA amplified from cultures. The species-specific padlock probes designed in this study yielded 100% specificity. The method presented here was found to be an attractive alternative to identification by restriction fragment length polymorphism (RFLP) or sequencing. The rapidity (<1 day), specificity, and low costs make RCA a promising screening tool for environmentally and clinically relevant fungi.

  • Rapid identification of Pseudallescheria and Scedosporium strains by using rolling circle amplification.
    Applied and environmental microbiology, 2011
    Co-Authors: Michaela Lackner, Mohammad Javad Najafzadeh, Jiufeng Sun, G. Sybren De Hoog
    Abstract:

    The Pseudallescheria boydii complex, comprising environmental pathogens with Scedosporium anamorphs, has recently been subdivided into five main species: Scedosporium dehoogii, S. aurantiacum, Pseudallescheria minutispora, P. apiosperma, and P. boydii, while the validity of some other taxa is being debated. Several Pseudallescheria and Scedosporium species are indicator organisms of pollution in soil and water. Scedosporium dehoogii in particular is enriched in soils contaminated by aliphatic hydrocarbons. In addition, the fungi may cause life-threatening infections involving the central nervous system in severely impaired patients. For screening purposes, rapid and economic tools for species recognition are needed. Our aim is to establish rolling circle amplification (RCA) as a screening tool for species-specific identification of Pseudallescheria and Scedosporium. With this aim, a set of padlock probes was designed on the basis of the internal transcribed spacer (ITS) region, differing by up to 13 fixed mutations. Padlock probes were unique as judged from sequence comparison by BLAST search in GenBank and in dedicated research databases at CBS (Centraalbureau voor Schimmelcultures Fungal Biodiversity Centre). RCA was applied as an in vitro tool, tested with pure DNA amplified from cultures. The species-specific padlock probes designed in this study yielded 100% specificity. The method presented here was found to be an attractive alternative to identification by restriction fragment length polymorphism (RFLP) or sequencing. The rapidity (

Petermichael Rath - One of the best experts on this subject based on the ideXlab platform.

  • discrimination of Scedosporium prolificans against pseudallescheria boydii and Scedosporium apiospermum by semiautomated repetitive sequence based pcr
    Medical Mycology, 2010
    Co-Authors: Joerg Steinmann, D Schmidt, Jan Buer, Petermichael Rath
    Abstract:

    The laboratory identification of Pseudallescheria and Scedosporium isolates at the species level is important for clinical and epidemiological purposes. This study used semiautomated repetitive sequence-based polymerase chain reaction (rep-PCR) to identify Pseudallescheria/Scedosporium. Reference strains of Pseudallescheria boydii (n = 12), Scedosporium prolificans (n = 8), Scedosporium apiospermum (n = 9), and clinical/environmental isolates (P. boydii, 7; S. prolificans, 7; S. apiospermum, 7) were analyzed by rep-PCR. All clinical isolates were identified by morphological and phenotypic characteristics and by sequence analysis. Species identification of reference strains was based on the results of available databases. Rep-PCR studies were also conducted with various molds to differentiate Pseudallescheria/Scedosporium spp. from other commonly encountered filamentous fungi. All tested Pseudallescheria/Scedosporium isolates were distinguishable from the other filamentous fungi. All Scedosporium prolifica...

  • discrimination of Scedosporium prolificans against pseudallescheria boydii and Scedosporium apiospermum by semiautomated repetitive sequence based pcr
    Medical Mycology, 2010
    Co-Authors: Joerg Steinmann, D Schmidt, Jan Buer, Petermichael Rath
    Abstract:

    The laboratory identification of Pseudallescheria and Scedosporium isolates at the species level is important for clinical and epidemiological purposes. This study used semiautomated repetitive sequence-based polymerase chain reaction (rep-PCR) to identify Pseudallescheria/Scedosporium. Reference strains of Pseudallescheria boydii (n = 12), Scedosporium prolificans (n = 8), Scedosporium apiospermum (n = 9), and clinical/environmental isolates (P. boydii, 7; S. prolificans, 7; S. apiospermum, 7) were analyzed by rep-PCR. All clinical isolates were identified by morphological and phenotypic characteristics and by sequence analysis. Species identification of reference strains was based on the results of available databases. Rep-PCR studies were also conducted with various molds to differentiate Pseudallescheria/Scedosporium spp. from other commonly encountered filamentous fungi. All tested Pseudallescheria/Scedosporium isolates were distinguishable from the other filamentous fungi. All Scedosporium prolificans strains clustered within the cutoff of 85%, and species identification by rep-PCR showed an agreement of 100% with sequence analysis. However, several isolates of P. boydii and S. apiospermum did not cluster within the 85% cutoff with the same species by rep-PCR. Although the identification of P. boydii and S. apiospermum was not correct, the semiautomated rep-PCR system is a promising tool for the identification of S. prolificans isolates.

Sandrine Giraud - One of the best experts on this subject based on the ideXlab platform.

  • Lower Funneling Pathways in Scedosporium Species
    'Frontiers Media SA', 2021
    Co-Authors: Wilfried Poirier, J-p Bouchara, Kevin Ravenel, Sandrine Giraud
    Abstract:

    Lignin, a natural polyaromatic macromolecule, represents an essential component of the lignocellulose biomass. Due to its complexity, the natural degradation of this molecule by microorganisms still remains largely misunderstood. Extracellular oxidative degradation is followed by intracellular metabolic degradation of conserved aromatic intermediate compounds (protocatechuate, catechol, hydroxyquinol, and gentisic acid) that are used as carbon and energy sources. The lower funneling pathways are characterized by the opening of the aromatic ring of these molecules through dioxygenases, leading to degradation products that finally enter into the tricarboxylic acid (TCA) cycle. In order to better understand the adaptation mechanisms of Scedosporium species to their environment, these specific catabolism pathways were studied. Genes encoding ring-cleaving dioxygenases were identified in Scedosporium genomes by sequence homology, and a bioinformatic analysis of the organization of the corresponding gene clusters was performed. In addition, these predictions were confirmed by evaluation of the expression level of the genes of the gentisic acid cluster. When the fungus was cultivated in the presence of lignin or gentisic acid as sole carbon source, experiments revealed that the genes of the gentisic acid cluster were markedly overexpressed in the two Scedosporium species analyzed (Scedosporium apiospermum and Scedosporium aurantiacum). Only the gene encoding a membrane transporter was not overexpressed in the gentisic acid-containing medium. Together, these data suggest the involvement of the lower funneling pathways in Scedosporium adaptation to their environment

  • Gene Disruption in Scedosporium aurantiacum: Proof of Concept with the Disruption of SODC Gene Encoding a Cytosolic Cu,Zn-Superoxide Dismutase
    Mycopathologia, 2018
    Co-Authors: Victoire Pateau, J-p Bouchara, Bienvenue Razafimandimby, Patrick Vandeputte, Christopher R. Thornton, Thomas Guillemette, Sandrine Giraud
    Abstract:

    Scedosporium species are opportunistic pathogens responsible for a large variety of infections in humans. An increasing occurrence was observed in patients with underlying conditions such as immunosuppression or cystic fibrosis. Indeed, the genus Scedosporium ranks the second among the filamentous fungi colonizing the respiratory tracts of the CF patients. To date, there is very scarce information on the pathogenic mechanisms, at least in part because of the limited genetic tools available. In the present study, we successfully developed an efficient transformation and targeted gene disruption approach on the species Scedosporium aurantiacum . The disruption cassette was constructed using double-joint PCR procedure, and resistance to hygromycin B as the selection marker. This proof of concept was performed on the functional gene SODC encoding the Cu,Zn-superoxide dismutase. Disruption of the SODC gene improved susceptibility of the fungus to oxidative stress. This technical advance should open new research areas and help to better understand the biology of Scedosporium species.

  • Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and accurate identification of Pseudallescheria/Scedosporium species.
    Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 2014
    Co-Authors: Emilie Sitterlé, Amandine Rougeron, Sandrine Giraud, J-p Bouchara, J. Leto, Florent Morio, Brunhilde Dauphin, Cécile Angebault, Gilles Quesne, Jean-luc Beretti
    Abstract:

    An increasing number of infections due to Pseudallescheria/Scedosporium species has been reported during the past decades, both in immunocompromised and immunocompetent patients. Additionally, these fungi are now recognized worldwide as common agents of fungal colonization of the airways in cystic fibrosis patients, which represents a risk factor for disseminated infections after lung transplantation. Currently six species are described within the Pseudallescheria/Scedosporium genus, including Scedosporium prolificans and species of the Pseudallescheria/Scedosporium apiospermum complex (i.e. S. apiospermum sensu stricto, Pseudallescheria boydii, Scedosporium aurantiacum, Pseudallescheria minutispora and Scedosporium dehoogii). Precise identification of clinical isolates at the species level is required because these species differ in their antifungal drug susceptibility patterns. Matrix-assisted laser desorption ionization (MALDI)-time of flight (TOF)/mass spectrometry (MS) is a powerful tool to rapidly identify moulds at the species level. We investigated the potential of this technology to discriminate Pseudallescheria/Scedosporium species. Forty-seven reference strains were used to build a reference database library. Profiles from 3-, 5- and 7-day-old cultures of each reference strain were analysed to identify species-specific discriminating profiles. The database was tested for accuracy using a set of 64 clinical or environmental isolates previously identified by multilocus sequencing. All isolates were unequivocally identified at the species level by MALDI-TOF/MS. Our results, obtained using a simple protocol, without prior protein extraction or standardization of the culture, demonstrate that MALDI-TOF/MS is a powerful tool for rapid identification of Pseudallescheria/ Scedosporium species that cannot be currently identified by morphological examination in the clinical setting.

  • distribution of the different species of the pseudallescheria boydii Scedosporium apiospermum complex in french patients with cystic fibrosis
    Medical Mycology, 2013
    Co-Authors: Rachid Zouhair, Amandine Rougeron, Abdessamad Kobi, J-p Bouchara, Bienvenue Razafimandimby, Sandrine Giraud
    Abstract:

    AbstractAs various new sibling species within the Pseudallescheria boydii/Scedosporium apiospermum complex have been described recently with differences in their susceptibility to antifungals, this study was conducted in order to determine their respective frequency in cystic fibrosis. Results indicated that P. boydii largely predominated (62%), followed by S. apiospermum (24%), Scedosporium aurantiacum (10%) and Pseudallescheria minutispora (4%). Scedosporium dehoogii was not recovered in this study. The multiple correspondence factor analysis highlighted geographical discrepancies within species distribution: P. boydii was rarely encountered in Northern France, while S. apiospermum was less represented in the west of the country. Additionally, we demonstrated that all species encountered in the cystic fibrosis context were capable to chronically colonize the respiratory tract of patients. Molecular typing of a large set of environmental and clinical isolates should be conducted to delineate the epidemio...

  • distribution of the different species of the pseudallescheria boydii Scedosporium apiospermum complex in french patients with cystic fibrosis
    Medical Mycology, 2013
    Co-Authors: Rachid Zouhair, Amandine Rougeron, Abdessamad Kobi, J-p Bouchara, Bienvenue Razafimandimby, Sandrine Giraud
    Abstract:

    As various new sibling species within the Pseudallescheria boydii/Scedosporium apiospermum complex have been described recently with differences in their susceptibility to antifungals, this study was conducted in order to determine their respective frequency in cystic fibrosis. Results indicated that P. boydii largely predominated (62%), followed by S. apiospermum (24%), Scedosporium aurantiacum (10%) and Pseudallescheria minutispora (4%). Scedosporium dehoogii was not recovered in this study. The multiple correspondence factor analysis highlighted geographical discrepancies within species distribution: P. boydii was rarely encountered in Northern France, while S. apiospermum was less represented in the west of the country. Additionally, we demonstrated that all species encountered in the cystic fibrosis context were capable to chronically colonize the respiratory tract of patients. Molecular typing of a large set of environmental and clinical isolates should be conducted to delineate the epidemiology of each sibling species in the complex.