Schistosoma haematobium

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 7983 Experts worldwide ranked by ideXlab platform

Bonnie L Webster - One of the best experts on this subject based on the ideXlab platform.

  • high quality Schistosoma haematobium genome achieved by single molecule and long range sequencing
    GigaScience, 2019
    Co-Authors: Andreas J Stroehlein, David Rollinson, Bonnie L Webster, Pasi K Korhonen, Paul J Brindley, Robin B Gasser, Teik Min Chong, Yanlue Lim, Kokgan Chan, Neil D Young
    Abstract:

    Background Schistosoma haematobium causes urogenital schistosomiasis, a neglected tropical disease affecting >100 million people worldwide. Chronic infection with this parasitic trematode can lead to urogenital conditions including female genital schistosomiasis and bladder cancer. At the molecular level, little is known about this blood fluke and the pathogenesis of the disease that it causes. To support molecular studies of this carcinogenic worm, we reported a draft genome for S. haematobium in 2012. Although a useful resource, its utility has been somewhat limited by its fragmentation. Findings Here, we systematically enhanced the draft genome of S. haematobium using a single-molecule and long-range DNA-sequencing approach. We achieved a major improvement in the accuracy and contiguity of the genome assembly, making it superior or comparable to assemblies for other schistosome species. We transferred curated gene models to this assembly and, using enhanced gene annotation pipelines, inferred a gene set with as many or more complete gene models as those of other well-studied schistosomes. Using conserved, single-copy orthologs, we assessed the phylogenetic position of S. haematobium in relation to other parasitic flatworms for which draft genomes were available. Conclusions We report a substantially enhanced genomic resource that represents a solid foundation for molecular research on S. haematobium and is poised to better underpin population and functional genomic investigations and to accelerate the search for new disease interventions.

  • urogenital schistosomiasis and hybridization between Schistosoma haematobium and Schistosoma bovis in adults living in richard toll senegal
    Parasitology, 2018
    Co-Authors: Mariama Senewade, David Rollinson, Bernard Marchand, Bonnie L Webster
    Abstract:

    Since the construction of the Diama Dam (1985), the epidemiology of schistosomiasis along the Senegal River Basin (SRB) has been extremely dynamic with outbreaks of both intestinal and urogenital schistosomiasis. In the early 2000s, technicians reported cases of suspected urogenital schistosomiasis in adults from the local hospital in Richard-Toll, Lower SRB. The genetic analysis of schistosome miracidia isolated from 11 patients in 2012 from two neighbourhoods (Campement and Gaya) of Richard-Toll confirmed infection with Schistosoma haematobium but also S. haematobium/S. bovis hybrids. Thirty-seven per cent of the miracidia were S. bovis/S. haematobium hybrids and 63% were pure S. haematobium. The data are discussed in relation to the ongoing dynamic epidemiology of the schistosomes in Senegal and the need to treat non-target individuals.

  • The small RNA complement of adult Schistosoma haematobium.
    Public Library of Science (PLoS), 2018
    Co-Authors: Andreas J Stroehlein, David Rollinson, Bonnie L Webster, Neil D Young, Aaron R Jex, Ross S Hall, Pasi K Korhonen, Paul J Brindley, Robin B Gasser
    Abstract:

    Blood flukes of the genus Schistosoma cause schistosomiasis-a neglected tropical disease (NTD) that affects more than 200 million people worldwide. Studies of schistosome genomes have improved our understanding of the molecular biology of flatworms, but most of them have focused largely on protein-coding genes. Small non-coding RNAs (sncRNAs) have been explored in selected schistosome species and are suggested to play essential roles in the post-transcriptional regulation of genes, and in modulating flatworm-host interactions. However, genome-wide small RNA data are currently lacking for key schistosomes including Schistosoma haematobium-the causative agent of urogenital schistosomiasis of humans.MicroRNAs (miRNAs) and other sncRNAs of male and female adults of S. haematobium and small RNA transcription levels were explored by deep sequencing, genome mapping and detailed bioinformatic analyses.In total, 89 transcribed miRNAs were identified in S. haematobium-a similar complement to those reported for the congeners S. mansoni and S. japonicum. Of these miRNAs, 34 were novel, with no homologs in other schistosomes. Most miRNAs (n = 64) exhibited sex-biased transcription, suggestive of roles in sexual differentiation, pairing of adult worms and reproductive processes. Of the sncRNAs that were not miRNAs, some related to the spliceosome (n = 21), biogenesis of other RNAs (n = 3) or ribozyme functions (n = 16), whereas most others (n = 3798) were novel ('orphans') with unknown functions.This study provides the first genome-wide sncRNA resource for S. haematobium, extending earlier studies of schistosomes. The present work should facilitate the future curation and experimental validation of sncRNA functions in schistosomes to enhance our understanding of post-transcriptional gene regulation and of the roles that sncRNAs play in schistosome reproduction, development and parasite-host cross-talk

  • The small RNA complement of adult Schistosoma haematobium
    2018
    Co-Authors: Andreas J Stroehlein, David Rollinson, Bonnie L Webster, Neil D Young, Aaron R Jex, Ross S Hall, Pasi K Korhonen, Paul J Brindley, Robin B Gasser
    Abstract:

    BackgroundBlood flukes of the genus Schistosoma cause schistosomiasis—a neglected tropical disease (NTD) that affects more than 200 million people worldwide. Studies of schistosome genomes have improved our understanding of the molecular biology of flatworms, but most of them have focused largely on protein-coding genes. Small non-coding RNAs (sncRNAs) have been explored in selected schistosome species and are suggested to play essential roles in the post-transcriptional regulation of genes, and in modulating flatworm-host interactions. However, genome-wide small RNA data are currently lacking for key schistosomes including Schistosoma haematobium—the causative agent of urogenital schistosomiasis of humans.MethodologyMicroRNAs (miRNAs) and other sncRNAs of male and female adults of S. haematobium and small RNA transcription levels were explored by deep sequencing, genome mapping and detailed bioinformatic analyses.Principal findingsIn total, 89 transcribed miRNAs were identified in S. haematobium—a similar complement to those reported for the congeners S. mansoni and S. japonicum. Of these miRNAs, 34 were novel, with no homologs in other schistosomes. Most miRNAs (n = 64) exhibited sex-biased transcription, suggestive of roles in sexual differentiation, pairing of adult worms and reproductive processes. Of the sncRNAs that were not miRNAs, some related to the spliceosome (n = 21), biogenesis of other RNAs (n = 3) or ribozyme functions (n = 16), whereas most others (n = 3798) were novel (‘orphans’) with unknown functions.ConclusionsThis study provides the first genome-wide sncRNA resource for S. haematobium, extending earlier studies of schistosomes. The present work should facilitate the future curation and experimental validation of sncRNA functions in schistosomes to enhance our understanding of post-transcriptional gene regulation and of the roles that sncRNAs play in schistosome reproduction, development and parasite-host cross-talk.

  • significant variance in genetic diversity among populations of Schistosoma haematobium detected using microsatellite dna loci from a genome wide database
    Parasites & Vectors, 2013
    Co-Authors: Travis C Glenn, Stacey L Lance, Anna M Mckee, Bonnie L Webster, Aidan M Emery, Adhemar Zerlotini, Guilherme Oliveira, David Rollinson
    Abstract:

    Background Urogenital schistosomiasis caused by Schistosoma haematobium is widely distributed across Africa and is increasingly being targeted for control. Genome sequences and population genetic parameters can give insight into the potential for population- or species-level drug resistance. Microsatellite DNA loci are genetic markers in wide use by Schistosoma researchers, but there are few primers available for S. haematobium.

David Rollinson - One of the best experts on this subject based on the ideXlab platform.

  • high quality Schistosoma haematobium genome achieved by single molecule and long range sequencing
    GigaScience, 2019
    Co-Authors: Andreas J Stroehlein, David Rollinson, Bonnie L Webster, Pasi K Korhonen, Paul J Brindley, Robin B Gasser, Teik Min Chong, Yanlue Lim, Kokgan Chan, Neil D Young
    Abstract:

    Background Schistosoma haematobium causes urogenital schistosomiasis, a neglected tropical disease affecting >100 million people worldwide. Chronic infection with this parasitic trematode can lead to urogenital conditions including female genital schistosomiasis and bladder cancer. At the molecular level, little is known about this blood fluke and the pathogenesis of the disease that it causes. To support molecular studies of this carcinogenic worm, we reported a draft genome for S. haematobium in 2012. Although a useful resource, its utility has been somewhat limited by its fragmentation. Findings Here, we systematically enhanced the draft genome of S. haematobium using a single-molecule and long-range DNA-sequencing approach. We achieved a major improvement in the accuracy and contiguity of the genome assembly, making it superior or comparable to assemblies for other schistosome species. We transferred curated gene models to this assembly and, using enhanced gene annotation pipelines, inferred a gene set with as many or more complete gene models as those of other well-studied schistosomes. Using conserved, single-copy orthologs, we assessed the phylogenetic position of S. haematobium in relation to other parasitic flatworms for which draft genomes were available. Conclusions We report a substantially enhanced genomic resource that represents a solid foundation for molecular research on S. haematobium and is poised to better underpin population and functional genomic investigations and to accelerate the search for new disease interventions.

  • urogenital schistosomiasis and hybridization between Schistosoma haematobium and Schistosoma bovis in adults living in richard toll senegal
    Parasitology, 2018
    Co-Authors: Mariama Senewade, David Rollinson, Bernard Marchand, Bonnie L Webster
    Abstract:

    Since the construction of the Diama Dam (1985), the epidemiology of schistosomiasis along the Senegal River Basin (SRB) has been extremely dynamic with outbreaks of both intestinal and urogenital schistosomiasis. In the early 2000s, technicians reported cases of suspected urogenital schistosomiasis in adults from the local hospital in Richard-Toll, Lower SRB. The genetic analysis of schistosome miracidia isolated from 11 patients in 2012 from two neighbourhoods (Campement and Gaya) of Richard-Toll confirmed infection with Schistosoma haematobium but also S. haematobium/S. bovis hybrids. Thirty-seven per cent of the miracidia were S. bovis/S. haematobium hybrids and 63% were pure S. haematobium. The data are discussed in relation to the ongoing dynamic epidemiology of the schistosomes in Senegal and the need to treat non-target individuals.

  • The small RNA complement of adult Schistosoma haematobium.
    Public Library of Science (PLoS), 2018
    Co-Authors: Andreas J Stroehlein, David Rollinson, Bonnie L Webster, Neil D Young, Aaron R Jex, Ross S Hall, Pasi K Korhonen, Paul J Brindley, Robin B Gasser
    Abstract:

    Blood flukes of the genus Schistosoma cause schistosomiasis-a neglected tropical disease (NTD) that affects more than 200 million people worldwide. Studies of schistosome genomes have improved our understanding of the molecular biology of flatworms, but most of them have focused largely on protein-coding genes. Small non-coding RNAs (sncRNAs) have been explored in selected schistosome species and are suggested to play essential roles in the post-transcriptional regulation of genes, and in modulating flatworm-host interactions. However, genome-wide small RNA data are currently lacking for key schistosomes including Schistosoma haematobium-the causative agent of urogenital schistosomiasis of humans.MicroRNAs (miRNAs) and other sncRNAs of male and female adults of S. haematobium and small RNA transcription levels were explored by deep sequencing, genome mapping and detailed bioinformatic analyses.In total, 89 transcribed miRNAs were identified in S. haematobium-a similar complement to those reported for the congeners S. mansoni and S. japonicum. Of these miRNAs, 34 were novel, with no homologs in other schistosomes. Most miRNAs (n = 64) exhibited sex-biased transcription, suggestive of roles in sexual differentiation, pairing of adult worms and reproductive processes. Of the sncRNAs that were not miRNAs, some related to the spliceosome (n = 21), biogenesis of other RNAs (n = 3) or ribozyme functions (n = 16), whereas most others (n = 3798) were novel ('orphans') with unknown functions.This study provides the first genome-wide sncRNA resource for S. haematobium, extending earlier studies of schistosomes. The present work should facilitate the future curation and experimental validation of sncRNA functions in schistosomes to enhance our understanding of post-transcriptional gene regulation and of the roles that sncRNAs play in schistosome reproduction, development and parasite-host cross-talk

  • The small RNA complement of adult Schistosoma haematobium
    2018
    Co-Authors: Andreas J Stroehlein, David Rollinson, Bonnie L Webster, Neil D Young, Aaron R Jex, Ross S Hall, Pasi K Korhonen, Paul J Brindley, Robin B Gasser
    Abstract:

    BackgroundBlood flukes of the genus Schistosoma cause schistosomiasis—a neglected tropical disease (NTD) that affects more than 200 million people worldwide. Studies of schistosome genomes have improved our understanding of the molecular biology of flatworms, but most of them have focused largely on protein-coding genes. Small non-coding RNAs (sncRNAs) have been explored in selected schistosome species and are suggested to play essential roles in the post-transcriptional regulation of genes, and in modulating flatworm-host interactions. However, genome-wide small RNA data are currently lacking for key schistosomes including Schistosoma haematobium—the causative agent of urogenital schistosomiasis of humans.MethodologyMicroRNAs (miRNAs) and other sncRNAs of male and female adults of S. haematobium and small RNA transcription levels were explored by deep sequencing, genome mapping and detailed bioinformatic analyses.Principal findingsIn total, 89 transcribed miRNAs were identified in S. haematobium—a similar complement to those reported for the congeners S. mansoni and S. japonicum. Of these miRNAs, 34 were novel, with no homologs in other schistosomes. Most miRNAs (n = 64) exhibited sex-biased transcription, suggestive of roles in sexual differentiation, pairing of adult worms and reproductive processes. Of the sncRNAs that were not miRNAs, some related to the spliceosome (n = 21), biogenesis of other RNAs (n = 3) or ribozyme functions (n = 16), whereas most others (n = 3798) were novel (‘orphans’) with unknown functions.ConclusionsThis study provides the first genome-wide sncRNA resource for S. haematobium, extending earlier studies of schistosomes. The present work should facilitate the future curation and experimental validation of sncRNA functions in schistosomes to enhance our understanding of post-transcriptional gene regulation and of the roles that sncRNAs play in schistosome reproduction, development and parasite-host cross-talk.

  • Isothermal Recombinase Polymerase amplification (RPA) of Schistosoma haematobium DNA and oligochromatographic lateral flow detection
    Parasites and Vectors, 2015
    Co-Authors: ANDY ROSSER, M Forrest, David Rollinson, B. L. Webster
    Abstract:

    BACKGROUND: Accurate diagnosis of urogenital schistosomiasis is vital for surveillance/control programs. Amplification of schistosome DNA in urine by PCR is sensitive and specific but requires infrastructure, financial resources and skilled personnel, often not available in endemic areas. Recombinase Polymerase Amplification (RPA) is an isothermal DNA amplification/detection technology that is simple, rapid, portable and needs few resources.\n\nFINDINGS: Here a Schistosoma haematobium RPA assay was developed and adapted so that DNA amplicons could be detected using oligochromatographic Lateral Flow (LF) strips. The assay successfully amplified S. haematobium DNA at 30-45 °C in 10 mins and was sensitive to a lower limit of 100 fg of DNA. The assay was also successful with the addition of crude urine, up to 5% of the total reaction volume. Cross amplification occurred with other schistosome species but not with other common urine microorganisms.\n\nCONCLUSION: The LF-RPA assay developed here can amplify and detect low levels of S. haematobium DNA. Reactions are rapid, require low temperatures and positive reactions are interpreted using lateral flow strips, reducing the need for infrastructure and resources. This together with an ability to withstand inhibitors within urine makes RPA a promising technology for further development as a molecular diagnostic tool for urogenital schistosomiasis.

Gebeyaw G Mekonnen - One of the best experts on this subject based on the ideXlab platform.

  • Schistosoma haematobium extracellular vesicle proteins confer protection in a heterologous model of schistosomiasis
    Vaccine, 2020
    Co-Authors: Luke Becker, Gebeyaw G Mekonnen, Alex Loukas, Bemnet Amare Tedla, Darren Pickering, Lei Wang, Bin Zhan, Maria Elena Bottazzi, Javier Sotillo
    Abstract:

    Helminth parasites release extracellular vesicles which interact with the surrounding host tissues, mediating host-parasite communication and other fundamental processes of parasitism. As such, vesicle proteins present attractive targets for the development of novel intervention strategies to control these parasites and the diseases they cause. Herein, we describe the first proteomic analysis by LC-MS/MS of two types of extracellular vesicles (exosome-like, 120 k pellet vesicles and microvesicle-like, 15 k pellet vesicles) from adult Schistosoma haematobium worms. A total of 57 and 330 proteins were identified in the 120 k pellet vesicles and larger 15 k pellet vesicles, respectively, and some of the most abundant molecules included homologues of known helminth vaccine and diagnostic candidates such as Sm-TSP2, Sm23, glutathione S-transferase, saponins and aminopeptidases. Tetraspanins were highly represented in the analysis and found in both vesicle types. Vaccination of mice with recombinant versions of three of these tetraspanins induced protection in a heterologous challenge (S. mansoni) model of infection, resulting in significant reductions (averaged across two independent trials) in liver (47%, 38% and 41%) and intestinal (47%, 45% and 41%) egg burdens. These findings offer insight into the mechanisms by which anti-tetraspanin antibodies confer protection and highlight the potential that extracellular vesicle surface proteins offer as anti-helminth vaccines.

  • in depth proteomic characterization of Schistosoma haematobium towards the development of new tools for elimination
    bioRxiv, 2018
    Co-Authors: Javier Sotillo, Francisca Mutapi, Takafira Mduluza, Govert J Van Dam, Paul L. A. M. Corstjens, Mark S Pearson, Luke Becker, Gebeyaw G Mekonnen, Abena S Amoah
    Abstract:

    Abstract Background Schistosomiasis is a neglected disease affecting hundreds of millions worldwide. Of the three main species affecting humans, Schistosoma haematobium is the most common, and is the leading cause of urogenital schistosomiasis. S. haematobium infection can cause different urogential clinical complications, particularly in the bladder, and furthermore, this parasite has been strongly linked with squamous cell carcinoma. A comprehensive analysis of the molecular composition of its different proteomes will contribute to developing new tools against this devastating disease. Methods and Findings By combining a comprehensive protein fractionation approach consisting of OFFGEL electrophoresis with high-throughput mass spectrometry, we have performed the first in-depth characterisation of the different discrete proteomes of S. haematobium that are predicted to interact with human host tissues, including the secreted and tegumental proteomes of adult flukes and secreted and soluble egg proteomes. A total of 662, 239, 210 and 138 proteins were found in the adult tegument, adult secreted, soluble egg and secreted egg proteomes, respectively. In addition, we probed these distinct proteomes with urine to assess urinary antibody responses from naturally infected human subjects with different infection intensities, and identified adult fluke secreted and tegument extracts as being the best predictors of infection. Conclusion We provide a comprehensive dataset of proteins from the adult and egg stages of S. haematobium and highlight their utility as diagnostic markers of infection intensity for the development of novel tools to control this important neglected tropical disease. Author Summary Schistosomiasis is a neglected tropical disease affecting millions of people worldwide. Of the main three species affecting humans, Schistosoma haematobium is the most common, and is the leading cause of urogenital schistosomiasis. This parasite can cause a range of clinical complications associated with bladder pathogenesis, including squamous cell carcinoma as well as genital malignancy in women. Herein, we have performed the first comprehensive characterisation of the proteins implicated in host-parasite interactions (secreted and surface proteins from the adult flukes and secreted and soluble egg proteins) in order to advance our understanding of the parasite’s biology. Furthermore, we have characterised the different antibody responses in urine from infected human subjects from an endemic area presenting different infection intensities. The data obtained in this study can be used as a first step towards the development of novel tools for the control of urogenital schistosomiasis.

Javier Sotillo - One of the best experts on this subject based on the ideXlab platform.

  • Schistosoma haematobium extracellular vesicle proteins confer protection in a heterologous model of schistosomiasis
    Vaccine, 2020
    Co-Authors: Luke Becker, Gebeyaw G Mekonnen, Alex Loukas, Bemnet Amare Tedla, Darren Pickering, Lei Wang, Bin Zhan, Maria Elena Bottazzi, Javier Sotillo
    Abstract:

    Helminth parasites release extracellular vesicles which interact with the surrounding host tissues, mediating host-parasite communication and other fundamental processes of parasitism. As such, vesicle proteins present attractive targets for the development of novel intervention strategies to control these parasites and the diseases they cause. Herein, we describe the first proteomic analysis by LC-MS/MS of two types of extracellular vesicles (exosome-like, 120 k pellet vesicles and microvesicle-like, 15 k pellet vesicles) from adult Schistosoma haematobium worms. A total of 57 and 330 proteins were identified in the 120 k pellet vesicles and larger 15 k pellet vesicles, respectively, and some of the most abundant molecules included homologues of known helminth vaccine and diagnostic candidates such as Sm-TSP2, Sm23, glutathione S-transferase, saponins and aminopeptidases. Tetraspanins were highly represented in the analysis and found in both vesicle types. Vaccination of mice with recombinant versions of three of these tetraspanins induced protection in a heterologous challenge (S. mansoni) model of infection, resulting in significant reductions (averaged across two independent trials) in liver (47%, 38% and 41%) and intestinal (47%, 45% and 41%) egg burdens. These findings offer insight into the mechanisms by which anti-tetraspanin antibodies confer protection and highlight the potential that extracellular vesicle surface proteins offer as anti-helminth vaccines.

  • in depth proteomic characterization of Schistosoma haematobium towards the development of new tools for elimination
    bioRxiv, 2018
    Co-Authors: Javier Sotillo, Francisca Mutapi, Takafira Mduluza, Govert J Van Dam, Paul L. A. M. Corstjens, Mark S Pearson, Luke Becker, Gebeyaw G Mekonnen, Abena S Amoah
    Abstract:

    Abstract Background Schistosomiasis is a neglected disease affecting hundreds of millions worldwide. Of the three main species affecting humans, Schistosoma haematobium is the most common, and is the leading cause of urogenital schistosomiasis. S. haematobium infection can cause different urogential clinical complications, particularly in the bladder, and furthermore, this parasite has been strongly linked with squamous cell carcinoma. A comprehensive analysis of the molecular composition of its different proteomes will contribute to developing new tools against this devastating disease. Methods and Findings By combining a comprehensive protein fractionation approach consisting of OFFGEL electrophoresis with high-throughput mass spectrometry, we have performed the first in-depth characterisation of the different discrete proteomes of S. haematobium that are predicted to interact with human host tissues, including the secreted and tegumental proteomes of adult flukes and secreted and soluble egg proteomes. A total of 662, 239, 210 and 138 proteins were found in the adult tegument, adult secreted, soluble egg and secreted egg proteomes, respectively. In addition, we probed these distinct proteomes with urine to assess urinary antibody responses from naturally infected human subjects with different infection intensities, and identified adult fluke secreted and tegument extracts as being the best predictors of infection. Conclusion We provide a comprehensive dataset of proteins from the adult and egg stages of S. haematobium and highlight their utility as diagnostic markers of infection intensity for the development of novel tools to control this important neglected tropical disease. Author Summary Schistosomiasis is a neglected tropical disease affecting millions of people worldwide. Of the main three species affecting humans, Schistosoma haematobium is the most common, and is the leading cause of urogenital schistosomiasis. This parasite can cause a range of clinical complications associated with bladder pathogenesis, including squamous cell carcinoma as well as genital malignancy in women. Herein, we have performed the first comprehensive characterisation of the proteins implicated in host-parasite interactions (secreted and surface proteins from the adult flukes and secreted and soluble egg proteins) in order to advance our understanding of the parasite’s biology. Furthermore, we have characterised the different antibody responses in urine from infected human subjects from an endemic area presenting different infection intensities. The data obtained in this study can be used as a first step towards the development of novel tools for the control of urogenital schistosomiasis.

Isaac I Bogoch - One of the best experts on this subject based on the ideXlab platform.

  • point of care sample preparation and automated quantitative detection of Schistosoma haematobium using mobile phone microscopy
    medRxiv, 2021
    Co-Authors: Maxim Armstrong, Richard K D Ephraim, Jason R Andrews, Isaac I Bogoch, Jean T Coulibaly, Michael V Dambrosio, Andrew Harris, Samuel Essienbaidoo, Daniel A Fletcher
    Abstract:

    Schistosoma haematobium continues to pose a significant public health burden despite ongoing global control efforts. One of several barriers to sustained control (and ultimately elimination) is the lack of access to highly sensitive diagnostic or screening tools that are inexpensive, rapid, and can be utilized at the point of sample collection. Here, we report an automated point-of-care diagnostic based on mobile phone microscopy that rapidly images and identifies S. haematobium eggs in urine samples. Parasite eggs are filtered from urine within a specialized, inexpensive cartridge that is then automatically imaged by the mobile phone microscope (the "SchistoScope"). Parasite eggs are captured at a constriction point in the tapered cartridge for easy imaging, and the automated quantification of eggs is obtained upon analysis of the images by an algorithm. We demonstrate S. haematobium egg detection with greater than 90% sensitivity and specificity using this device compared to the field gold standard of conventional filtration and microscopy. With simple sample preparation and image analysis on a mobile phone, the SchistoScope combines the diagnostic performance of conventional microscopy with the analytic performance of an expert technician. This portable device has the potential to provide rapid and quantitative diagnosis of S. haematobium to advance ongoing control efforts.

  • Schistosoma haematobium egg excretion does not increase after exercise implications for diagnostic testing
    American Journal of Tropical Medicine and Hygiene, 2017
    Co-Authors: Jean T Coulibaly, Jason R Andrews, Isaac I Bogoch, Eliezer K Ngoran, Jurg Utzinger, Jennifer Keiser
    Abstract:

    Children are frequently invited to exercise before micturition, as it is believed that this activity will result in higher Schistosoma haematobium egg excretion, and hence, increases sensitivity of microscopic diagnoses. However, the evidence of this recommendation is scant. In the study presented here, 257 children, aged 2-15 years from south Cote d'Ivoire, provided urine samples for microscopy on consecutive days; one sample without prior exercise and one sample after exercise. Comparing the same individuals without and with prior exercise, sample positivity for S. haematobium (25.7% versus 23.0%, P = 0.31) and mean egg counts (10.2 eggs/10 mL versus 8.5 eggs/10 mL, P = 0.45) did not differ. Exercise before urine collection does not appear to increase S. haematobium egg excretion.

  • evaluation of a mobile phone based microscope for screening of Schistosoma haematobium infection in rural ghana
    American Journal of Tropical Medicine and Hygiene, 2017
    Co-Authors: Richard K D Ephraim, Evans Duah, Jason R Andrews, Isaac I Bogoch, Hatice Ceylan Koydemir, Derek Tseng, Joseph Tee, Aydogan Ozcan
    Abstract:

    AbstractSchistosomiasis affects over 170 million people in Africa. Here we compare a novel, low-cost mobile phone microscope to a conventional light microscope for the label-free diagnosis of Schistosoma haematobium infections in a rural Ghanaian school setting. We tested the performance of our handheld microscope using 60 slides that were randomly chosen from an ongoing epidemiologic study in school-aged children. The mobile phone microscope had a sensitivity of 72.1% (95% confidence interval [CI]: 56.1-84.2), specificity of 100% (95% CI: 75.9-100), positive predictive value of 100% (95% CI: 86.3-100), and a negative predictive value of 57.1% (95% CI: 37.4-75.0). With its modest sensitivity and high specificity, this handheld and cost-effective mobile phone-based microscope is a stepping-stone toward developing a powerful tool in clinical and public health settings where there is limited access to conventional laboratory diagnostic support.

  • diagnosis of Schistosoma haematobium infection with a mobile phone mounted foldscope and a reversed lens cellscope in ghana
    American Journal of Tropical Medicine and Hygiene, 2015
    Co-Authors: Richard K D Ephraim, Evans Duah, Jason R Andrews, Jennifer Keiser, James S Cybulski, Manu Prakash, Michael V Dambrosio, Daniel Fletcher, Isaac I Bogoch
    Abstract:

    We evaluated two novel, portable microscopes and locally acquired, single-ply, paper towels as filter paper for the diagnosis of Schistosoma haematobium infection. The mobile phone-mounted Foldscope and reversed-lens CellScope had sensitivities of 55.9% and 67.6%, and specificities of 93.3% and 100.0%, respectively, compared with conventional light microscopy for diagnosing S. haematobium infection. With conventional light microscopy, urine filtration using single-ply paper towels as filter paper showed a sensitivity of 67.6% and specificity of 80.0% compared with centrifugation for the diagnosis of S. haematobium infection. With future improvements to diagnostic sensitivity, newer generation handheld and mobile phone microscopes may be valuable tools for global health applications.

  • ultra low cost urine filtration for Schistosoma haematobium diagnosis a proof of concept study
    American Journal of Tropical Medicine and Hygiene, 2014
    Co-Authors: Richard K D Ephraim, Evans Duah, Jason R Andrews, Isaac I Bogoch
    Abstract:

    Simple, efficient, and cost-effective strategies are needed for urine sample preparation in the field diagnosis of infection with Schistosoma haematobium. In this proof-of-concept study, we evaluated inexpensive and widely available paper products (paper towels, school workbook paper, and newspaper) to gravity-filter urine containing 60 eggs/mL of Schistosoma haematobium. Eggs were reliably visualized by light microscopy by using single-ply paper towels as urine filters. This filtration method has broad applicability in clinical and public health settings in resource-constrained environments.