Syngenta

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 3435 Experts worldwide ranked by ideXlab platform

William D Hutchison - One of the best experts on this subject based on the ideXlab platform.

  • novel vip3a bacillus thuringiensis bt maize approaches high dose efficacy against helicoverpa zea lepidoptera noctuidae under field conditions implications for resistance management
    GM crops & food, 2010
    Co-Authors: Eric C Burkness, Galen P Dively, Terry W Patton, Amy C Morey, William D Hutchison
    Abstract:

    Sweet corn, Zea mays L., transformed to express a novel vegetative insecticidal protein, Vip3A (event MIR162, Syngenta Seeds, Inc..), produced by the bacterium, Bacillus thuringiensis (Bt), was evaluated over four field seasons in Maryland and two field seasons in Minnesota for efficacy against the corn earworm, Helicoverpa zea (Boddie).  Hybrids expressing the Vip3A protein and pyramided in hybrids also expressing the Cry1Ab Bt protein (event Bt11, ATTRIBUTE®, Syngenta Seeds, Inc.) were compared to hybrids expressing only Cry1Ab or to genetically similar non-Bt hybrids each year. In addition to H. zea efficacy, results for Ostrinia nubilalis (Hubner) and Spodoptera frugiperda (J.E. Smith) are presented. Over all years and locations, the non-Bt hybrids, without insecticide protection, averaged between 43 and 100% ears infested with a range of 0.24 to 1.74 H. zea larvae per ear. By comparison, in the pyramided Vip3A x Cry1Ab hybrids, no larvae were found and only minimal kernel damage (likely due to other ...

  • novel vip3a bacillus thuringiensis bt maize approaches high dose efficacy against helicoverpa zea lepidoptera noctuidae under field conditions implications for resistance management
    GM crops & food, 2010
    Co-Authors: Eric C Burkness, Galen P Dively, Terry W Patton, Amy C Morey, William D Hutchison
    Abstract:

    Sweet corn, Zea mays L., transformed to express a novel vegetative insecticidal protein, Vip3A (event MIR162, Syngenta Seeds, Inc..), produced by the bacterium, Bacillus thuringiensis (Bt), was evaluated over four field seasons in Maryland and two field seasons in Minnesota for efficacy against the corn earworm, Helicoverpa zea (Boddie). Hybrids expressing the Vip3A protein and pyramided in hybrids also expressing the Cry1Ab Bt protein (event Bt11, ATTRIBUTE(®), Syngenta Seeds, Inc.) were compared to hybrids expressing only Cry1Ab or to genetically similar non-Bt hybrids each year. In addition to H. zea efficacy, results for Ostrinia nubilalis (Hubner) and Spodoptera frugiperda (J.E. Smith) are presented. Over all years and locations, the non-Bt hybrids, without insecticide protection, averaged between 43 and 100% ears infested with a range of 0.24 to 1.74 H. zea larvae per ear. By comparison, in the pyramided Vip3A x Cry1Ab hybrids, no larvae were found and only minimal kernel damage (likely due to other insect pests) was recorded. Hybrids expressing only Cry1Ab incurred a moderate level of H. zea feeding damage, with surviving larvae mostly limited to the first or second instar as a result of previously documented growth inhibition from Cry1Ab. These results suggest that the Vip3A protein, pyramided with Cry1Ab, appears to provide the first "high-dose" under field conditions and will be valuable for ongoing resistance management.

Mingzhi Zhang - One of the best experts on this subject based on the ideXlab platform.

  • diversity oriented synthesis and antifungal activities of novel pimprinine derivative bearing a 1 3 4 oxadiazole 5 thioether moiety
    Molecular Diversity, 2021
    Co-Authors: Zilong Song, Yun Zhu, Jingrui Liu, Shuke Guo, Xinya Han, Hongqiang Dong, Qi Sun, Weihua Zhang, Mingzhi Zhang
    Abstract:

    Based on the strategy of diversity-oriented synthesis and the structures of natural product pimprinine and streptochlorin, two series of novel pimprinine derivatives containing 1,3,4-oxadiazole-5-thioether moieties were efficiently synthesized under the optimized reaction conditions. Biological assays conducted at Syngenta showed the designed derivatives displayed an altered pattern of biological activity, of which 5h was identified as the most promising compound with strong activity against Pythium dissimile and also a broad antifungal spectrum in primary screening. Further structural optimization of pimprinine and streptochlorin derivatives is well under way, aiming to discover synthetic analogues with improved antifungal activity. Two series of novel pimprinine derivatives containing 1,3,4-oxadiazole-5-thioether moieties were efficiently synthesized through diversity-oriented synthesis strategy under the optimized conditions. Biological assays showed the designed derivatives exhibited potential activity.

  • synthesis and antifungal activity of 3 1 3 4 oxadiazol 5 yl indoles and 3 1 3 4 oxadiazol 5 yl methyl indoles
    European Journal of Medicinal Chemistry, 2013
    Co-Authors: Mingzhi Zhang, Nick Mulholland, Dianne Irwin, Guangfu Yang, Qiong Chen, David Beattie, John Martin Clough
    Abstract:

    On the basis of the principle of combination of active structural moieties, a modified and efficient synthetic method for three series of novel indole-based 1,3,4-oxadiazoles is described. Bioassays conducted at Syngenta showed that several of the synthesized compounds exhibit higher antifungal activity than pimprinine, the natural product which inspired this synthesis. Two main structural alterations were found to broaden the spectrum of biological activity in most cases. Compounds 3g, 6c, 6e, 6h, 9d, 9e, 9h and 9m (Fig. 1) were identified as the most active on the biological assays, and will be studied further.

  • synthesis and fungicidal activity of novel pimprinine analogues
    European Journal of Medicinal Chemistry, 2012
    Co-Authors: Mingzhi Zhang, Nick Mulholland, Dianne Irwin, Guangfu Yang, Yucheng Gu, Qiong Chen, David Beattie, John Martin Clough
    Abstract:

    Abstract A simple and efficient synthetic protocol for 5-(3-indolyl)-oxazoles has been developed and further used to synthesize a series of novel analogues of natural product pimprinine. All new compounds were identified by 1H NMR, high resolution mass spectrometry, and the structures of 10 and 18o were further confirmed by X-ray crystallographic diffraction analysis. Bioassay conducted at Syngenta showed that several of the synthesized compounds exhibited fungicidal activity. Compounds 10, 17, 18h, 18o, 19h, 19i and 19l all showed effective control of three out of the seven tested phytopathogenic fungi at the highest rate screened. Compounds 17 and 19h in particular showed activity against the four pathogens screened in artificial media; Pythium dissimile, Alternaria solani, Botryotinia fuckeliana and Gibberella zeae.

Eric C Burkness - One of the best experts on this subject based on the ideXlab platform.

  • novel vip3a bacillus thuringiensis bt maize approaches high dose efficacy against helicoverpa zea lepidoptera noctuidae under field conditions implications for resistance management
    GM crops & food, 2010
    Co-Authors: Eric C Burkness, Galen P Dively, Terry W Patton, Amy C Morey, William D Hutchison
    Abstract:

    Sweet corn, Zea mays L., transformed to express a novel vegetative insecticidal protein, Vip3A (event MIR162, Syngenta Seeds, Inc..), produced by the bacterium, Bacillus thuringiensis (Bt), was evaluated over four field seasons in Maryland and two field seasons in Minnesota for efficacy against the corn earworm, Helicoverpa zea (Boddie).  Hybrids expressing the Vip3A protein and pyramided in hybrids also expressing the Cry1Ab Bt protein (event Bt11, ATTRIBUTE®, Syngenta Seeds, Inc.) were compared to hybrids expressing only Cry1Ab or to genetically similar non-Bt hybrids each year. In addition to H. zea efficacy, results for Ostrinia nubilalis (Hubner) and Spodoptera frugiperda (J.E. Smith) are presented. Over all years and locations, the non-Bt hybrids, without insecticide protection, averaged between 43 and 100% ears infested with a range of 0.24 to 1.74 H. zea larvae per ear. By comparison, in the pyramided Vip3A x Cry1Ab hybrids, no larvae were found and only minimal kernel damage (likely due to other ...

  • novel vip3a bacillus thuringiensis bt maize approaches high dose efficacy against helicoverpa zea lepidoptera noctuidae under field conditions implications for resistance management
    GM crops & food, 2010
    Co-Authors: Eric C Burkness, Galen P Dively, Terry W Patton, Amy C Morey, William D Hutchison
    Abstract:

    Sweet corn, Zea mays L., transformed to express a novel vegetative insecticidal protein, Vip3A (event MIR162, Syngenta Seeds, Inc..), produced by the bacterium, Bacillus thuringiensis (Bt), was evaluated over four field seasons in Maryland and two field seasons in Minnesota for efficacy against the corn earworm, Helicoverpa zea (Boddie). Hybrids expressing the Vip3A protein and pyramided in hybrids also expressing the Cry1Ab Bt protein (event Bt11, ATTRIBUTE(®), Syngenta Seeds, Inc.) were compared to hybrids expressing only Cry1Ab or to genetically similar non-Bt hybrids each year. In addition to H. zea efficacy, results for Ostrinia nubilalis (Hubner) and Spodoptera frugiperda (J.E. Smith) are presented. Over all years and locations, the non-Bt hybrids, without insecticide protection, averaged between 43 and 100% ears infested with a range of 0.24 to 1.74 H. zea larvae per ear. By comparison, in the pyramided Vip3A x Cry1Ab hybrids, no larvae were found and only minimal kernel damage (likely due to other insect pests) was recorded. Hybrids expressing only Cry1Ab incurred a moderate level of H. zea feeding damage, with surviving larvae mostly limited to the first or second instar as a result of previously documented growth inhibition from Cry1Ab. These results suggest that the Vip3A protein, pyramided with Cry1Ab, appears to provide the first "high-dose" under field conditions and will be valuable for ongoing resistance management.

Amy C Morey - One of the best experts on this subject based on the ideXlab platform.

  • novel vip3a bacillus thuringiensis bt maize approaches high dose efficacy against helicoverpa zea lepidoptera noctuidae under field conditions implications for resistance management
    GM crops & food, 2010
    Co-Authors: Eric C Burkness, Galen P Dively, Terry W Patton, Amy C Morey, William D Hutchison
    Abstract:

    Sweet corn, Zea mays L., transformed to express a novel vegetative insecticidal protein, Vip3A (event MIR162, Syngenta Seeds, Inc..), produced by the bacterium, Bacillus thuringiensis (Bt), was evaluated over four field seasons in Maryland and two field seasons in Minnesota for efficacy against the corn earworm, Helicoverpa zea (Boddie).  Hybrids expressing the Vip3A protein and pyramided in hybrids also expressing the Cry1Ab Bt protein (event Bt11, ATTRIBUTE®, Syngenta Seeds, Inc.) were compared to hybrids expressing only Cry1Ab or to genetically similar non-Bt hybrids each year. In addition to H. zea efficacy, results for Ostrinia nubilalis (Hubner) and Spodoptera frugiperda (J.E. Smith) are presented. Over all years and locations, the non-Bt hybrids, without insecticide protection, averaged between 43 and 100% ears infested with a range of 0.24 to 1.74 H. zea larvae per ear. By comparison, in the pyramided Vip3A x Cry1Ab hybrids, no larvae were found and only minimal kernel damage (likely due to other ...

  • novel vip3a bacillus thuringiensis bt maize approaches high dose efficacy against helicoverpa zea lepidoptera noctuidae under field conditions implications for resistance management
    GM crops & food, 2010
    Co-Authors: Eric C Burkness, Galen P Dively, Terry W Patton, Amy C Morey, William D Hutchison
    Abstract:

    Sweet corn, Zea mays L., transformed to express a novel vegetative insecticidal protein, Vip3A (event MIR162, Syngenta Seeds, Inc..), produced by the bacterium, Bacillus thuringiensis (Bt), was evaluated over four field seasons in Maryland and two field seasons in Minnesota for efficacy against the corn earworm, Helicoverpa zea (Boddie). Hybrids expressing the Vip3A protein and pyramided in hybrids also expressing the Cry1Ab Bt protein (event Bt11, ATTRIBUTE(®), Syngenta Seeds, Inc.) were compared to hybrids expressing only Cry1Ab or to genetically similar non-Bt hybrids each year. In addition to H. zea efficacy, results for Ostrinia nubilalis (Hubner) and Spodoptera frugiperda (J.E. Smith) are presented. Over all years and locations, the non-Bt hybrids, without insecticide protection, averaged between 43 and 100% ears infested with a range of 0.24 to 1.74 H. zea larvae per ear. By comparison, in the pyramided Vip3A x Cry1Ab hybrids, no larvae were found and only minimal kernel damage (likely due to other insect pests) was recorded. Hybrids expressing only Cry1Ab incurred a moderate level of H. zea feeding damage, with surviving larvae mostly limited to the first or second instar as a result of previously documented growth inhibition from Cry1Ab. These results suggest that the Vip3A protein, pyramided with Cry1Ab, appears to provide the first "high-dose" under field conditions and will be valuable for ongoing resistance management.

Galen P Dively - One of the best experts on this subject based on the ideXlab platform.

  • novel vip3a bacillus thuringiensis bt maize approaches high dose efficacy against helicoverpa zea lepidoptera noctuidae under field conditions implications for resistance management
    GM crops & food, 2010
    Co-Authors: Eric C Burkness, Galen P Dively, Terry W Patton, Amy C Morey, William D Hutchison
    Abstract:

    Sweet corn, Zea mays L., transformed to express a novel vegetative insecticidal protein, Vip3A (event MIR162, Syngenta Seeds, Inc..), produced by the bacterium, Bacillus thuringiensis (Bt), was evaluated over four field seasons in Maryland and two field seasons in Minnesota for efficacy against the corn earworm, Helicoverpa zea (Boddie).  Hybrids expressing the Vip3A protein and pyramided in hybrids also expressing the Cry1Ab Bt protein (event Bt11, ATTRIBUTE®, Syngenta Seeds, Inc.) were compared to hybrids expressing only Cry1Ab or to genetically similar non-Bt hybrids each year. In addition to H. zea efficacy, results for Ostrinia nubilalis (Hubner) and Spodoptera frugiperda (J.E. Smith) are presented. Over all years and locations, the non-Bt hybrids, without insecticide protection, averaged between 43 and 100% ears infested with a range of 0.24 to 1.74 H. zea larvae per ear. By comparison, in the pyramided Vip3A x Cry1Ab hybrids, no larvae were found and only minimal kernel damage (likely due to other ...

  • novel vip3a bacillus thuringiensis bt maize approaches high dose efficacy against helicoverpa zea lepidoptera noctuidae under field conditions implications for resistance management
    GM crops & food, 2010
    Co-Authors: Eric C Burkness, Galen P Dively, Terry W Patton, Amy C Morey, William D Hutchison
    Abstract:

    Sweet corn, Zea mays L., transformed to express a novel vegetative insecticidal protein, Vip3A (event MIR162, Syngenta Seeds, Inc..), produced by the bacterium, Bacillus thuringiensis (Bt), was evaluated over four field seasons in Maryland and two field seasons in Minnesota for efficacy against the corn earworm, Helicoverpa zea (Boddie). Hybrids expressing the Vip3A protein and pyramided in hybrids also expressing the Cry1Ab Bt protein (event Bt11, ATTRIBUTE(®), Syngenta Seeds, Inc.) were compared to hybrids expressing only Cry1Ab or to genetically similar non-Bt hybrids each year. In addition to H. zea efficacy, results for Ostrinia nubilalis (Hubner) and Spodoptera frugiperda (J.E. Smith) are presented. Over all years and locations, the non-Bt hybrids, without insecticide protection, averaged between 43 and 100% ears infested with a range of 0.24 to 1.74 H. zea larvae per ear. By comparison, in the pyramided Vip3A x Cry1Ab hybrids, no larvae were found and only minimal kernel damage (likely due to other insect pests) was recorded. Hybrids expressing only Cry1Ab incurred a moderate level of H. zea feeding damage, with surviving larvae mostly limited to the first or second instar as a result of previously documented growth inhibition from Cry1Ab. These results suggest that the Vip3A protein, pyramided with Cry1Ab, appears to provide the first "high-dose" under field conditions and will be valuable for ongoing resistance management.