Trochophore

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 1146 Experts worldwide ranked by ideXlab platform

Linsheng Song - One of the best experts on this subject based on the ideXlab platform.

  • ocean acidification inhibits initial shell formation of oyster larvae by suppressing the biosynthesis of serotonin and dopamine
    Science of The Total Environment, 2020
    Co-Authors: Zhaoqun Liu, Xiaorui Song, Weilin Wang, Lingling Wang, Zhi Zhou, Yukun Zhang, Yan Zheng, Yanan Zong, Linsheng Song
    Abstract:

    Abstract Ocean acidification has severely affected the initial shell formation of marine bivalves during their larval stages. In the present study, it was found that dopamine (DA) content in early D-shape larvae was significantly higher than that in Trochophore and D-shape larvae, while the serotonin (5-HT) content in early D-shape larvae and D-shape larvae was obviously higher than that in Trochophore. Incubation of Trochophore with 5-HT or DA could accelerate the formation of calcified shell, and the treatments with selective antagonists of receptors for 5-HT and DA (Cg5-HTR-1 and CgD1DR-1) obviously inhibited the formation of calcified shells. When oyster larvae were subjected to an experimental acidified treatment (pH 7.4), the biosynthesis of 5-HT and DA was inhibited, while the mRNA expression levels of the components in TGF-β pathway were significantly up-regulated in D-shape larvae. Moreover, the phosphorylation of TIR and the translocation of smad4 were hindered upon acidification treatments, and the expression patterns of chitinase and tyrosinase were completely reverted. These results collectively suggested that monoamine neurotransmitters 5-HT and DA could modulate the initial shell formation in oyster larvae through TGF-β smad pathway by regulating the expression of tyrosinase and chitinase to guarantee the chitin synthesis for shell formation. CO2-induced seawater acidification could suppress the biosynthesis of 5-HT and DA, as well as the activation of TGF-β smad pathway, which would subvert the expression patterns of chitinase and tyrosinase and cause the failure of initial shell formation in oyster early D-shape larvae.

  • the ancient role for gata2 3 transcription factor homolog in the hemocyte production of oyster
    Developmental and Comparative Immunology, 2018
    Co-Authors: Xiaorui Song, Miren Dong, Weilin Wang, Lingling Wang, Xiaoyu Xin, Linsheng Song
    Abstract:

    Hemocytes, the cellular component of invertebrate hemolymph, are essential for invertebrate immunity, but the hematopoiesis and regulation mechanism are still largely unknown. In the present study, a conserved hematopoietic transcription factor Cg-GATA2/3 was identified in Pacific oyster Crassotrea gigas, which was evolutionarily close to the vertebrate GATA1/2/3. Cg-GATA2/3 was mainly distributed in the immune organs, such as gill, hemocytes, and mantle. After Cg-GATA2/3 was interferenced by dsRNA, the mRNA expressions of hemocytes specific gene (EcSOD) and hematopoietic transcription factor (C-Myb) were all significant down-regulated, and the hemocyte renewal rates also decreased both in hemolymph and gill. During the larval developmental stages, the mRNA transcripts of Cg-GATA2/3 increased immediately after fertilization and kept a high level during blastula and early Trochophore larvae stage (4-10 hpf, hours post fertilization), then decreased sharply in early D-veliger larvae stage (15 hpf). Whole-mount immunofluorescence assay further revealed that the abundant immunoreactivity of Cg-GATA2/3 was distributed in the whole body of blastula and gastrula embryos, while specialized gradually to a ring structure around the dorsal region in Trochophore larvae. In the D-veliger and umbo larvae, scattered positive signals appeared in the specific sinus structure on the dorsal side and velum region. These results demonstrated that Cg-GATA2/3 was a hematopoietic lineage-specific transcription factor to regulate the hemocyte production, and it could also be used as hematopoietic specific marker to trace potential developmental events of hematopoiesis during ontogenesis of oyster.

  • expression of hematopoietic transcription factors runt cbfβ and gata during ontogenesis of scallop chlamys farreri
    Developmental and Comparative Immunology, 2016
    Co-Authors: Feng Yue, Lingling Wang, Hao Wang, Linsheng Song
    Abstract:

    Transcription factors Runx1, CBFβ and GATA1/2/3 play essential roles in regulating hematopoietic development during embryogenesis of vertebrate. In previous study, the orthologous genes of Runt, CBFβ and GATA1/2/3 have been identified from scallop Chlamys farreri and proved to have conserved function in regulating hemocyte production. Here, these three transcription factors were selected as hematopoietic markers to explore potential developmental events of hematopoiesis during ontogenesis of scallop. The transcripts of CfRunt, CfCBFβ and CfGATA were detected abundantly after 32-cell embryo, Trochophore and morula stage, and reached to a peak level in 32-cell embryos and D-shaped veligers, pediveligers or gastrula respectively. Further whole-mount immunofluorescence assay showed that the immunoreactivity of CfRunt was firstly observed at 32-cell stage and then its distribution was specialized gradually to the mesoderm during gastrulation. By Trochophore, the expression of CfRunt, CfCBFβ and CfGATA proteins occurred coincidently in two specific symmetry cell mass located bilaterally on prototroch, and then disappeared rapidly in D-shaped or umbonal vliger, respectively. However, remarkable expressions of the three transcription factors were observed consistently in a new sinus structure appeared at the dorsal anterior side of D-shaped and umbonal veliger. After bacterial challenge, the mRNA expression levels of the three transcription factors were up-regulated or down-regulated significantly in Trochophore, D-shaped veliger and pediveliger, indicating the available hematopoietic regulation in scallop larvae. The results revealed that scallop might experience two waves of hematopoiesis during early development, which occurred in the bilateral symmetry cell mass of Trochophore and the sinus structure of veliger.

  • the enkephalinergic nervous system and its immunomodulation on the developing immune system during the ontogenesis of oyster crassostrea gigas
    Fish & Shellfish Immunology, 2015
    Co-Authors: Zhaoqun Liu, Xiaorui Song, Weilin Wang, Lingling Wang, Zhi Zhou, Mengqiang Wang, Hao Wang, Hao Chen, Rui Liu, Linsheng Song
    Abstract:

    Enkephalinergic neuroendocrine-immune regulatory system is one of the most important neuroendocrine-immune systems in both vertebrates and invertebrates for its significant role in the immune regulation. In the present study, the early onset of enkephalinergic nervous system and its immunomodulation on the developing immune system during the ontogenesis of oyster Crassostrea gigas were investigated to illustrate the function of neural regulation on the innate immune system in oyster larvae. [Met(5)]-enkephalin (Met-ENK) was firstly observed on the marginal of the dorsal half of D-hinged larvae. Six immune-related molecules, including four PRRs (CgCTL-1, CgCTL-2, CgCTL-4, CgNatterin-3) and two immune effectors (CgTNF-1 and CgEcSOD) were detected in the early developmental stages of Trochophore, D-hinged and umbo larvae of oyster. After incubated with [Met(5)]-enkephalin, the mRNA expression level of all the PRRs changed significantly (p < 0.05). In Trochophore larvae, the expression level of CgNatterin-3 decreased dramatically (p < 0.05) at 6 h, and the expression level of CgCTL-4 was significantly down-regulated at 3 h and 6 h (p < 0.05), respectively. In D-hinged and umbo larvae, only CgCTL-1 was significantly down-regulated and the differences were significant at 3 h and 6 h (p < 0.05), while the expression level of CgCTL-2 and CgCTL-4 increased significantly at 3 h after treatment (p < 0.05). Moreover, the expression levels of immune effectors were up-regulated significantly at 3 h and 6 h in Trochophore larvae (p < 0.05). The expression level of CgTNF-1 in both blank and experiment groups was up-regulated but there was no significant difference in D-hinged larvae stage. On the contrary, the expression level of CgEcSOD in D-hinged larvae decreased dramatically at 3 h and 6 h after [Met(5)]-enkephalin incubation (p < 0.05). In umbo larvae, the expression level of CgTNF-1 and CgEcSOD in the experiment group increased significantly at 6 h after [Met(5)]-enkephalin treatment (p < 0.05), while no significant difference was found in the blank group. In addition, the anti-bacterial activities of the total protein extract from Trochophore, D-hinged and umbo larvae increased significantly (p < 0.05) at both 3 h and 6 h after [Met(5)]-enkephalin incubation compared to that in the blank group, and PO activities of both D-hinged and umbo larvae total protein extract increased significantly (p < 0.05) while no significant difference was observed in Trochophore larvae. The PO activities of the total protein extract in all the experiment groups decreased after the treatment with [Met(5)]-enkephalin for 6 h, but no significant difference was observed when compared to the blank group. Furthermore, after incubation for 6 h, the concentration of both CgTNF-1 and CgIL17-5 increased dramatically compared to that in the blank group (p < 0.05). These results together indicated that the enkephalinergic nervous system of oyster was firstly appeared in D-hinged larvae, while the primitive immune defense system existed in the region of prototroch in Trochophore larvae and developed maturely after D-hinged larvae. The developing immune system could be regulated by the neurotransmitter [Met(5)]-enkephalin released by the neuroendocrine system in oyster C. gigas.

  • maternal transfer of immunity in scallop chlamys farreri and its trans generational immune protection to offspring against bacterial challenge
    Developmental and Comparative Immunology, 2013
    Co-Authors: Feng Yue, Lingling Wang, Huan Zhang, Mengqiang Wang, Jingjing Wang, Linsheng Song
    Abstract:

    Maternal immunity plays a crucial role in protecting the offspring at early stages of life and contributes a trans-generational effect on the offspring's phenotype. In the present study, maternal transfer of immunity and its trans-generational effect on offspring in scallop Chlamys farreri were investigated. The proteins including CfLGBP, CfLBP/BPI, CfLYZ and CfCu/Zn-SOD existed in the scallop eggs with high level while CfLec-3 was not detected. In contrast, the mRNA levels of these proteins were extremely low except that of CfCu/Zn-SOD. The protein extracts of scallop eggs exhibited remarkable agglutination activity and bactericidal effect against gram-negative bacteria Escherichia coli and Vibro anguillarum, and fungi Pichia pastoris. When the maternal scallops were stimulated with heat-killed V. anguillarum, the mRNA levels of CfLBP/BPI and CfLYZ in their offspring were expressed significant higher in D-shaped larvae. Furthermore, the protein levels of CfLBP/BPI and CfCu/Zn-SOD in the offspring of maternal immune stimulation group were higher than that of control at almost all the developmental stages, while the level of CfLec-3 and CfLYZ was higher than that of control just in eggs or Trochophore, respectively. A significant enhancement of Cu/Zn-SOD and antibacterial activities was also observed in eggs, 4-cell embryos and Trochophore of offspring from immune stimulated mother scallops. Moreover, the mortality of offspring from the immune stimulated mother scallops was significantly lower than that of control after bacterial challenge, especially in Trochophore. The results indicated that scallop eggs or embryos received maternal derived immune competence to defense against the invading pathogens, and the maternal scallops received an immune stimulation endowed their offspring with a trans-generational immune capability to protect them against infections effectively. (C) 2013 Elsevier Ltd. All rights reserved.

Lingling Wang - One of the best experts on this subject based on the ideXlab platform.

  • ocean acidification inhibits initial shell formation of oyster larvae by suppressing the biosynthesis of serotonin and dopamine
    Science of The Total Environment, 2020
    Co-Authors: Zhaoqun Liu, Xiaorui Song, Weilin Wang, Lingling Wang, Zhi Zhou, Yukun Zhang, Yan Zheng, Yanan Zong, Linsheng Song
    Abstract:

    Abstract Ocean acidification has severely affected the initial shell formation of marine bivalves during their larval stages. In the present study, it was found that dopamine (DA) content in early D-shape larvae was significantly higher than that in Trochophore and D-shape larvae, while the serotonin (5-HT) content in early D-shape larvae and D-shape larvae was obviously higher than that in Trochophore. Incubation of Trochophore with 5-HT or DA could accelerate the formation of calcified shell, and the treatments with selective antagonists of receptors for 5-HT and DA (Cg5-HTR-1 and CgD1DR-1) obviously inhibited the formation of calcified shells. When oyster larvae were subjected to an experimental acidified treatment (pH 7.4), the biosynthesis of 5-HT and DA was inhibited, while the mRNA expression levels of the components in TGF-β pathway were significantly up-regulated in D-shape larvae. Moreover, the phosphorylation of TIR and the translocation of smad4 were hindered upon acidification treatments, and the expression patterns of chitinase and tyrosinase were completely reverted. These results collectively suggested that monoamine neurotransmitters 5-HT and DA could modulate the initial shell formation in oyster larvae through TGF-β smad pathway by regulating the expression of tyrosinase and chitinase to guarantee the chitin synthesis for shell formation. CO2-induced seawater acidification could suppress the biosynthesis of 5-HT and DA, as well as the activation of TGF-β smad pathway, which would subvert the expression patterns of chitinase and tyrosinase and cause the failure of initial shell formation in oyster early D-shape larvae.

  • a new member of the runt domain family from pacific oyster crassostrea gigas cgrunx potentially involved in immune response and larvae hematopoiesis
    Fish & Shellfish Immunology, 2019
    Co-Authors: Xiaorui Song, Miren Dong, Weilin Wang, Ying Song, Lingling Wang
    Abstract:

    Abstract The Runx family is a kind of heteromeric transcription factors, which is defined by the presence of a runt domain. As transcriptional regulator during development and cell fate specification, Runx is best known for its critical roles in hematopoiesis. In the present study, a Runx transcription factor (designed as CgRunx) was identified and characterized from the oyster Crassostrea gigas. The complete coding sequence of CgRunx was of 1638 bp encoding a predicted polypeptide of 545 amino acids with one conserved runt domain, which shared high similarity with other reported Runx proteins. CgRunx was highly expressed in hemocytes, gill and mantle both at the protein and nucleic acid levels. CgRunx protein was localized specifically in the cell nuclei of hemocytes, and distributed at the tubule lumen of gill filament. During the larval developmental stages, the mRNA transcripts of CgRunx gradually increased after fertilization, reached to a relative high level at the 8 cell embryos and the blastula stage of 2–4 hpf (hours post fertilization) (about 40-fold), and peaked at early Trochophore larvae (10 hpf) (about 60-fold). Whole-mount immunofluorescence assay further revealed that the abundant immunofluorescence signals of CgRunx distributed through the whole embryo at blastula stage (5 hpf), and progressively reduced with the development to a ring structure around the dorsal region in Trochophore larvae (10 hpf). Scattered positive immunoreactivity signals finally appeared in the velum region of D-veliger larvae. After LPS and Vibrio splendidus stimulations, the expression levels of CgRunx mRNA in hemocytes were up-regulated significantly compared with that in the control (0 h), which were 2.98- and 2.46-fold (p

  • the ancient role for gata2 3 transcription factor homolog in the hemocyte production of oyster
    Developmental and Comparative Immunology, 2018
    Co-Authors: Xiaorui Song, Miren Dong, Weilin Wang, Lingling Wang, Xiaoyu Xin, Linsheng Song
    Abstract:

    Hemocytes, the cellular component of invertebrate hemolymph, are essential for invertebrate immunity, but the hematopoiesis and regulation mechanism are still largely unknown. In the present study, a conserved hematopoietic transcription factor Cg-GATA2/3 was identified in Pacific oyster Crassotrea gigas, which was evolutionarily close to the vertebrate GATA1/2/3. Cg-GATA2/3 was mainly distributed in the immune organs, such as gill, hemocytes, and mantle. After Cg-GATA2/3 was interferenced by dsRNA, the mRNA expressions of hemocytes specific gene (EcSOD) and hematopoietic transcription factor (C-Myb) were all significant down-regulated, and the hemocyte renewal rates also decreased both in hemolymph and gill. During the larval developmental stages, the mRNA transcripts of Cg-GATA2/3 increased immediately after fertilization and kept a high level during blastula and early Trochophore larvae stage (4-10 hpf, hours post fertilization), then decreased sharply in early D-veliger larvae stage (15 hpf). Whole-mount immunofluorescence assay further revealed that the abundant immunoreactivity of Cg-GATA2/3 was distributed in the whole body of blastula and gastrula embryos, while specialized gradually to a ring structure around the dorsal region in Trochophore larvae. In the D-veliger and umbo larvae, scattered positive signals appeared in the specific sinus structure on the dorsal side and velum region. These results demonstrated that Cg-GATA2/3 was a hematopoietic lineage-specific transcription factor to regulate the hemocyte production, and it could also be used as hematopoietic specific marker to trace potential developmental events of hematopoiesis during ontogenesis of oyster.

  • expression of hematopoietic transcription factors runt cbfβ and gata during ontogenesis of scallop chlamys farreri
    Developmental and Comparative Immunology, 2016
    Co-Authors: Feng Yue, Lingling Wang, Hao Wang, Linsheng Song
    Abstract:

    Transcription factors Runx1, CBFβ and GATA1/2/3 play essential roles in regulating hematopoietic development during embryogenesis of vertebrate. In previous study, the orthologous genes of Runt, CBFβ and GATA1/2/3 have been identified from scallop Chlamys farreri and proved to have conserved function in regulating hemocyte production. Here, these three transcription factors were selected as hematopoietic markers to explore potential developmental events of hematopoiesis during ontogenesis of scallop. The transcripts of CfRunt, CfCBFβ and CfGATA were detected abundantly after 32-cell embryo, Trochophore and morula stage, and reached to a peak level in 32-cell embryos and D-shaped veligers, pediveligers or gastrula respectively. Further whole-mount immunofluorescence assay showed that the immunoreactivity of CfRunt was firstly observed at 32-cell stage and then its distribution was specialized gradually to the mesoderm during gastrulation. By Trochophore, the expression of CfRunt, CfCBFβ and CfGATA proteins occurred coincidently in two specific symmetry cell mass located bilaterally on prototroch, and then disappeared rapidly in D-shaped or umbonal vliger, respectively. However, remarkable expressions of the three transcription factors were observed consistently in a new sinus structure appeared at the dorsal anterior side of D-shaped and umbonal veliger. After bacterial challenge, the mRNA expression levels of the three transcription factors were up-regulated or down-regulated significantly in Trochophore, D-shaped veliger and pediveliger, indicating the available hematopoietic regulation in scallop larvae. The results revealed that scallop might experience two waves of hematopoiesis during early development, which occurred in the bilateral symmetry cell mass of Trochophore and the sinus structure of veliger.

  • the enkephalinergic nervous system and its immunomodulation on the developing immune system during the ontogenesis of oyster crassostrea gigas
    Fish & Shellfish Immunology, 2015
    Co-Authors: Zhaoqun Liu, Xiaorui Song, Weilin Wang, Lingling Wang, Zhi Zhou, Mengqiang Wang, Hao Wang, Hao Chen, Rui Liu, Linsheng Song
    Abstract:

    Enkephalinergic neuroendocrine-immune regulatory system is one of the most important neuroendocrine-immune systems in both vertebrates and invertebrates for its significant role in the immune regulation. In the present study, the early onset of enkephalinergic nervous system and its immunomodulation on the developing immune system during the ontogenesis of oyster Crassostrea gigas were investigated to illustrate the function of neural regulation on the innate immune system in oyster larvae. [Met(5)]-enkephalin (Met-ENK) was firstly observed on the marginal of the dorsal half of D-hinged larvae. Six immune-related molecules, including four PRRs (CgCTL-1, CgCTL-2, CgCTL-4, CgNatterin-3) and two immune effectors (CgTNF-1 and CgEcSOD) were detected in the early developmental stages of Trochophore, D-hinged and umbo larvae of oyster. After incubated with [Met(5)]-enkephalin, the mRNA expression level of all the PRRs changed significantly (p < 0.05). In Trochophore larvae, the expression level of CgNatterin-3 decreased dramatically (p < 0.05) at 6 h, and the expression level of CgCTL-4 was significantly down-regulated at 3 h and 6 h (p < 0.05), respectively. In D-hinged and umbo larvae, only CgCTL-1 was significantly down-regulated and the differences were significant at 3 h and 6 h (p < 0.05), while the expression level of CgCTL-2 and CgCTL-4 increased significantly at 3 h after treatment (p < 0.05). Moreover, the expression levels of immune effectors were up-regulated significantly at 3 h and 6 h in Trochophore larvae (p < 0.05). The expression level of CgTNF-1 in both blank and experiment groups was up-regulated but there was no significant difference in D-hinged larvae stage. On the contrary, the expression level of CgEcSOD in D-hinged larvae decreased dramatically at 3 h and 6 h after [Met(5)]-enkephalin incubation (p < 0.05). In umbo larvae, the expression level of CgTNF-1 and CgEcSOD in the experiment group increased significantly at 6 h after [Met(5)]-enkephalin treatment (p < 0.05), while no significant difference was found in the blank group. In addition, the anti-bacterial activities of the total protein extract from Trochophore, D-hinged and umbo larvae increased significantly (p < 0.05) at both 3 h and 6 h after [Met(5)]-enkephalin incubation compared to that in the blank group, and PO activities of both D-hinged and umbo larvae total protein extract increased significantly (p < 0.05) while no significant difference was observed in Trochophore larvae. The PO activities of the total protein extract in all the experiment groups decreased after the treatment with [Met(5)]-enkephalin for 6 h, but no significant difference was observed when compared to the blank group. Furthermore, after incubation for 6 h, the concentration of both CgTNF-1 and CgIL17-5 increased dramatically compared to that in the blank group (p < 0.05). These results together indicated that the enkephalinergic nervous system of oyster was firstly appeared in D-hinged larvae, while the primitive immune defense system existed in the region of prototroch in Trochophore larvae and developed maturely after D-hinged larvae. The developing immune system could be regulated by the neurotransmitter [Met(5)]-enkephalin released by the neuroendocrine system in oyster C. gigas.

Bent Vismann - One of the best experts on this subject based on the ideXlab platform.

  • the blue mussel mytilus edulis is vulnerable to the toxic dinoflagellate karlodinium armiger adult filtration is inhibited and several life stages killed
    PLOS ONE, 2018
    Co-Authors: Sofie Bjørnholt Binzer, Regitze Benedicte Carlstedt Lundgreen, Terje Berge, Per Juel Hansen, Bent Vismann
    Abstract:

    Blooms of the toxic dinoflagellates Karlodinium armiger and K. veneficum are frequently observed in Alfacs Bay, Spain, causing mass mortality to wild and farmed mussels. An isolate of K. armiger from Alfacs Bay was grown in the laboratory and exposed to adults, embryos and Trochophore larvae of the blue mussel, Mytilus edulis. Adult mussels rejected to filter K. armiger at cell concentrations >1.5·103 cells ml-1. Exposure of adult mussels (23-33 mm shell length) to a range of K. armiger cell concentrations led to mussel mortality with LC50 values of 9.4·103 and 6.1·103 cells ml-1 after 24 and 48 h exposure to ~3.6·104 K. armiger cells ml-1, respectively. Karlodinium armiger also affected mussel embryos and Trochophore larvae and feeding by K. armiger on both embryos and larvae was observed under the microscope. Embryos exposed to low K. armiger cell concentrations suffered no measurable mortality. However, at higher K. armiger cell concentrations the mortality of the embryos increased significantly with cell concentration and reached 97% at 1.8·103 K. armiger cells ml-1 after 29 h of exposure. Natural K. armiger blooms may not only have serious direct effects on benthic communities, but may also affect the recruitment of mussels in affected areas.

  • Karlodinium armiger tube feeding on Mytilus edulis embryos and Trochophore larvae.
    2018
    Co-Authors: Sofie Bjørnholt Binzer, Regitze Benedicte Carlstedt Lundgreen, Terje Berge, Per Juel Hansen, Bent Vismann
    Abstract:

    Initial tube feeding by K. armiger on a mussel embryo (A). Karlodinium armiger cells attached to a mussel embryo causing the vitelline coat to disrupt and release of egg content (B). Karlodinium armiger attracted to egg content released from a disrupted embryos (C). Karlodinium armiger tube feeding on a mussel Trochophore larva (D).

  • The blue mussel Mytilus edulis is vulnerable to the toxic dinoflagellate Karlodinium armiger—Adult filtration is inhibited and several life stages killed
    2018
    Co-Authors: Sofie Bjørnholt Binzer, Regitze Benedicte Carlstedt Lundgreen, Terje Berge, Per Juel Hansen, Bent Vismann
    Abstract:

    Blooms of the toxic dinoflagellates Karlodinium armiger and K. veneficum are frequently observed in Alfacs Bay, Spain, causing mass mortality to wild and farmed mussels. An isolate of K. armiger from Alfacs Bay was grown in the laboratory and exposed to adults, embryos and Trochophore larvae of the blue mussel, Mytilus edulis. Adult mussels rejected to filter K. armiger at cell concentrations >1.5·103 cells ml-1. Exposure of adult mussels (23–33 mm shell length) to a range of K. armiger cell concentrations led to mussel mortality with LC50 values of 9.4·103 and 6.1·103 cells ml-1 after 24 and 48 h exposure to ~3.6·104 K. armiger cells ml-1, respectively. Karlodinium armiger also affected mussel embryos and Trochophore larvae and feeding by K. armiger on both embryos and larvae was observed under the microscope. Embryos exposed to low K. armiger cell concentrations suffered no measurable mortality. However, at higher K. armiger cell concentrations the mortality of the embryos increased significantly with cell concentration and reached 97% at 1.8·103 K. armiger cells ml-1 after 29 h of exposure. Natural K. armiger blooms may not only have serious direct effects on benthic communities, but may also affect the recruitment of mussels in affected areas.

  • Mortality of Mytuilus edulis embryos and Trochophore larvae after exposure to Karlodinium armiger at four different concentrations.
    2018
    Co-Authors: Sofie Bjørnholt Binzer, Regitze Benedicte Carlstedt Lundgreen, Terje Berge, Per Juel Hansen, Bent Vismann
    Abstract:

    Mortalities of embryos and Trochophore larvae, separately and when pooled as a function of K. armiger cell concentrations. Data presented as mean values with SE bars.

Bernard M. Degnan - One of the best experts on this subject based on the ideXlab platform.

  • The ParaHox gene Gsx patterns the apical organ and central nervous system but not the foregut in scaphopod and cephalopod mollusks
    EvoDevo, 2015
    Co-Authors: Tim Wollesen, Carmel Mcdougall, Sonia Victoria Rodríguez Monje, Bernard M. Degnan, Andreas Wanninger
    Abstract:

    Background It has been hypothesized that the ParaHox gene Gsx patterned the foregut of the last common bilaterian ancestor. This notion was corroborated by Gsx expression in three out of four lophotrochozoan species, several ecdysozoans, and some deuterostomes. Remarkably, Gsx is also expressed in the bilaterian anterior-most central nervous system (CNS) and the gastropod and annelid apical organ. To infer whether these findings are consistent with other mollusks or even lophotrochozoans, we investigated Gsx expression in developmental stages of representatives of two other molluscan classes, the scaphopod Antalis entalis and the cephalopod Idiosepius notoides . Results Gsx is not expressed in the developing digestive tract of Antalis entalis and Idiosepius notoides . Instead, it is expressed in cells of the apical organ in the scaphopod Trochophore and in two cells adjacent to this organ. Late-stage Trochophores express Aen - Gsx in cells of the developing cerebral and pedal ganglia and in cells close to the pavilion, mantle, and foot. In postmetamorphic specimens, Aen - Gsx is expressed in the cerebral and pedal ganglia, the foot, and the nascent captacula. In early squid embryos, Ino - Gsx is expressed in the cerebral, palliovisceral, and optic ganglia. In late-stage embryos, Ino - Gsx is additionally expressed close to the eyes and in the supraesophageal and posterior subesophageal masses and optic lobes. Developmental stages close to hatching express Ino - Gsx only close to the eyes. Conclusions Our results suggest that Gsx expression in the foregut might not be a plesiomorphic trait of the Lophotrochozoa as insinuated previously. Since neither ecdysozoans nor deuterostomes express Gsx in their gut, a role in gut formation in the last common bilaterian ancestor appears unlikely. Gsx is consistently expressed in the bilaterian anterior-most CNS and the apical organ of lophotrochozoan larvae, suggesting a recruitment of Gsx into the formation of this organ in the Lophotrochozoa. The cephalopod posterior subesophageal mass and optic ganglia and the scaphopod pedal ganglia also express Gsx . In summary, Gsx expression only appears to be conserved in the anterior-most brain region during evolution. Accordingly, Gsx appears to have been recruited into the formation of other expression domains, e.g., the apical organ or the foregut, in some lophotrochozoans.

  • the role of mapk signaling in patterning and establishing axial symmetry in the gastropod haliotis asinina
    Developmental Biology, 2007
    Co-Authors: Demian Koop, Andreas Wanninger, Gemma S Richards, Helen M Gunter, Bernard M. Degnan
    Abstract:

    Gastropods are members of the Spiralia, a diverse group of invertebrates that share a common early developmental program, which includes spiral cleavage and a larval Trochophore stage. The spiral cleavage program results in the division of the embryo into four quadrants. Specification of the dorsal (D) quadrant is intimately linked with body plan organization and in equally cleaving gastropods occurs when one of the vegetal macromeres makes contact with overlying micromeres and receives an inductive signal that activates a MAPK signaling cascade. Following the induction of the 3D macromere, the embryo begins to gastrulate and assumes a bilateral cleavage pattern. Here we inhibit MAPK activation in 3D with U0126 and examine its effect on the formation and patterning of the Trochophore, using a suite of territory-specific markers. The head (pretrochal) region appears to maintain quadri-radial symmetry in U0126-treated embryos, supporting a role for MAPK signaling in 3D in establishing dorsoventral polarity in this region. Posterior (posttrochal) structures – larval musculature, shell and foot – fail to develop in MAPK inhibited Trochophores. Inhibition of 3D specification by an alternative method – monensin treatment – yields similar abnormal Trochophores. However, genes that are normally expressed in the ectodermal structures (shell and foot) are detected in U0126- and monensin-perturbed larvae in patterns that suggest that this region has latent dorsoventral polarity that is manifested even in the absence of D quadrant specification.

  • expression of anterior hox genes during larval development of the gastropod haliotis asinina
    Evolution & Development, 2003
    Co-Authors: Veronica F Hinman, Gemma S Richards, Elizabeth K Obrien, Bernard M. Degnan
    Abstract:

    We report the spatial expression patterns of five anterior Hox genes during larval development of the gastropod mollusc Haliotis asinina, an unsegmented spiralian lophotrochozoan. Molecular alignments and phylogenetic analysis indicate that these genes are homologues of Drosophila HOM-C genes labial, proboscipedia, zen, Deformed, and Sex combs reduced; the abalone genes are named Has-Hox1, -Hox2, -Hox3, -Hox4, and -Hox5. Has-Hox transcripts are first detected in the free-swimming Trochophore larval stage and restricted to the posttrochal ectoderm. Has-Hox2, -Hox3, and -Hox4 are expressed in bilaterally symmetrical and overlapping patterns in presumptive neuroectodermal cells on the ventral side of the Trochophore. Has-Hox1 expression is restricted to a ring of cells on the dorsoposterior surface, corresponding to the outer mantle edge where new larval shell is being synthesized. There appears to be little change in the expression domains of these Has-Hox genes in pre- and posttorsional veliger larvae, with expression maintained in ectodermal and neuroectodermal tissues. Has-Hox2, -Hox3, -Hox4, and-Hox5 appear to be expressed in a colinear manner in the ganglia and connectives in the twisted nervous system. This pattern is not evident in older larvae. Has-Hox1 and-Hox4 are expressed in the margin of the mantle in the posttorsional veliger, suggesting that Hox genes play a role in gastropod shell formation.

Sofie Bjørnholt Binzer - One of the best experts on this subject based on the ideXlab platform.

  • the blue mussel mytilus edulis is vulnerable to the toxic dinoflagellate karlodinium armiger adult filtration is inhibited and several life stages killed
    PLOS ONE, 2018
    Co-Authors: Sofie Bjørnholt Binzer, Regitze Benedicte Carlstedt Lundgreen, Terje Berge, Per Juel Hansen, Bent Vismann
    Abstract:

    Blooms of the toxic dinoflagellates Karlodinium armiger and K. veneficum are frequently observed in Alfacs Bay, Spain, causing mass mortality to wild and farmed mussels. An isolate of K. armiger from Alfacs Bay was grown in the laboratory and exposed to adults, embryos and Trochophore larvae of the blue mussel, Mytilus edulis. Adult mussels rejected to filter K. armiger at cell concentrations >1.5·103 cells ml-1. Exposure of adult mussels (23-33 mm shell length) to a range of K. armiger cell concentrations led to mussel mortality with LC50 values of 9.4·103 and 6.1·103 cells ml-1 after 24 and 48 h exposure to ~3.6·104 K. armiger cells ml-1, respectively. Karlodinium armiger also affected mussel embryos and Trochophore larvae and feeding by K. armiger on both embryos and larvae was observed under the microscope. Embryos exposed to low K. armiger cell concentrations suffered no measurable mortality. However, at higher K. armiger cell concentrations the mortality of the embryos increased significantly with cell concentration and reached 97% at 1.8·103 K. armiger cells ml-1 after 29 h of exposure. Natural K. armiger blooms may not only have serious direct effects on benthic communities, but may also affect the recruitment of mussels in affected areas.

  • Karlodinium armiger tube feeding on Mytilus edulis embryos and Trochophore larvae.
    2018
    Co-Authors: Sofie Bjørnholt Binzer, Regitze Benedicte Carlstedt Lundgreen, Terje Berge, Per Juel Hansen, Bent Vismann
    Abstract:

    Initial tube feeding by K. armiger on a mussel embryo (A). Karlodinium armiger cells attached to a mussel embryo causing the vitelline coat to disrupt and release of egg content (B). Karlodinium armiger attracted to egg content released from a disrupted embryos (C). Karlodinium armiger tube feeding on a mussel Trochophore larva (D).

  • The blue mussel Mytilus edulis is vulnerable to the toxic dinoflagellate Karlodinium armiger—Adult filtration is inhibited and several life stages killed
    2018
    Co-Authors: Sofie Bjørnholt Binzer, Regitze Benedicte Carlstedt Lundgreen, Terje Berge, Per Juel Hansen, Bent Vismann
    Abstract:

    Blooms of the toxic dinoflagellates Karlodinium armiger and K. veneficum are frequently observed in Alfacs Bay, Spain, causing mass mortality to wild and farmed mussels. An isolate of K. armiger from Alfacs Bay was grown in the laboratory and exposed to adults, embryos and Trochophore larvae of the blue mussel, Mytilus edulis. Adult mussels rejected to filter K. armiger at cell concentrations >1.5·103 cells ml-1. Exposure of adult mussels (23–33 mm shell length) to a range of K. armiger cell concentrations led to mussel mortality with LC50 values of 9.4·103 and 6.1·103 cells ml-1 after 24 and 48 h exposure to ~3.6·104 K. armiger cells ml-1, respectively. Karlodinium armiger also affected mussel embryos and Trochophore larvae and feeding by K. armiger on both embryos and larvae was observed under the microscope. Embryos exposed to low K. armiger cell concentrations suffered no measurable mortality. However, at higher K. armiger cell concentrations the mortality of the embryos increased significantly with cell concentration and reached 97% at 1.8·103 K. armiger cells ml-1 after 29 h of exposure. Natural K. armiger blooms may not only have serious direct effects on benthic communities, but may also affect the recruitment of mussels in affected areas.

  • Mortality of Mytuilus edulis embryos and Trochophore larvae after exposure to Karlodinium armiger at four different concentrations.
    2018
    Co-Authors: Sofie Bjørnholt Binzer, Regitze Benedicte Carlstedt Lundgreen, Terje Berge, Per Juel Hansen, Bent Vismann
    Abstract:

    Mortalities of embryos and Trochophore larvae, separately and when pooled as a function of K. armiger cell concentrations. Data presented as mean values with SE bars.