Cuscuta

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 321 Experts worldwide ranked by ideXlab platform

Markus Albert - One of the best experts on this subject based on the ideXlab platform.

  • detection of the plant parasite Cuscuta reflexa by a tomato cell surface receptor
    Science, 2016
    Co-Authors: Volker Hegenauer, Bettina Kaiser, Ursula Fürst, Matthew Smoker, Cyril Zipfel, George Felix, Mark Stahl, Markus Albert
    Abstract:

    Parasitic plants are a constraint on agriculture worldwide. Cuscuta reflexa is a stem holoparasite that infests most dicotyledonous plants. One exception is tomato, which is resistant to C. reflexa We discovered that tomato responds to a small peptide factor occurring in Cuscuta spp. with immune responses typically activated after perception of microbe-associated molecular patterns. We identified the cell surface receptor-like protein Cuscuta RECEPTOR 1 (CuRe1) as essential for the perception of this parasite-associated molecular pattern. CuRe1 is sufficient to confer responsiveness to the Cuscuta factor and increased resistance to parasitic C. reflexa when heterologously expressed in otherwise susceptible host plants. Our findings reveal that plants recognize parasitic plants in a manner similar to perception of microbial pathogens.

  • parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants
    Frontiers in Plant Science, 2015
    Co-Authors: Bettina Kaiser, Ursula Fürst, Gerd Vogg, Markus Albert
    Abstract:

    By comparison with plant-microbe interaction, little is known about the interaction of parasitic plants with their hosts. Plants of the genus Cuscuta belong to the family of Cuscutaceae and comprise about 200 species, all of which live as stem holoparasites on other plants. Cuscuta spp. possess no roots nor fully expanded leaves and the vegetative portion appears to be a stem only. The parasite winds around plants and penetrates the host stems via haustoria, forming direct connections to the vascular bundles of their hosts to withdraw water, carbohydrates and other solutes. Besides susceptible hosts, a few plants exist that exhibit an active resistance against infestation by Cuscuta spp. For example, cultivated tomato (Solanum lycopersicum) fends off Cuscuta reflexa by means of a hypersensitive-type response occurring in the early penetration phase. This report on the plant-plant dialogue between Cuscuta spp. and its host plants focuses on the incompatible interaction of Cuscuta reflexa with tomato.

  • Cuscuta spp: “Parasitic Plants in the Spotlight of Plant Physiology, Economy and Ecology”
    Progress in Botany, 2008
    Co-Authors: Markus Albert, Xana M. Belastegui-macadam, Marc Bleischwitz, Ralf Kaldenhoff
    Abstract:

    Cuscuta spp represent a unique group of holoparasitic dicotyledonous plants which can infect nearly all dicotyledonous species. Lacking roots and leaves, these parasitic plants are completely dependent on nutrients, carbohydrates and water from host plants. The physical connection between parasite and host is medi- ated by specific organs, called haustoria, which connect the vascular tissues from both plants. Here we review the fascinating life cycle of Cuscuta spp and also the ecological aspects and problems related to Cuscuta spp infestations. For preven- tion purposes, different biotechnological approaches including hosts which show a resistance to Cuscuta spp are suggested.

Jianqiang Wu - One of the best experts on this subject based on the ideXlab platform.

  • large scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis
    Nature Communications, 2018
    Co-Authors: Yuxing Xu, Jinfeng Qi, Christian Hettenhausen, Lei Wang, Jingxiong Zhang, Ian T Baldwin, Guojing Shen, Jing Li, Wei Chang, Jianqiang Wu
    Abstract:

    Dodders (Cuscuta spp., Convolvulaceae) are root- and leafless parasitic plants. The physiology, ecology, and evolution of these obligate parasites are poorly understood. A high-quality reference genome of Cuscuta australis was assembled. Our analyses reveal that Cuscuta experienced accelerated molecular evolution, and Cuscuta and the convolvulaceous morning glory (Ipomoea) shared a common whole-genome triplication event before their divergence. C. australis genome harbors 19,671 protein-coding genes, and importantly, 11.7% of the conserved orthologs in autotrophic plants are lost in C. australis. Many of these gene loss events likely result from its parasitic lifestyle and the massive changes of its body plan. Moreover, comparison of the gene expression patterns in Cuscuta prehaustoria/haustoria and various tissues of closely related autotrophic plants suggests that Cuscuta haustorium formation requires mostly genes normally involved in root development. The C. australis genome provides important resources for studying the evolution of parasitism, regressive evolution, and evo-devo in plant parasites.

  • aphid myzus persicae feeding on the parasitic plant dodder Cuscuta australis activates defense responses in both the parasite and soybean host
    New Phytologist, 2018
    Co-Authors: Huifu Zhuang, Christian Hettenhausen, Juan Li, Jing Li, Juan Song, Meredith C Schuman, Cuiping Zhang, Dunlun Song, Jianqiang Wu
    Abstract:

    Dodders (Cuscuta spp.) are shoot holoparasites, whose haustoria penetrate host tissues to enable fusion between the parasite and host vascular systems, allowing Cuscuta to extract water, nutrients and other molecules from hosts. Aphids are piercing-sucking herbivores that use specialized stylets to feed on phloem sap. Aphids are known to feed on Cuscuta, but how Cuscuta and its host plant respond to aphids attacking the parasite was unknown. Phytohormone quantification, transcriptomic analysis and bioassays were performed to determine the responses of Cuscuta australis and its soybean (Glycine max) hosts to the feeding of green peach aphid (GPA; Myzus persicae) on C. australis. Decreased salicylic acid levels and 172 differentially expressed genes (DEGs) were found in GPA-attacked C. australis, and the soybean hosts exhibited increased jasmonic acid contents and 1015 DEGs, including > 100 transcription factor genes. Importantly, GPA feeding on C. australis increased the resistance of the soybean host to subsequent feeding by the leafworm Spodoptera litura and soybean aphid Aphis glycines, resulting in 21% decreased leafworm mass and 41% reduced aphid survival rate. These data strongly suggest that GPA feeding on Cuscuta induces a systemic signal, which is translocated to hosts and activates defense against herbivores.

  • large scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis
    bioRxiv, 2018
    Co-Authors: Yuxing Xu, Jinfeng Qi, Christian Hettenhausen, Lei Wang, Jingxiong Zhang, Ian T Baldwin, Guojing Shen, Jing Li, Wei Chang, Jianqiang Wu
    Abstract:

    Dodders ( Cuscuta spp., Convolvulaceae) are globally distributed root- and leafless parasitic plants that parasitize a wide range of hosts. The physiology, ecology, and evolution of these obligate parasites are still poorly understood. A high-quality reference genome (size 266.74 Mb and contig N50 of 3.63 Mb) of Cuscuta australis was assembled. Our analyses reveal that Cuscuta experienced accelerated evolution, and Cuscuta and the convolvulaceous morning glory ( Ipomoea ) shared a common whole-genome triplication event before their divergence. Importantly, C. australis genome harbors only 19805 protein-coding genes, and 11.7% of the conserved orthologs in autotrophic plants are lost in C. australis . Many of these gene loss events likely result from the plant′s parasitic lifestyle and large changes in its body plan. Moreover, comparison of the gene expression patterns in Cuscuta prehaustoria/haustoria and various tissues of closely related autotrophic plants suggests that Cuscuta haustorium genes largely evolved from roots. The C. australis genome provides important resources for studying the evolution of parasitism, regressive evolution, and evo-devo in plant parasites.

  • stem parasitic plant Cuscuta australis dodder transfers herbivory induced signals among plants
    Proceedings of the National Academy of Sciences of the United States of America, 2017
    Co-Authors: Christian Hettenhausen, Jinfeng Qi, Lei Wang, Huifu Zhuang, Juan Li, Yuxing Xu, Jingxiong Zhang, Ian T Baldwin, Jianqiang Wu
    Abstract:

    Cuscuta spp. (i.e., dodders) are stem parasites that naturally graft to their host plants to extract water and nutrients; multiple adjacent hosts are often parasitized by one or more Cuscuta plants simultaneously, forming connected plant clusters. Metabolites, proteins, and mRNAs are known to be transferred from hosts to Cuscuta, and Cuscuta bridges even facilitate host-to-host virus movement. Whether Cuscuta bridges transmit ecologically meaningful signals remains unknown. Here we show that, when host plants are connected by Cuscuta bridges, systemic herbivory signals are transmitted from attacked plants to unattacked plants, as revealed by the large transcriptomic changes in the attacked local leaves, undamaged systemic leaves of the attacked plants, and leaves of unattacked but connected hosts. The interplant signaling is largely dependent on the jasmonic acid pathway of the damaged local plants, and can be found among conspecific or heterospecific hosts of different families. Importantly, herbivore attack of one host plant elevates defensive metabolites in the other systemic Cuscuta bridge-connected hosts, resulting in enhanced resistance against insects even in several consecutively Cuscuta-connected host plants over long distances (> 100 cm). By facilitating plant-to-plant signaling, Cuscuta provides an information-based means of countering the resource-based fitness costs to their hosts.

Joel R. Mcneal - One of the best experts on this subject based on the ideXlab platform.

  • Parallel loss of plastid introns and their maturase in the genus Cuscuta.
    PloS one, 2009
    Co-Authors: Joel R. Mcneal, Jennifer V. Kuehl, Jeffrey L. Boore, Jim Leebens-mack, Claude W. Depamphilis
    Abstract:

    Plastid genome content and arrangement are highly conserved across most land plants and their closest relatives, streptophyte algae, with nearly all plastid introns having invaded the genome in their common ancestor at least 450 million years ago. One such intron, within the transfer RNA trnK-UUU, contains a large open reading frame that encodes a presumed intron maturase, matK. This gene is missing from the plastid genomes of two species in the parasitic plant genus Cuscuta but is found in all other published land plant and streptophyte algal plastid genomes, including that of the nonphotosynthetic angiosperm Epifagus virginiana and two other species of Cuscuta. By examining matK and plastid intron distribution in Cuscuta, we add support to the hypothesis that its normal role is in splicing seven of the eight group IIA introns in the genome. We also analyze matK nucleotide sequences from Cuscuta species and relatives that retain matK to test whether changes in selective pressure in the maturase are associated with intron deletion. Stepwise loss of most group IIA introns from the plastid genome results in substantial change in selective pressure within the hypothetical RNA-binding domain of matK in both Cuscuta and Epifagus, either through evolution from a generalist to a specialist intron splicer or due to loss of a particular intron responsible for most of the constraint on the binding region. The possibility of intron-specific specialization in the X-domain is implicated by evidence of positive selection on the lineage leading to C. nitida in association with the loss of six of seven introns putatively spliced by matK. Moreover, transfer RNA gene deletion facilitated by parasitism combined with an unusually high rate of intron loss from remaining functional plastid genes created a unique circumstance on the lineage leading to Cuscuta subgenus Grammica that allowed elimination of matK in the most species-rich lineage of Cuscuta.

  • systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta convolvulaceae
    BMC Biology, 2007
    Co-Authors: Joel R. Mcneal, Jennifer V. Kuehl, Jeffrey L. Boore, Kathiravetpilla Arumugunathan, Claude W. Depamphilis
    Abstract:

    The genus Cuscuta L. (Convolvulaceae), commonly known as dodders, are epiphytic vines that invade the stems of their host with haustorial feeding structures at the points of contact. Although they lack expanded leaves, some species are noticeably chlorophyllous, especially as seedlings and in maturing fruits. Some species are reported as crop pests of worldwide distribution, whereas others are extremely rare and have local distributions and apparent niche specificity. A strong phylogenetic framework for this large genus is essential to understand the interesting ecological, morphological and molecular phenomena that occur within these parasites in an evolutionary context. Here we present a well-supported phylogeny of Cuscuta using sequences of the nuclear ribosomal internal transcribed spacer and plastid rps2, rbcL and matK from representatives across most of the taxonomic diversity of the genus. We use the phylogeny to interpret morphological and plastid genome evolution within the genus. At least three currently recognized taxonomic sections are not monophyletic and subgenus Cuscuta is unequivocally paraphyletic. Plastid genes are extremely variable with regards to evolutionary constraint, with rbcL exhibiting even higher levels of purifying selection in Cuscuta than photosynthetic relatives. Nuclear genome size is highly variable within Cuscuta, particularly within subgenus Grammica, and in some cases may indicate the existence of cryptic species in this large clade of morphologically similar species. Some morphological characters traditionally used to define major taxonomic splits within Cuscuta are homoplastic and are of limited use in defining true evolutionary groups. Chloroplast genome evolution seems to have evolved in a punctuated fashion, with episodes of loss involving suites of genes or tRNAs followed by stabilization of gene content in major clades. Nearly all species of Cuscuta retain some photosynthetic ability, most likely for nutrient apportionment to their seeds, while complete loss of photosynthesis and possible loss of the entire chloroplast genome is limited to a single small clade of outcrossing species found primarily in western South America.

Ariadna Garza-ortiz - One of the best experts on this subject based on the ideXlab platform.

  • Is there a secondary/specialized metabolism in the genus Cuscuta and which is the role of the host plant?
    Phytochemistry Reviews, 2019
    Co-Authors: Isvett Josefina Flores-sánchez, Ariadna Garza-ortiz
    Abstract:

    The parasitic plants from the genus Cuscuta have been studied from different perspectives, such as their phytochemistry, pharmacology, taxonomy, as weeds, and as a model plant for plant-plant interactions. This review attempts to discuss the host plants’ influence on the phytochemistry and pharmacology of parasitic plants like Cuscuta from the evidence that has been published until recent years in specialized literature and which has not been addressed in detail. Also, the relationship between haustorium development from the parasitic plant and its attachment to the host plant vascular system is discussed and related to the phytochemical and pharmacological information available. In addition, the genus Cuscuta’s main applications description in patents is also explored. Finally, some important recommendations are suggested for further studies in Cuscuta or any other parasitic plant. This state-of-the art about the genus Cuscuta can be a valuable source of organized information for those researchers developing projects in a great variety of aspects related to this genus.

Claude W. Depamphilis - One of the best experts on this subject based on the ideXlab platform.

  • Parallel loss of plastid introns and their maturase in the genus Cuscuta.
    PloS one, 2009
    Co-Authors: Joel R. Mcneal, Jennifer V. Kuehl, Jeffrey L. Boore, Jim Leebens-mack, Claude W. Depamphilis
    Abstract:

    Plastid genome content and arrangement are highly conserved across most land plants and their closest relatives, streptophyte algae, with nearly all plastid introns having invaded the genome in their common ancestor at least 450 million years ago. One such intron, within the transfer RNA trnK-UUU, contains a large open reading frame that encodes a presumed intron maturase, matK. This gene is missing from the plastid genomes of two species in the parasitic plant genus Cuscuta but is found in all other published land plant and streptophyte algal plastid genomes, including that of the nonphotosynthetic angiosperm Epifagus virginiana and two other species of Cuscuta. By examining matK and plastid intron distribution in Cuscuta, we add support to the hypothesis that its normal role is in splicing seven of the eight group IIA introns in the genome. We also analyze matK nucleotide sequences from Cuscuta species and relatives that retain matK to test whether changes in selective pressure in the maturase are associated with intron deletion. Stepwise loss of most group IIA introns from the plastid genome results in substantial change in selective pressure within the hypothetical RNA-binding domain of matK in both Cuscuta and Epifagus, either through evolution from a generalist to a specialist intron splicer or due to loss of a particular intron responsible for most of the constraint on the binding region. The possibility of intron-specific specialization in the X-domain is implicated by evidence of positive selection on the lineage leading to C. nitida in association with the loss of six of seven introns putatively spliced by matK. Moreover, transfer RNA gene deletion facilitated by parasitism combined with an unusually high rate of intron loss from remaining functional plastid genes created a unique circumstance on the lineage leading to Cuscuta subgenus Grammica that allowed elimination of matK in the most species-rich lineage of Cuscuta.

  • systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta convolvulaceae
    BMC Biology, 2007
    Co-Authors: Joel R. Mcneal, Jennifer V. Kuehl, Jeffrey L. Boore, Kathiravetpilla Arumugunathan, Claude W. Depamphilis
    Abstract:

    The genus Cuscuta L. (Convolvulaceae), commonly known as dodders, are epiphytic vines that invade the stems of their host with haustorial feeding structures at the points of contact. Although they lack expanded leaves, some species are noticeably chlorophyllous, especially as seedlings and in maturing fruits. Some species are reported as crop pests of worldwide distribution, whereas others are extremely rare and have local distributions and apparent niche specificity. A strong phylogenetic framework for this large genus is essential to understand the interesting ecological, morphological and molecular phenomena that occur within these parasites in an evolutionary context. Here we present a well-supported phylogeny of Cuscuta using sequences of the nuclear ribosomal internal transcribed spacer and plastid rps2, rbcL and matK from representatives across most of the taxonomic diversity of the genus. We use the phylogeny to interpret morphological and plastid genome evolution within the genus. At least three currently recognized taxonomic sections are not monophyletic and subgenus Cuscuta is unequivocally paraphyletic. Plastid genes are extremely variable with regards to evolutionary constraint, with rbcL exhibiting even higher levels of purifying selection in Cuscuta than photosynthetic relatives. Nuclear genome size is highly variable within Cuscuta, particularly within subgenus Grammica, and in some cases may indicate the existence of cryptic species in this large clade of morphologically similar species. Some morphological characters traditionally used to define major taxonomic splits within Cuscuta are homoplastic and are of limited use in defining true evolutionary groups. Chloroplast genome evolution seems to have evolved in a punctuated fashion, with episodes of loss involving suites of genes or tRNAs followed by stabilization of gene content in major clades. Nearly all species of Cuscuta retain some photosynthetic ability, most likely for nutrient apportionment to their seeds, while complete loss of photosynthesis and possible loss of the entire chloroplast genome is limited to a single small clade of outcrossing species found primarily in western South America.