Echinoidea

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 360 Experts worldwide ranked by ideXlab platform

Andreas Heyland - One of the best experts on this subject based on the ideXlab platform.

  • histamine is a modulator of metamorphic competence in strongylocentrotus purpuratus echinodermata Echinoidea
    BMC Developmental Biology, 2012
    Co-Authors: Josh Sutherby, Jamielee Giardini, Julia Nguyen, Gary M Wessel, Mariana Leguia, Andreas Heyland
    Abstract:

    A metamorphic life-history is present in the majority of animal phyla. This developmental mode is particularly prominent among marine invertebrates with a bentho-planktonic life cycle, where a pelagic larval form transforms into a benthic adult. Metamorphic competence (the stage at which a larva is capable to undergo the metamorphic transformation and settlement) is an important adaptation both ecologically and physiologically. The competence period maintains the larval state until suitable settlement sites are encountered, at which point the larvae settle in response to settlement cues. The mechanistic basis for metamorphosis (the morphogenetic transition from a larva to a juvenile including settlement), i.e. the molecular and cellular processes underlying metamorphosis in marine invertebrate species, is poorly understood. Histamine (HA), a neurotransmitter used for various physiological and developmental functions among animals, has a critical role in sea urchin fertilization and in the induction of metamorphosis. Here we test the premise that HA functions as a developmental modulator of metamorphic competence in the sea urchin Strongylocentrotus purpuratus. Our results provide strong evidence that HA leads to the acquisition of metamorphic competence in S. purpuratus larvae. Pharmacological analysis of several HA receptor antagonists and an inhibitor of HA synthesis indicates a function of HA in metamorphic competence as well as programmed cell death (PCD) during arm retraction. Furthermore we identified an extensive network of histaminergic neurons in pre-metamorphic and metamorphically competent larvae. Analysis of this network throughout larval development indicates that the maturation of specific neuronal clusters correlates with the acquisition of metamorphic competence. Moreover, histamine receptor antagonist treatment leads to the induction of caspase mediated apoptosis in competent larvae. We conclude that HA is a modulator of metamorphic competence in S. purpuratus development and hypothesize that HA may have played an important role in the evolution of settlement strategies in echinoids. Our findings provide novel insights into the evolution of HA signalling and its function in one of the most important and widespread life history transitions in the animal kingdom - metamorphosis.

  • histamine is a modulator of metamorphic competence in strongylocentrotus purpuratus echinodermata Echinoidea
    BMC Developmental Biology, 2012
    Co-Authors: Josh Sutherby, Jamielee Giardini, Julia Nguyen, Gary M Wessel, Mariana Leguia, Andreas Heyland
    Abstract:

    Background A metamorphic life-history is present in the majority of animal phyla. This developmental mode is particularly prominent among marine invertebrates with a bentho-planktonic life cycle, where a pelagic larval form transforms into a benthic adult. Metamorphic competence (the stage at which a larva is capable to undergo the metamorphic transformation and settlement) is an important adaptation both ecologically and physiologically. The competence period maintains the larval state until suitable settlement sites are encountered, at which point the larvae settle in response to settlement cues. The mechanistic basis for metamorphosis (the morphogenetic transition from a larva to a juvenile including settlement), i.e. the molecular and cellular processes underlying metamorphosis in marine invertebrate species, is poorly understood. Histamine (HA), a neurotransmitter used for various physiological and developmental functions among animals, has a critical role in sea urchin fertilization and in the induction of metamorphosis. Here we test the premise that HA functions as a developmental modulator of metamorphic competence in the sea urchin Strongylocentrotus purpuratus.

  • thyroid hormones determine developmental mode in sand dollars echinodermata Echinoidea
    Evolution & Development, 2004
    Co-Authors: Andreas Heyland, Adam M Reitzel, Jason Hodin
    Abstract:

    Evolutionary transitions in larval nutritional mode have occurred on numerous occasions independently in many marine invertebrate phyla. Although the evolutionary transition from feeding to nonfeeding development has received considerable attention through both experimental and theoretical studies, mechanisms underlying the change in life history remain poorly understood. Facultative feeding larvae (larvae that can feed but will complete metamorphosis without food) presumably represent an intermediate developmental mode between obligate feeding and nonfeeding. Here we show that an obligatorily feeding larva can be transformed into a facultative feeding larva when exposed to the thyroid hormone thyroxine. We report that larvae of the subtropical sand dollar Leodia sexiesperforata (Echinodermata: Echinoidea) completed metamorphosis without exogenous food when treated with thyroxine, whereas the starved controls (no thyroxine added) did not. Leodia sexiesperforata juveniles from the thyroxine treatment were viable after metamorphosis but were significantly smaller and contained less energy than sibling juveniles reared with exogenous food. In a second starvation experiment, using an L. sexiesperforata female whose eggs were substantially larger than in the first experiment (202+/-5 vs. 187+/-5 microm), a small percentage of starved L. sexiesperforata larvae completed metamorphosis in the absence of food. Still, thyroxine-treated larvae in this experiment completed metamorphosis faster and in much higher numbers than in the starved controls. Furthermore, starved larvae of the sand dollar Mellita tenuis, which developed from much smaller eggs (100+/-2 microm), did not complete metamorphosis either with or without excess thyroxine. Based on these data, and from recent experiments with other echinoids, we hypothesize that thyroxine plays a major role in echinoderm metamorphosis and the evolution of life history transitions in this group. We discuss our results in the context of current life history models for marine invertebrates, emphasizing the role of egg size, juvenile size, and endogenous hormone production for the evolution of nonfeeding larval development.

Yossi Loya - One of the best experts on this subject based on the ideXlab platform.

  • the taxonomy and phylogeny of echinometra camarodonta echinometridae from the red sea and western indian ocean
    PLOS ONE, 2013
    Co-Authors: Omri Bronstein, Yossi Loya
    Abstract:

    The number of valid species in the genus Echinometra (Echinodermata, Echinoidea) and their associated identification keys have been debated in the scientific literature for more than 180 years. As the phylogeny and dispersal patterns of these species have been widely used as a prominent model for marine speciation, new insights into their taxonomy have the potential to deepen our understanding of marine speciation processes. In this study we examine Echinometra taxonomy, combining morphology and molecular tools. We present the taxonomy and phylogeny of Red Sea and Western Indian Ocean Echinometra. The currently available morphological keys were found to be limited in their ability to delineate all species within this genus. Nonetheless, morphological similarities between the Red Sea and Western Indian Ocean populations were high, and delimited them from the other species. These latter populations together formed a monophyletic clade, genetically distant from any of the other Echinometra species by more than 3%. Combining both traditional taxonomy and molecular evidence, we found that these populations were neither Echinometra mathaei nor E. oblonga, as previously considered. The morphological discrepancies of these populations, and their genetic divergence from the other Echinometra species, suggest that they should be considered as a new Echinometra species.

Josh Sutherby - One of the best experts on this subject based on the ideXlab platform.

  • histamine is a modulator of metamorphic competence in strongylocentrotus purpuratus echinodermata Echinoidea
    BMC Developmental Biology, 2012
    Co-Authors: Josh Sutherby, Jamielee Giardini, Julia Nguyen, Gary M Wessel, Mariana Leguia, Andreas Heyland
    Abstract:

    Background A metamorphic life-history is present in the majority of animal phyla. This developmental mode is particularly prominent among marine invertebrates with a bentho-planktonic life cycle, where a pelagic larval form transforms into a benthic adult. Metamorphic competence (the stage at which a larva is capable to undergo the metamorphic transformation and settlement) is an important adaptation both ecologically and physiologically. The competence period maintains the larval state until suitable settlement sites are encountered, at which point the larvae settle in response to settlement cues. The mechanistic basis for metamorphosis (the morphogenetic transition from a larva to a juvenile including settlement), i.e. the molecular and cellular processes underlying metamorphosis in marine invertebrate species, is poorly understood. Histamine (HA), a neurotransmitter used for various physiological and developmental functions among animals, has a critical role in sea urchin fertilization and in the induction of metamorphosis. Here we test the premise that HA functions as a developmental modulator of metamorphic competence in the sea urchin Strongylocentrotus purpuratus.

  • histamine is a modulator of metamorphic competence in strongylocentrotus purpuratus echinodermata Echinoidea
    BMC Developmental Biology, 2012
    Co-Authors: Josh Sutherby, Jamielee Giardini, Julia Nguyen, Gary M Wessel, Mariana Leguia, Andreas Heyland
    Abstract:

    A metamorphic life-history is present in the majority of animal phyla. This developmental mode is particularly prominent among marine invertebrates with a bentho-planktonic life cycle, where a pelagic larval form transforms into a benthic adult. Metamorphic competence (the stage at which a larva is capable to undergo the metamorphic transformation and settlement) is an important adaptation both ecologically and physiologically. The competence period maintains the larval state until suitable settlement sites are encountered, at which point the larvae settle in response to settlement cues. The mechanistic basis for metamorphosis (the morphogenetic transition from a larva to a juvenile including settlement), i.e. the molecular and cellular processes underlying metamorphosis in marine invertebrate species, is poorly understood. Histamine (HA), a neurotransmitter used for various physiological and developmental functions among animals, has a critical role in sea urchin fertilization and in the induction of metamorphosis. Here we test the premise that HA functions as a developmental modulator of metamorphic competence in the sea urchin Strongylocentrotus purpuratus. Our results provide strong evidence that HA leads to the acquisition of metamorphic competence in S. purpuratus larvae. Pharmacological analysis of several HA receptor antagonists and an inhibitor of HA synthesis indicates a function of HA in metamorphic competence as well as programmed cell death (PCD) during arm retraction. Furthermore we identified an extensive network of histaminergic neurons in pre-metamorphic and metamorphically competent larvae. Analysis of this network throughout larval development indicates that the maturation of specific neuronal clusters correlates with the acquisition of metamorphic competence. Moreover, histamine receptor antagonist treatment leads to the induction of caspase mediated apoptosis in competent larvae. We conclude that HA is a modulator of metamorphic competence in S. purpuratus development and hypothesize that HA may have played an important role in the evolution of settlement strategies in echinoids. Our findings provide novel insights into the evolution of HA signalling and its function in one of the most important and widespread life history transitions in the animal kingdom - metamorphosis.

Alexander Ziegler - One of the best experts on this subject based on the ideXlab platform.

  • Comparison of protractor muscle shape in selected derived “regular” sea urchin species.
    2013
    Co-Authors: Alexander Ziegler, Leif Schröder, Malte Ogurreck, Cornelius Faber, Thomas Stach
    Abstract:

    Frilled protractor muscles can only be found in sea urchin species of the families Toxopneustidae, Echinometridae, and Strongylocentrotidae (K–P). See Fig. 6 for a phylogeny of the Echinoidea, while Table 3 lists character distribution in all 49 echinacean species analyzed in this study. (A) Stomopneustes variolaris (Stomopneustidae). (B) Arbacia dufresnii (Arbaciidae). (C) Parasalenia gratiosa (Parasaleniidae). (D) Temnopleurus toreumaticus and (E) Pseudechinus magellanicus (Temnopleuridae). (F) Trigonocidaris albida (Trigonocidaridae). (G) Polyechinus agulhensis and (H) Sterechinus neumayeri (Echinidae). (I) Parechinus angulosus and (J) Psammechinus microtuberculatus (Parechinidae). (K) Toxopneustes pileolus and (L) Sphaerechinus granularis (Toxopneustidae). (M) Echinometra lucunter and (N) Heterocentrotus mammilatus (Echinometridae). (O) Pseudocentrotus depressus and (P) Hemicentrotus pulcherrimus (Strongylocentrotidae). (A–E), (G–K), and (N–P) based on MRI datasets with 50×50×200 µm resolution. (F) based on a MRI dataset with 32 µm isotropic voxel resolution. (L, M) based on MRI datasets with 78×78×500 µm resolution. lo = lobe.

  • evolution of a novel muscle design in sea urchins echinodermata Echinoidea
    PLOS ONE, 2012
    Co-Authors: Alexander Ziegler, Leif Schröder, Malte Ogurreck, Cornelius Faber, Thomas Stach
    Abstract:

    The sea urchin (Echinodermata: Echinoidea) masticatory apparatus, or Aristotle's lantern, is a complex structure composed of numerous hard and soft components. The lantern is powered by various paired and unpaired muscle groups. We describe how one set of these muscles, the lantern protractor muscles, has evolved a specialized morphology. This morphology is characterized by the formation of adaxially-facing lobes perpendicular to the main orientation of the muscle, giving the protractor a frilled aspect in horizontal section. Histological and ultrastructural analyses show that the microstructure of frilled muscles is largely identical to that of conventional, flat muscles. Measurements of muscle dimensions in equally-sized specimens demonstrate that the frilled muscle design, in comparison to that of the flat muscle type, considerably increases muscle volume as well as the muscle's surface directed towards the interradial cavity, a compartment of the peripharyngeal coelom. Scanning electron microscopical observations reveal that the insertions of frilled and flat protractor muscles result in characteristic muscle scars on the stereom, reflecting the shapes of individual muscles. Our comparative study of 49 derived “regular” echinoid species using magnetic resonance imaging (MRI) shows that frilled protractor muscles are found only in taxa belonging to the families Toxopneustidae, Echinometridae, and Strongylocentrotidae. The onset of lobe formation during ontogenesis varies between species of these three families. Because frilled protractor muscles are best observed in situ, the application of a non-invasive imaging technique was crucial for the unequivocal identification of this morphological character on a large scale. Although it is currently possible only to speculate on the functional advantages which the frilled muscle morphology might confer, our study forms the anatomical and evolutionary framework for future analyses of this unusual muscle design among sea urchins.

  • presence of a seawater filled caecum in echinocardium cordatum Echinoidea spatangoida
    Journal of the Marine Biological Association of the United Kingdom, 2012
    Co-Authors: Gauthier Rolet, Alexander Ziegler, Chantal De Ridder
    Abstract:

    Heart urchins (Echinoidea: Spatangoida) are considered infaunal, deposit feeding sea urchins that utilize the surrounding sediment as a source of nutrients. Sediment occupies most of the digestive tract lumen but never enters the gastric caecum, a prominent structure that is filled with a transparent fluid. The aim of this study was to shed light on the nature of the fluid found inside the gastric caecum of a well-studied spatangoid species, Echinocardium cordatum. Our conclusions are based on a three-step-approach: firstly, by following the movement of dyed seawater from the mouth up to the caecal lumen; secondly, by comparing the osmolarity of various body fluids; and thirdly, by describing the particulate content of the gastric caecum. In addition, we employed magnetic resonance imaging (MRI) to reveal the absence of sediment within the gastric caecum. Our osmolarity measurements show that the coelomic fluid is significantly more concentrated than the caecal fluid, which in turn has an osmolarity similar to seawater. MRI reveals that the gastric caecum, in contrast to the rest of the digestive tract, is always devoid of sediment. Light and electron microscopy observations reveal the presence of a variety of detrital particles suspended in the caecal fluid that are identical to those occurring in seawater sampled over the seafloor. We argue that the fluid filling the gastric caecum must be predominantly seawater, and we propose a scenario that explains seawater circulation in E. cordatum. In this context, the gastric caecum could act as an internal trap for suspended particulate organic matter. We hypothesize that spatangoid sea urchins could have adopted internal suspension feeding as a secondary feeding mode in addition to deposit feeding. © 2011 Marine Biological Association of the United Kingdom.

  • systematic comparison and reconstruction of sea urchin Echinoidea internal anatomy a novel approach using magnetic resonance imaging
    BMC Biology, 2008
    Co-Authors: Alexander Ziegler, Cornelius Faber, Susanne Mueller, Thomas Bartolomaeus
    Abstract:

    Traditional comparative morphological analyses and subsequent three-dimensional reconstructions suffer from a number of drawbacks. This is particularly evident in the case of soft tissue studies that are technically demanding, time-consuming, and often prone to produce artefacts. These problems can partly be overcome by employing non-invasive, destruction-free imaging techniques, in particular micro-computed tomography or magnetic resonance imaging. Here, we employed high-field magnetic resonance imaging techniques to gather numerous data from members of a major marine invertebrate taxon, the sea urchins (Echinoidea). For this model study, 13 of the 14 currently recognized high-ranking subtaxa (orders) of this group of animals were analyzed. Based on the acquired datasets, interactive three-dimensional models were assembled. Our analyses reveal that selected soft tissue characters can even be used for phylogenetic inferences in sea urchins, as exemplified by differences in the size and shape of the gastric caecum found in the Irregularia. The main focus of our investigation was to explore the possibility to systematically visualize the internal anatomy of echinoids obtained from various museum collections. We show that, in contrast to classical preparative procedures, magnetic resonance imaging can give rapid, destruction-free access to morphological data from numerous specimens, thus extending the range of techniques available for comparative studies of invertebrate morphology.

Omri Bronstein - One of the best experts on this subject based on the ideXlab platform.

  • the first complete mitochondrial genome of the sand dollar sinaechinocyamus mai Echinoidea clypeasteroida
    Genomics, 2020
    Co-Authors: Jihpai Lin, Omri Bronstein, Monghsun Tsai, Andreas Kroh, Aaron Trautman, Denis Jacob Machado, Loyu Chang, Robert W Reid, Kuanting Lin, Shyhjye Lee
    Abstract:

    Morphologic and molecular data often lead to different hypotheses of phylogenetic relationships. Such incongruence has been found in the echinoderm class Echinoidea. In particular, the phylogenetic status of the order Clypeasteroida is not well resolved. Complete mitochondrial genomes are currently available for 29 echinoid species, but no clypeasteroid had been sequenced to date. DNA extracted from a single live individual of Sinaechinocyamus mai was sequenced with 10× Genomics technology. This first complete mitochondrial genome (mitogenome) for the order Clypeasteroida is 15,756 base pairs in length. Phylogenomic analysis based on 34 ingroup taxa belonging to nine orders of the class Echinoidea show congruence between our new genetic inference and published trees based on morphologic characters, but also includes some intriguing differences that imply the need for additional investigation.

  • the taxonomy and phylogeny of echinometra camarodonta echinometridae from the red sea and western indian ocean
    PLOS ONE, 2013
    Co-Authors: Omri Bronstein, Yossi Loya
    Abstract:

    The number of valid species in the genus Echinometra (Echinodermata, Echinoidea) and their associated identification keys have been debated in the scientific literature for more than 180 years. As the phylogeny and dispersal patterns of these species have been widely used as a prominent model for marine speciation, new insights into their taxonomy have the potential to deepen our understanding of marine speciation processes. In this study we examine Echinometra taxonomy, combining morphology and molecular tools. We present the taxonomy and phylogeny of Red Sea and Western Indian Ocean Echinometra. The currently available morphological keys were found to be limited in their ability to delineate all species within this genus. Nonetheless, morphological similarities between the Red Sea and Western Indian Ocean populations were high, and delimited them from the other species. These latter populations together formed a monophyletic clade, genetically distant from any of the other Echinometra species by more than 3%. Combining both traditional taxonomy and molecular evidence, we found that these populations were neither Echinometra mathaei nor E. oblonga, as previously considered. The morphological discrepancies of these populations, and their genetic divergence from the other Echinometra species, suggest that they should be considered as a new Echinometra species.