HAS3

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 38971701 Experts worldwide ranked by ideXlab platform

Raija Tammi - One of the best experts on this subject based on the ideXlab platform.

  • UDP-sugar substrates of HAS3 regulate its O-GlcNAcylation, intracellular traffic, extracellular shedding and correlate with melanoma progression.
    Cellular and molecular life sciences : CMLS, 2016
    Co-Authors: Ashik Jawahar Deen, Kirsi Rilla, Riikka Kärnä, Antti Hassinen, Sakari Kellokumpu, Sanna Pasonen-seppänen, Piia Takabe, Uma Thanigai Arasu, Sara Wojciechowski, Raija Tammi
    Abstract:

    Hyaluronan content is a powerful prognostic factor in many cancer types, but the molecular basis of its synthesis in cancer still remains unclear. Hyaluronan synthesis requires the transport of hyaluronan synthases (HAS1-3) from Golgi to plasma membrane (PM), where the enzymes are activated. For the very first time, the present study demonstrated a rapid recycling of HAS3 between PM and endosomes, controlled by the cytosolic levels of the HAS substrates UDP-GlcUA and UDP-GlcNAc. Depletion of UDP-GlcNAc or UDP-GlcUA shifted the balance towards HAS3 endocytosis, and inhibition of hyaluronan synthesis. In contrast, UDP-GlcNAc surplus suppressed endocytosis and lysosomal decay of HAS3, favoring its retention in PM, stimulating hyaluronan synthesis, and HAS3 shedding in extracellular vesicles. The concentration of UDP-GlcNAc also controlled the level of O-GlcNAc modification of HAS3. Increasing O-GlcNAcylation reproduced the effects of UDP-GlcNAc surplus on HAS3 trafficking, while its suppression showed the opposite effects, indicating that O-GlcNAc signaling is associated to UDP-GlcNAc supply. Importantly, a similar correlation existed between the expression of GFAT1 (the rate limiting enzyme in UDP-GlcNAc synthesis) and hyaluronan content in early and deep human melanomas, suggesting the association of UDP-sugar metabolism in initiation of melanomagenesis. In general, changes in glucose metabolism, realized through UDP-sugar contents and O-GlcNAc signaling, are important in HAS3 trafficking, hyaluronan synthesis, and correlates with melanoma progression.

  • The reciprocal association between mammographic breast density, hyaluronan synthesis and patient outcome.
    Breast cancer research and treatment, 2015
    Co-Authors: Amro Masarwah, Raija Tammi, Markku Tammi, Sanna Oikari, Mazen Sudah, Anna Sutela, Veli-matti Kosma, Ritva Vanninen, Päivi Auvinen
    Abstract:

    Low mammographic breast density (MBD) and increased hyaluronan (HA) synthesis have been shown to have adverse effects on breast cancer prognosis. We aimed at elucidating the background of risk associated with mammographic characteristics, MBD and HA and its synthesizing isoforms in an attempt to uncover potential underlying biological mechanisms. MBD and mammographic characteristics of 270 patients were classified according to percentile density (very low density VLD, ≤25 %; mixed density MID, >25 %) and the BI-RADS 5th edition lexicon. Breast density and mammographic features were correlated with the localization and expression of HA, CD44, and HAS1-3 isoforms, and their combined effect on patients’ survivals was explored. VLD showed an increased level of HA-positive carcinoma cells and stromal HA, HAS2, and HAS3. Tumors presenting as masses had more HA-positive carcinoma cells and more stromal HAS2 and HAS3. Indistinct margin tumors showed more stromal HA and HAS3. Patients who combined both VLD breasts with either high HA in carcinoma cells or stroma showed a worse prognosis compared to low levels (carcinoma cells 58.0 vs. 80.5 %, p = 0.001; stroma 64.2 vs. 79.6 %, p = 0.017), while no similar HA-related effect was observed in MID breasts. Our findings suggest a strong reciprocal relationship between low MBD and HA expression and synthesis. The expression of both factors simultaneously leads to an especially adverse prognostic effect which might have an impact on treatment decision in the future. Moreover, HA around cancer cells may inhibit chemotherapy agents and antibody treatments from reaching cancer cells.

  • Fluorescence Resonance Energy Transfer (FRET) and Proximity Ligation Assays Reveal Functionally Relevant Homo- and Heteromeric Complexes among Hyaluronan Synthases HAS1, HAS2 and HAS3
    The Journal of biological chemistry, 2015
    Co-Authors: Genevieve Bart, Raija Tammi, Paraskevi Heldin, Nuria Ortega Vico, Antti Hassinen, François M. Pujol, Ashik Jawahar Deen, Aino Ruusala, Anthony Squire, Sakari Kellokumpu
    Abstract:

    In vertebrates, hyaluronan is produced in the plasma membrane from cytosolic UDP-sugar substrates by hyaluronan synthase 1-3 (HAS1-3) isoenzymes that transfer N-acetylglucosamine (GlcNAc) and glucuronic acid (GlcUA) in alternative positions in the growing polysaccharide chain during its simultaneous extrusion into the extracellular space. It has been shown that HAS2 immunoprecipitates contain functional HAS2 homomers and also heteromers with HAS3 (Karousou, E., Kamiryo, M., Skandalis, S. S., Ruusala, A., Asteriou, T., Passi, A., Yamashita, H., Hellman, U., Heldin, C. H., and Heldin, P. (2010) The activity of hyaluronan synthase 2 is regulated by dimerization and ubiquitination. J. Biol. Chem. 285, 23647-23654). Here we have systematically screened in live cells, potential interactions among the HAS isoenzymes using fluorescence resonance energy transfer (FRET) and flow cytometric quantification. We show that all HAS isoenzymes form homomeric and also heteromeric complexes with each other. The same complexes were detected both in Golgi apparatus and plasma membrane by using FRET microscopy and the acceptor photobleaching method. Proximity ligation assays with HAS antibodies confirmed the presence of HAS1-HAS2, HAS2-HAS2, and HAS2-HAS3 complexes between endogenously expressed HASs. C-terminal deletions revealed that the enzymes interact mainly via uncharacterized N-terminal 86-amino acid domain(s), but additional binding site(s) probably exist in their C-terminal parts. Of all the homomeric complexes HAS1 had the lowest and HAS3 the highest synthetic activity. Interestingly, HAS1 transfection reduced the synthesis of hyaluronan obtained by HAS2 and HAS3, suggesting functional cooperation between the isoenzymes. These data indicate a general tendency of HAS isoenzymes to form both homomeric and heteromeric complexes with potentially important functional consequences on hyaluronan synthesis.

  • Rab10-mediated endocytosis of the hyaluronan synthase HAS3 regulates hyaluronan synthesis and cell adhesion to collagen.
    The Journal of biological chemistry, 2014
    Co-Authors: Ashik Jawahar Deen, Kirsi Rilla, Sanna Oikari, Riikka Kärnä, Genevieve Bart, Jukka Häyrinen, Avinash Rahul Bathina, Antti Ropponen, Katri M. Makkonen, Raija Tammi
    Abstract:

    Abstract Hyaluronan synthases (HAS1-3) are unique in that they are active only when located in plasma membrane, where they extrude the growing hyaluronan (HA) directly into cell surface and extracellular space. Therefore, traffic of HAS to/from plasma membrane is crucial for the synthesis of HA. In this study we have identified Rab10 GTPase as the first protein known to be involved in the control of this traffic. Rab10 colocalized with HAS3 in intracellular vesicular structures and was co-immunoprecipitated with HAS3 from isolated endosomal vesicles. Rab10 silencing increased plasma membrane residence of HAS3, resulting in a significant increase of HA secretion and enlarged cell surface HA coat, while Rab10 overexpression suppressed HA synthesis. Rab10 silencing blocked the retrograde traffic of HAS3 from plasma membrane to early endosomes. The cell surface HA coat impaired cell adhesion to type I collagen, as indicated by recovery of adhesion following hyaluronidase treatment. The data indicate a novel function for Rab10 in reducing cell surface HAS3, suppressing HA synthesis, and facilitating cell adhesion to type I collagen. These are processes important in tissue injury, inflammation and malignant growth.

  • Extensive CD44-dependent hyaluronan coats on human bone marrow-derived mesenchymal stem cells produced by hyaluronan synthases HAS1, HAS2 and HAS3
    The international journal of biochemistry & cell biology, 2014
    Co-Authors: Kirsi Rilla, Raija Tammi, Markku Tammi, Heikki Kröger, Mikko J. Lammi
    Abstract:

    Hyaluronan (HA), a natural extracellular matrix component, has been considered as an important constituent of the stem cell niche, and successfully used as 3D scaffolds for the chondrogenic differentiation of stem cells. However, the expression levels of HA synthases (HAS1, 2 and 3) and the synthesis of HA by stem cells have remained unknown, and were studied here in the human bone marrow-derived mesenchymal stem cells (hMSCs). Nine hMSCs from different donors were cultured as monolayers with MSC culture medium supplemented with FGF-2. The amount of HA secreted into medium was studied by an ELISA-type assay, and HA bound to cell surface by live cell microscopy. The expression of HASs was analyzed by real time RT-PCR and immunostainings. The HA receptor CD44 was studied by immunocytochemistry. An intense HA coat surrounded the plasma membrane and its protrusions in all nine hMSCs. Displacement assay with HA oligosaccharides indicated that HA coat was at least partly dependent on CD44, which showed similar, relatively high expression in all hMSCs. All HAS isoenzymes were detected, HAS1 showing the largest and HAS3 the smallest range of expression levels between the hMSCs. The secretion of HA ranged between 22.5 and 397.4 ng/10,000 cells/24h, and could not be clearly assigned to the mRNA level of a certain HAS, or a combination of the isoenzymes. This suggests that post-transcriptional and post-translational factors were involved in the adjustment of the HA secretion. In conclusion, all hMSCs expressed high levels of HAS1-3, secrete large amounts of HA, and surround themselves with a thick HA coat bound to CD44. The results suggest that hMSC has the potential for autocrine maintenance of the HA niche, important for their stemness.

Markku Tammi - One of the best experts on this subject based on the ideXlab platform.

  • Hyaluronan-positive plasma membrane protrusions exist on mesothelial cells in vivo
    Histochemistry and Cell Biology, 2016
    Co-Authors: Ville Koistinen, Markku Tammi, Tiina A Jokela, Sanna Oikari, Riikka Kärnä, Kirsi Rilla
    Abstract:

    Previous observations of our research group showed that HAS2 and HAS3 overexpression in cultured cells induces the formation of long and numerous microvillus-like cell protrusions, which are present also in cultured cell types with naturally high hyaluronan secretion and the cell protrusions resemble those found in mesothelial cells. The aim of this study was to investigate whether these hyaluronan secreting, actin-dependent protrusions exist also in vivo. It was found that rat mesothelium in vivo is positive for hyaluronan and Has1–3. Also microvilli in rat mesothelium and live primary cultures of mesothelial cells were found to be hyaluronan positive, and the cells expressed all Has isoforms. Furthermore, ultrastructure of the cell protrusions in rat mesothelium was similar to that induced by overexpression of HAS2 and HAS3, and the number and orientation of actin filaments supporting the cell protrusions was identical. The results of this study show that HA-positive protrusions exist in vivo and support the idea that hyaluronan secretion from plasma membrane protrusions is a general process. This mechanism is potentially crucial for the normal function and maintenance of tissues and body fluids and may be utilized in many therapeutic applications.

  • The reciprocal association between mammographic breast density, hyaluronan synthesis and patient outcome.
    Breast cancer research and treatment, 2015
    Co-Authors: Amro Masarwah, Raija Tammi, Markku Tammi, Sanna Oikari, Mazen Sudah, Anna Sutela, Veli-matti Kosma, Ritva Vanninen, Päivi Auvinen
    Abstract:

    Low mammographic breast density (MBD) and increased hyaluronan (HA) synthesis have been shown to have adverse effects on breast cancer prognosis. We aimed at elucidating the background of risk associated with mammographic characteristics, MBD and HA and its synthesizing isoforms in an attempt to uncover potential underlying biological mechanisms. MBD and mammographic characteristics of 270 patients were classified according to percentile density (very low density VLD, ≤25 %; mixed density MID, >25 %) and the BI-RADS 5th edition lexicon. Breast density and mammographic features were correlated with the localization and expression of HA, CD44, and HAS1-3 isoforms, and their combined effect on patients’ survivals was explored. VLD showed an increased level of HA-positive carcinoma cells and stromal HA, HAS2, and HAS3. Tumors presenting as masses had more HA-positive carcinoma cells and more stromal HAS2 and HAS3. Indistinct margin tumors showed more stromal HA and HAS3. Patients who combined both VLD breasts with either high HA in carcinoma cells or stroma showed a worse prognosis compared to low levels (carcinoma cells 58.0 vs. 80.5 %, p = 0.001; stroma 64.2 vs. 79.6 %, p = 0.017), while no similar HA-related effect was observed in MID breasts. Our findings suggest a strong reciprocal relationship between low MBD and HA expression and synthesis. The expression of both factors simultaneously leads to an especially adverse prognostic effect which might have an impact on treatment decision in the future. Moreover, HA around cancer cells may inhibit chemotherapy agents and antibody treatments from reaching cancer cells.

  • Extensive CD44-dependent hyaluronan coats on human bone marrow-derived mesenchymal stem cells produced by hyaluronan synthases HAS1, HAS2 and HAS3
    The international journal of biochemistry & cell biology, 2014
    Co-Authors: Kirsi Rilla, Raija Tammi, Markku Tammi, Heikki Kröger, Mikko J. Lammi
    Abstract:

    Hyaluronan (HA), a natural extracellular matrix component, has been considered as an important constituent of the stem cell niche, and successfully used as 3D scaffolds for the chondrogenic differentiation of stem cells. However, the expression levels of HA synthases (HAS1, 2 and 3) and the synthesis of HA by stem cells have remained unknown, and were studied here in the human bone marrow-derived mesenchymal stem cells (hMSCs). Nine hMSCs from different donors were cultured as monolayers with MSC culture medium supplemented with FGF-2. The amount of HA secreted into medium was studied by an ELISA-type assay, and HA bound to cell surface by live cell microscopy. The expression of HASs was analyzed by real time RT-PCR and immunostainings. The HA receptor CD44 was studied by immunocytochemistry. An intense HA coat surrounded the plasma membrane and its protrusions in all nine hMSCs. Displacement assay with HA oligosaccharides indicated that HA coat was at least partly dependent on CD44, which showed similar, relatively high expression in all hMSCs. All HAS isoenzymes were detected, HAS1 showing the largest and HAS3 the smallest range of expression levels between the hMSCs. The secretion of HA ranged between 22.5 and 397.4 ng/10,000 cells/24h, and could not be clearly assigned to the mRNA level of a certain HAS, or a combination of the isoenzymes. This suggests that post-transcriptional and post-translational factors were involved in the adjustment of the HA secretion. In conclusion, all hMSCs expressed high levels of HAS1-3, secrete large amounts of HA, and surround themselves with a thick HA coat bound to CD44. The results suggest that hMSC has the potential for autocrine maintenance of the HA niche, important for their stemness.

  • Tissue distribution and subcellular localization of hyaluronan synthase isoenzymes
    Histochemistry and Cell Biology, 2014
    Co-Authors: Kari Torronen, Raija Tammi, Markku Tammi, Riikka Kärnä, Kaisa Nikunen, Kirsi Rilla
    Abstract:

    Hyaluronan synthases (HAS) are unique plasma membrane glycosyltransferases secreting this glycosaminoglycan directly to the extracellular space. The three HAS isoenzymes (HAS1, HAS2, and HAS3) expressed in mammalian cells differ in their enzymatic properties and regulation by external stimuli, but clearly distinct functions have not been established. To overview the expression of different HAS isoenzymes during embryonic development and their subcellular localization, we immunostained mouse embryonic samples and cultured cells with HAS antibodies, correlating their distribution to hyaluronan staining. Their subcellular localization was further studied by GFP–HAS fusion proteins. Intense hyaluronan staining was observed throughout the development in the tissues of mesodermal origin, like heart and cartilages, but also for example during the maturation of kidneys and stratified epithelia. In general, staining for one or several HASs correlated with hyaluronan staining. The staining of HAS2 was most widespread, both spatially and temporally, correlating with hyaluronan staining especially in early mesenchymal tissues and heart. While epithelial cells were mostly negative for HASs, stratified epithelia became HAS positive during differentiation. All HAS isoenzymes showed cytoplasmic immunoreactivity, both in tissue sections and cultured cells, while plasma membrane staining was also detected, often in cellular extensions. HAS1 had brightest signal in Golgi, HAS3 in Golgi and microvillous protrusions, whereas most of the endogenous HAS2 immunoreactivity was localized in the ER. This differential pattern was also observed with transfected GFP–HASs. The large proportion of intracellular HASs suggests that HAS forms a reserve that is transported to the plasma membrane for rapid activation of hyaluronan synthesis.

  • Hyaluronan synthases (HAS1–3) in stromal and malignant cells correlate with breast cancer grade and predict patient survival
    Breast Cancer Research and Treatment, 2014
    Co-Authors: Päivi Auvinen, Markku Tammi, Kirsi Rilla, Veli-matti Kosma, Ritva Tumelius, Reijo Sironen, Ylermi Soini, Arto Mannermaa, Jukka Viikari, Raija Tammi
    Abstract:

    Accumulation of hyaluronan (HA) in pericellular stroma and carcinoma cells is predictive of unfavorable patient prognosis in many epithelial cancers. However, it is not known whether the HA originates from carcinoma or stromal cells, or whether increased expression of hyaluronan synthase proteins (HAS1–3) contributes to HA accumulation. In this study, localization and expression of HAS1–3 were evaluated immunohistochemically in 278 cases of human breast cancer, and correlated with prognostic factors and patient outcome. Both carcinoma cells and stromal cells were HAS-positive. In carcinoma cells, HAS1 and HA stainings correlated with each other, and HAS1 associated with estrogen receptor negativity, HER2 positivity, high relapse rate, and short overall survival. In stromal cells, the staining levels of all HAS isoforms correlated with the stromal HA staining, stromal cell CD44, high relapse rate, and short overall survival of the patients. In addition, expression levels of stromal HAS1 and HAS2 were related to obesity, large tumor size, lymph node positivity, and estrogen receptor negativity. Thus, stromal HAS1 and HAS3 were independent prognostic factors in the multivariate analysis. The data suggest that increased levels of HAS enzymes contribute to the accumulation of HA in breast cancer, and that HA is synthesized in carcinoma cells and stromal cells. The study also indicates that HAS enzyme levels are related to tumor aggressiveness and poor patient outcome representing potential targets for therapy.

Kirsi Rilla - One of the best experts on this subject based on the ideXlab platform.

  • Hyaluronan histochemistry - A potential new tool to assess the progress of liver disease from simple steatosis to hepatocellular carcinoma
    Glycobiology, 2019
    Co-Authors: Anne-mari Mustonen, Kirsi Rilla, Anu Salvén, Vesa Kärjä, Johanna Matilainen, Petteri Nieminen
    Abstract:

    Nonalcoholic fatty liver disease is among the most common liver diseases worldwide and one cause of cirrhosis that can result in the development of hepatocellular carcinoma (HCC). Hyaluronan (HA) is a high-molecular-mass glycosaminoglycan with diverse functions in tissue injury and repair, for instance, in inflammation and fibrogenesis. The aim of the present study was to investigate the relationships between the HA synthesizing and degrading enzymes in a spectrum of liver pathologies. This was realized by histological staining of liver sections from controls and patients with simple steatosis, steatohepatitis, cirrhosis and HCC (n = 90). HA-positive staining intensified in connective tissue in all liver pathologies, and staining of CD44, the major HA receptor, similarly increased in steatohepatitis and cirrhosis. HA synthase 1 (HAS1)-positive staining was reduced in steatosis, steatohepatitis and HCC. Staining of HAS3, which produces HA of a lower molecular mass, promotes inflammation and is pathogenic in animal models, increased in all diagnoses. The responses in staining intensity of HAS2 and hyaluronidases 1-2 were specific for different cell types. These findings suggest that HAS1-2 are responsible for HA synthesis in healthy livers, while HAS3 increases in importance in liver diseases. It is noteworthy that the pathological changes in HA metabolism are already visible in simple steatosis and, thus, precede the histological changes of inflammation and fibrosis. It could be possible to intervene in disease progression at an early stage by influencing HA metabolism. The results could have potential clinical applications with HAS3 immunostaining supplementing the existing HCC diagnostics.

  • Hyaluronan-positive plasma membrane protrusions exist on mesothelial cells in vivo
    Histochemistry and Cell Biology, 2016
    Co-Authors: Ville Koistinen, Markku Tammi, Tiina A Jokela, Sanna Oikari, Riikka Kärnä, Kirsi Rilla
    Abstract:

    Previous observations of our research group showed that HAS2 and HAS3 overexpression in cultured cells induces the formation of long and numerous microvillus-like cell protrusions, which are present also in cultured cell types with naturally high hyaluronan secretion and the cell protrusions resemble those found in mesothelial cells. The aim of this study was to investigate whether these hyaluronan secreting, actin-dependent protrusions exist also in vivo. It was found that rat mesothelium in vivo is positive for hyaluronan and Has1–3. Also microvilli in rat mesothelium and live primary cultures of mesothelial cells were found to be hyaluronan positive, and the cells expressed all Has isoforms. Furthermore, ultrastructure of the cell protrusions in rat mesothelium was similar to that induced by overexpression of HAS2 and HAS3, and the number and orientation of actin filaments supporting the cell protrusions was identical. The results of this study show that HA-positive protrusions exist in vivo and support the idea that hyaluronan secretion from plasma membrane protrusions is a general process. This mechanism is potentially crucial for the normal function and maintenance of tissues and body fluids and may be utilized in many therapeutic applications.

  • UDP-sugar substrates of HAS3 regulate its O-GlcNAcylation, intracellular traffic, extracellular shedding and correlate with melanoma progression.
    Cellular and molecular life sciences : CMLS, 2016
    Co-Authors: Ashik Jawahar Deen, Kirsi Rilla, Riikka Kärnä, Antti Hassinen, Sakari Kellokumpu, Sanna Pasonen-seppänen, Piia Takabe, Uma Thanigai Arasu, Sara Wojciechowski, Raija Tammi
    Abstract:

    Hyaluronan content is a powerful prognostic factor in many cancer types, but the molecular basis of its synthesis in cancer still remains unclear. Hyaluronan synthesis requires the transport of hyaluronan synthases (HAS1-3) from Golgi to plasma membrane (PM), where the enzymes are activated. For the very first time, the present study demonstrated a rapid recycling of HAS3 between PM and endosomes, controlled by the cytosolic levels of the HAS substrates UDP-GlcUA and UDP-GlcNAc. Depletion of UDP-GlcNAc or UDP-GlcUA shifted the balance towards HAS3 endocytosis, and inhibition of hyaluronan synthesis. In contrast, UDP-GlcNAc surplus suppressed endocytosis and lysosomal decay of HAS3, favoring its retention in PM, stimulating hyaluronan synthesis, and HAS3 shedding in extracellular vesicles. The concentration of UDP-GlcNAc also controlled the level of O-GlcNAc modification of HAS3. Increasing O-GlcNAcylation reproduced the effects of UDP-GlcNAc surplus on HAS3 trafficking, while its suppression showed the opposite effects, indicating that O-GlcNAc signaling is associated to UDP-GlcNAc supply. Importantly, a similar correlation existed between the expression of GFAT1 (the rate limiting enzyme in UDP-GlcNAc synthesis) and hyaluronan content in early and deep human melanomas, suggesting the association of UDP-sugar metabolism in initiation of melanomagenesis. In general, changes in glucose metabolism, realized through UDP-sugar contents and O-GlcNAc signaling, are important in HAS3 trafficking, hyaluronan synthesis, and correlates with melanoma progression.

  • Correlative Light and Electron Microscopy Reveals the HAS3-Induced Dorsal Plasma Membrane Ruffles
    International journal of cell biology, 2015
    Co-Authors: Kirsi Rilla, Arto Koistinen
    Abstract:

    Hyaluronan is a linear sugar polymer synthesized by three isoforms of hyaluronan synthases (HAS1, 2, and 3) that forms a hydrated scaffold around cells and is an essential component of the extracellular matrix. The morphological changes of cells induced by active hyaluronan synthesis are well recognized but not studied in detail with high resolution before. We have previously found that overexpression of HAS3 induces growth of long plasma membrane protrusions that act as platforms for hyaluronan synthesis. The study of these thin and fragile protrusions is challenging, and they are difficult to preserve by fixation unless they are adherent to the substrate. Thus their structure and regulation are still partly unclear despite careful imaging with different microscopic methods in several cell types. In this study, correlative light and electron microscopy (CLEM) was utilized to correlate the GFP-HAS3 signal and the surface ultrastructure of cells in order to study in detail the morphological changes induced by HAS3 overexpression. Surprisingly, this method revealed that GFP-HAS3 not only localizes to ruffles but in fact induces dorsal ruffle formation. Dorsal ruffles regulate diverse cellular functions, such as motility, regulation of glucose metabolism, spreading, adhesion, and matrix degradation, the same functions driven by active hyaluronan synthesis.

  • Rab10-mediated endocytosis of the hyaluronan synthase HAS3 regulates hyaluronan synthesis and cell adhesion to collagen.
    The Journal of biological chemistry, 2014
    Co-Authors: Ashik Jawahar Deen, Kirsi Rilla, Sanna Oikari, Riikka Kärnä, Genevieve Bart, Jukka Häyrinen, Avinash Rahul Bathina, Antti Ropponen, Katri M. Makkonen, Raija Tammi
    Abstract:

    Abstract Hyaluronan synthases (HAS1-3) are unique in that they are active only when located in plasma membrane, where they extrude the growing hyaluronan (HA) directly into cell surface and extracellular space. Therefore, traffic of HAS to/from plasma membrane is crucial for the synthesis of HA. In this study we have identified Rab10 GTPase as the first protein known to be involved in the control of this traffic. Rab10 colocalized with HAS3 in intracellular vesicular structures and was co-immunoprecipitated with HAS3 from isolated endosomal vesicles. Rab10 silencing increased plasma membrane residence of HAS3, resulting in a significant increase of HA secretion and enlarged cell surface HA coat, while Rab10 overexpression suppressed HA synthesis. Rab10 silencing blocked the retrograde traffic of HAS3 from plasma membrane to early endosomes. The cell surface HA coat impaired cell adhesion to type I collagen, as indicated by recovery of adhesion following hyaluronidase treatment. The data indicate a novel function for Rab10 in reducing cell surface HAS3, suppressing HA synthesis, and facilitating cell adhesion to type I collagen. These are processes important in tissue injury, inflammation and malignant growth.

Riikka Kärnä - One of the best experts on this subject based on the ideXlab platform.

  • Hyaluronan-positive plasma membrane protrusions exist on mesothelial cells in vivo
    Histochemistry and Cell Biology, 2016
    Co-Authors: Ville Koistinen, Markku Tammi, Tiina A Jokela, Sanna Oikari, Riikka Kärnä, Kirsi Rilla
    Abstract:

    Previous observations of our research group showed that HAS2 and HAS3 overexpression in cultured cells induces the formation of long and numerous microvillus-like cell protrusions, which are present also in cultured cell types with naturally high hyaluronan secretion and the cell protrusions resemble those found in mesothelial cells. The aim of this study was to investigate whether these hyaluronan secreting, actin-dependent protrusions exist also in vivo. It was found that rat mesothelium in vivo is positive for hyaluronan and Has1–3. Also microvilli in rat mesothelium and live primary cultures of mesothelial cells were found to be hyaluronan positive, and the cells expressed all Has isoforms. Furthermore, ultrastructure of the cell protrusions in rat mesothelium was similar to that induced by overexpression of HAS2 and HAS3, and the number and orientation of actin filaments supporting the cell protrusions was identical. The results of this study show that HA-positive protrusions exist in vivo and support the idea that hyaluronan secretion from plasma membrane protrusions is a general process. This mechanism is potentially crucial for the normal function and maintenance of tissues and body fluids and may be utilized in many therapeutic applications.

  • UDP-sugar substrates of HAS3 regulate its O-GlcNAcylation, intracellular traffic, extracellular shedding and correlate with melanoma progression.
    Cellular and molecular life sciences : CMLS, 2016
    Co-Authors: Ashik Jawahar Deen, Kirsi Rilla, Riikka Kärnä, Antti Hassinen, Sakari Kellokumpu, Sanna Pasonen-seppänen, Piia Takabe, Uma Thanigai Arasu, Sara Wojciechowski, Raija Tammi
    Abstract:

    Hyaluronan content is a powerful prognostic factor in many cancer types, but the molecular basis of its synthesis in cancer still remains unclear. Hyaluronan synthesis requires the transport of hyaluronan synthases (HAS1-3) from Golgi to plasma membrane (PM), where the enzymes are activated. For the very first time, the present study demonstrated a rapid recycling of HAS3 between PM and endosomes, controlled by the cytosolic levels of the HAS substrates UDP-GlcUA and UDP-GlcNAc. Depletion of UDP-GlcNAc or UDP-GlcUA shifted the balance towards HAS3 endocytosis, and inhibition of hyaluronan synthesis. In contrast, UDP-GlcNAc surplus suppressed endocytosis and lysosomal decay of HAS3, favoring its retention in PM, stimulating hyaluronan synthesis, and HAS3 shedding in extracellular vesicles. The concentration of UDP-GlcNAc also controlled the level of O-GlcNAc modification of HAS3. Increasing O-GlcNAcylation reproduced the effects of UDP-GlcNAc surplus on HAS3 trafficking, while its suppression showed the opposite effects, indicating that O-GlcNAc signaling is associated to UDP-GlcNAc supply. Importantly, a similar correlation existed between the expression of GFAT1 (the rate limiting enzyme in UDP-GlcNAc synthesis) and hyaluronan content in early and deep human melanomas, suggesting the association of UDP-sugar metabolism in initiation of melanomagenesis. In general, changes in glucose metabolism, realized through UDP-sugar contents and O-GlcNAc signaling, are important in HAS3 trafficking, hyaluronan synthesis, and correlates with melanoma progression.

  • Rab10-mediated endocytosis of the hyaluronan synthase HAS3 regulates hyaluronan synthesis and cell adhesion to collagen.
    The Journal of biological chemistry, 2014
    Co-Authors: Ashik Jawahar Deen, Kirsi Rilla, Sanna Oikari, Riikka Kärnä, Genevieve Bart, Jukka Häyrinen, Avinash Rahul Bathina, Antti Ropponen, Katri M. Makkonen, Raija Tammi
    Abstract:

    Abstract Hyaluronan synthases (HAS1-3) are unique in that they are active only when located in plasma membrane, where they extrude the growing hyaluronan (HA) directly into cell surface and extracellular space. Therefore, traffic of HAS to/from plasma membrane is crucial for the synthesis of HA. In this study we have identified Rab10 GTPase as the first protein known to be involved in the control of this traffic. Rab10 colocalized with HAS3 in intracellular vesicular structures and was co-immunoprecipitated with HAS3 from isolated endosomal vesicles. Rab10 silencing increased plasma membrane residence of HAS3, resulting in a significant increase of HA secretion and enlarged cell surface HA coat, while Rab10 overexpression suppressed HA synthesis. Rab10 silencing blocked the retrograde traffic of HAS3 from plasma membrane to early endosomes. The cell surface HA coat impaired cell adhesion to type I collagen, as indicated by recovery of adhesion following hyaluronidase treatment. The data indicate a novel function for Rab10 in reducing cell surface HAS3, suppressing HA synthesis, and facilitating cell adhesion to type I collagen. These are processes important in tissue injury, inflammation and malignant growth.

  • Tissue distribution and subcellular localization of hyaluronan synthase isoenzymes
    Histochemistry and Cell Biology, 2014
    Co-Authors: Kari Torronen, Raija Tammi, Markku Tammi, Riikka Kärnä, Kaisa Nikunen, Kirsi Rilla
    Abstract:

    Hyaluronan synthases (HAS) are unique plasma membrane glycosyltransferases secreting this glycosaminoglycan directly to the extracellular space. The three HAS isoenzymes (HAS1, HAS2, and HAS3) expressed in mammalian cells differ in their enzymatic properties and regulation by external stimuli, but clearly distinct functions have not been established. To overview the expression of different HAS isoenzymes during embryonic development and their subcellular localization, we immunostained mouse embryonic samples and cultured cells with HAS antibodies, correlating their distribution to hyaluronan staining. Their subcellular localization was further studied by GFP–HAS fusion proteins. Intense hyaluronan staining was observed throughout the development in the tissues of mesodermal origin, like heart and cartilages, but also for example during the maturation of kidneys and stratified epithelia. In general, staining for one or several HASs correlated with hyaluronan staining. The staining of HAS2 was most widespread, both spatially and temporally, correlating with hyaluronan staining especially in early mesenchymal tissues and heart. While epithelial cells were mostly negative for HASs, stratified epithelia became HAS positive during differentiation. All HAS isoenzymes showed cytoplasmic immunoreactivity, both in tissue sections and cultured cells, while plasma membrane staining was also detected, often in cellular extensions. HAS1 had brightest signal in Golgi, HAS3 in Golgi and microvillous protrusions, whereas most of the endogenous HAS2 immunoreactivity was localized in the ER. This differential pattern was also observed with transfected GFP–HASs. The large proportion of intracellular HASs suggests that HAS forms a reserve that is transported to the plasma membrane for rapid activation of hyaluronan synthesis.

  • Hyaluronan synthase 1 (HAS1) produces a cytokine-and glucose-inducible, CD44-dependent cell surface coat.
    Experimental cell research, 2013
    Co-Authors: Hanna Siiskonen, Raija Tammi, Markku Tammi, Juha M T Hyttinen, Riikka Kärnä, Kirsi Rilla
    Abstract:

    Abstract Hyaluronan is a ubiquitous glycosaminoglycan involved in embryonic development, inflammation and cancer. In mammals, three hyaluronan synthase isoenzymes (HAS1-3) inserted in the plasma membrane produce hyaluronan directly on cell surface. The mRNA level and enzymatic activity of HAS1 are lower than those of HAS2 and HAS3 in many cells, obscuring the importance of HAS1. Here we demonstrate using immunocytochemistry and transfection of fluorescently tagged HAS1 that its enzymatic activity depends on the ER–Golgi–plasma membrane traffic, like reported for HAS2 and HAS3. When cultured in 5 mM glucose, HAS1-transfected MCF-7 cells show very little cell surface hyaluronan, detected with a fluorescent hyaluronan binding probe. However, a large hyaluronan coat was seen in cells grown in 20 mM glucose and 1 mM glucosamine, or treated with IL-1β, TNF-α, or TGF-β. The coats were mostly removed by the presence of hyaluronan hexasaccharides, or Hermes1 antibody, indicating that they depended on the CD44 receptor, which is in a contrast to the coat produced by HAS3, remaining attached to HAS3 itself. The findings suggest that HAS1-dependent coat is induced by inflammatory agents and glycemic stress, mediated by altered presentation of either CD44 or hyaluronan, and can offer a rapid cellular response to injury and inflammation.

Paraskevi Heldin - One of the best experts on this subject based on the ideXlab platform.

  • Intracellular hyaluronan: Importance for cellular functions
    Seminars in cancer biology, 2019
    Co-Authors: Spyros S. Skandalis, Theodoros T. Karalis, Paraskevi Heldin
    Abstract:

    Abstract Hyaluronan-rich matrices are abundant in ECM and are involved in biological processes, such as cell growth and migration. Hyaluronan is synthesized by the hyaluronan synthase family of enzymes, HAS1, HAS2 and HAS3; the HAS1 and HAS3 genes give rise to different transcripts through alternative splicing, and the HAS2 gene to a non-coding RNA antisense transcript in addition to the protein-coding transcript. Biosynthesis of hyaluronan increases during inflammation and cancer and is regulated by cytokines and growth factors. In addition to extracellular hyaluronan-rich matrices, cytoplasmic and nuclear forms of hyaluronan have been detected in normal and pathological processes. Extra- and intra-cellular hyaluronan binds to hyaluronan binding proteins, such as CD44, RHAMM, CDC37 and USP17, affecting cellular behavior. Although neither the exact mechanisms by which hyaluronan is present in the intracellular compartments, nor its function at these sites are currently understood, there are evidence that intracellular hyaluronan has important regulatory roles during cell cycle, cell motility, RNA translation and splicing, and autophagy.

  • The deubiquitinating enzymes USP4 and USP17 target hyaluronan synthase 2 and differentially affect its function
    Oncogenesis, 2017
    Co-Authors: Meliha Mehić, S Hebestreit, Carl-henrik Heldin, Paraskevi Heldin
    Abstract:

    The levels of hyaluronan, a ubiquitous glycosaminoglycan prominent in the extracellular matrix, is balanced through the actions of hyaluronan-synthesizing enzymes (HAS1, 2 and 3) and degrading hyaluronidases (Hyal 1, 2, 3 and PH20). Hyaluronan accumulates in rapidly remodeling tissues, such as breast cancer, due to deregulated expression of the HAS2 gene and/or alterations of HAS2 activity. The activity of HAS2 is regulated by post-translational modifications, including ubiquitination. In order to identify deubiquitinating enzymes (DUBs) that are involved in de-ubiquitination of HAS2, a complementary (cDNA) library of 69 Flag-HA-tagged human DUBs cloned into retroviral vectors was screened in human embryonic kidney (HEK) 293T cells for their ability to de-ubiquitinate myc-tagged HAS2. Several DUBs were found to decrease the ubiquitination of 6myc-HAS2, among which, the most effective were USP17 and USP4. USP17 efficiently removed polyubiquitination, whereas USP4 preferentially removed monoubiquitination of 6myc-HAS2. Co-immunoprecipitation studies revealed interactions between HAS2 and USP17, as well as between HAS2 and USP4, in membrane preparations of HEK293T cells. USP17 significantly stabilized 6myc-HAS2 protein levels, whereas USP4 did not. The silencing of USP17 led to decreased hyaluronan production, whereas the suppression of USP4 increased hyaluronan synthesis. Importantly, high levels of USP17 and HAS2 were detected in a panel of cancer cell lines compared to normal cells, and immunohistochemical stainings revealed higher expression of USP17 and HAS2 in tissues of lung cancer patients compared to normal tissue. In conclusion, USP17 and USP4 differently affect HAS2 ubiquitination, and the stability and function of HAS2.

  • Fluorescence Resonance Energy Transfer (FRET) and Proximity Ligation Assays Reveal Functionally Relevant Homo- and Heteromeric Complexes among Hyaluronan Synthases HAS1, HAS2 and HAS3
    The Journal of biological chemistry, 2015
    Co-Authors: Genevieve Bart, Raija Tammi, Paraskevi Heldin, Nuria Ortega Vico, Antti Hassinen, François M. Pujol, Ashik Jawahar Deen, Aino Ruusala, Anthony Squire, Sakari Kellokumpu
    Abstract:

    In vertebrates, hyaluronan is produced in the plasma membrane from cytosolic UDP-sugar substrates by hyaluronan synthase 1-3 (HAS1-3) isoenzymes that transfer N-acetylglucosamine (GlcNAc) and glucuronic acid (GlcUA) in alternative positions in the growing polysaccharide chain during its simultaneous extrusion into the extracellular space. It has been shown that HAS2 immunoprecipitates contain functional HAS2 homomers and also heteromers with HAS3 (Karousou, E., Kamiryo, M., Skandalis, S. S., Ruusala, A., Asteriou, T., Passi, A., Yamashita, H., Hellman, U., Heldin, C. H., and Heldin, P. (2010) The activity of hyaluronan synthase 2 is regulated by dimerization and ubiquitination. J. Biol. Chem. 285, 23647-23654). Here we have systematically screened in live cells, potential interactions among the HAS isoenzymes using fluorescence resonance energy transfer (FRET) and flow cytometric quantification. We show that all HAS isoenzymes form homomeric and also heteromeric complexes with each other. The same complexes were detected both in Golgi apparatus and plasma membrane by using FRET microscopy and the acceptor photobleaching method. Proximity ligation assays with HAS antibodies confirmed the presence of HAS1-HAS2, HAS2-HAS2, and HAS2-HAS3 complexes between endogenously expressed HASs. C-terminal deletions revealed that the enzymes interact mainly via uncharacterized N-terminal 86-amino acid domain(s), but additional binding site(s) probably exist in their C-terminal parts. Of all the homomeric complexes HAS1 had the lowest and HAS3 the highest synthetic activity. Interestingly, HAS1 transfection reduced the synthesis of hyaluronan obtained by HAS2 and HAS3, suggesting functional cooperation between the isoenzymes. These data indicate a general tendency of HAS isoenzymes to form both homomeric and heteromeric complexes with potentially important functional consequences on hyaluronan synthesis.

  • Growth factor regulation of hyaluronan synthesis and degradation in human dermal fibroblasts: Importance of hyaluronan for the mitogenic response of PDGF-BB
    Biochemical Journal, 2007
    Co-Authors: Trias Asteriou, Carl-henrik Heldin, Berit Bernert, Paraskevi Heldin
    Abstract:

    The glycosaminoglycan hyaluronan is important in many tissue repair processes. We have investigated the synthesis of hyaluronan in a panel of cell lines of fibroblastic and epithelial origin in response to platelet-derived growth factor (PDGF)-BB and other growth factors. Human dermal fibroblasts exhibited the highest hyaluronan synthesizing activity in response to PDGF-BB. Analysis of hyaluronan synthase (HAS) and hyaluronidase (HYAL) mRNA expression showed that PDGF-BB treatment induced a 3-fold increase in the already high level of HAS2 mRNA, and increases in HAS1 and HYAL1 mRNA, whereas the levels of HAS3 and HYAL2 mRNA were not affected. Furthermore, PDGF-BB also increased the amount and activity of HAS2 protein, but not of HYAL1 and HYAL2 proteins. Using inhibitors for MEK1/2 (U0126) and for PI3 kinase (LY294002), as well as the SN50 inhibitor, that prevents translocation of the active NFkB to the nucleus, we observed a complete inhibition of both HAS2 transcriptional activity and hyaluronan synthesis, whereas inhibitors of other signaling pathways were without any significant effect. Transforming growth factor-β1 (TGF-β1) did not increase the activity of hyaluronan synthesis in dermal fibroblasts, but increased the activity of HYALs. Importantly, inhibition of hyaluronan binding to its receptor CD44 by the monoclonal antibody Hermes-1, inhibited PDGF-BB-stimulated [ 3}H]thymidine incorporation of dermal fibroblasts. We conclude that the Erk MAP kinase and PI3 kinase signaling pathways are necessary for the regulation of hyaluronan synthesis by PDGF-BB, and that prevention of its binding to CD44 inhibits PDGF-BB-induced cell growth.

  • Expression of hyaluronan synthase-3 in porcine oviducal epithelium during oestrus.
    Reproduction fertility and development, 2003
    Co-Authors: Paisan Tienthai, Paraskevi Heldin, Naoko Kimura, Eimei Sato, Heriberto Rodriguez-martinez
    Abstract:

    Hyaluronan (HA) has been related to fertilization and embryo development in the pig. Furthermore, HA is present in pig oviduct fluid and the lining epithelium, particularly of the pre-ovulatory sperm reservoir. Because the mechanisms that regulate HA synthesis have not yet been clarified, semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) was conducted to assess the expression of mRNAs of two HA-synthesizing enzymes (has2 and HAS3) in the oviduct epithelium (uterotubal junction, isthmus, ampullary-isthmic junction and ampulla segments) of non-inseminated (control) and inseminated (treatment) sows at pre-, peri- and post-ovulatory oestrus. Only HAS3 mRNA was detected; it was present in all tubal segments of both control and treatment samples. The level of HAS3 expression did not vary significantly between non-inseminated and inseminated specimens, but there was a tendency (NS) for increased mean values during the peri- and post-ovulatory stages compared with pre-ovulation. It is concluded that HAS3 is expressed by the porcine endosalpinx epithelium and the levels of expression do not vary during the critical periods of sperm transport and fertilization, despite fluctuating levels of HA in the tubal fluid at corresponding periods.