Mytilus californianus

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 870 Experts worldwide ranked by ideXlab platform

George N Somero - One of the best experts on this subject based on the ideXlab platform.

  • a single heat stress bout induces rapid and prolonged heat acclimation in the california mussel Mytilus californianus
    Proceedings of The Royal Society B: Biological Sciences, 2020
    Co-Authors: Nicole E Moyen, George N Somero, Rachel L Crane, Mark W Denny
    Abstract:

    Climate change is not only causing steady increases in average global temperatures but also increasing the frequency with which extreme heating events occur. These extreme events may be pivotal in determining the ability of organisms to persist in their current habitats. Thus, it is important to understand how quickly an organism's heat tolerance can be gained and lost relative to the frequency with which extreme heating events occur in the field. We show that the California mussel, Mytilus californianus-a sessile intertidal species that experiences extreme temperature fluctuations and cannot behaviourally thermoregulate-can quickly (in 24-48 h) acquire improved heat tolerance after exposure to a single sublethal heat-stress bout (2 h at 30 or 35°C) and then maintain this improved tolerance for up to three weeks without further exposure to elevated temperatures. This adaptive response improved survival rates by approximately 75% under extreme heat-stress bouts (2 h at 40°C). To interpret these laboratory findings in an ecological context, we evaluated 4 years of mussel body temperatures recorded in the field. The majority (approx. 64%) of consecutive heat-stress bouts were separated by 24-48 h, but several consecutive heat bouts were separated by as much as 22 days. Thus, the ability of M. californianus to maintain improved heat tolerance for up to three weeks after a single sublethal heat-stress bout significantly improves their probability of survival, as approximately 33% of consecutive heat events are separated by 3-22 days. As a sessile animal, mussels likely evolved the capability to rapidly gain and slowly lose heat tolerance to survive the intermittent, and often unpredictable, heat events in the intertidal zone. This adaptive strategy will likely prove beneficial under the extreme heat events predicted with climate change.

  • establishing typical values for hemocyte mortality in individual california mussels Mytilus californianus
    Fish & Shellfish Immunology, 2020
    Co-Authors: Nicole E Moyen, George N Somero, Paul A Bump, Mark W Denny
    Abstract:

    Abstract Hemocytes are immune cells in the hemolymph of invertebrates that play multiple roles in response to stressors; hemocyte mortality can thus serve as an indicator of overall animal health. However, previous research has often analyzed hemolymph samples pooled from several individuals, which precludes tracking individual responses to stressors over time. The ability to track individuals is important, however, because large inter-individual variation in response to stressors can confound the interpretation of pooled samples. Here, we describe protocols for analysis of inter- and intra-individual variability in hemocyte mortality across repeated hemolymph samples of California mussels, Mytilus californianus, free from typical abiotic stressors. To assess individual variability in hemocyte mortality with serial sampling, we created four groups of 15 mussels each that were repeatedly sampled four times: at baseline (time zero) and three subsequent times separated by either 24, 48, 72, or 168 h. Hemocyte mortality was assessed by fluorescence-activated cell sorting (FACS) of cells stained with propidium iodide. Our study demonstrates that hemolymph can be repeatedly sampled from individual mussels without mortality; however, there is substantial inter- and intra-individual variability in hemocyte mortality through time that is partially dependent on the sampling interval. Across repeated samples, individual mussels' hemocyte mortality had, on average, a range of ∼6% and a standard deviation of ∼3%, which was minimized with sampling periods ≥72 h apart. Due to this intra-individual variability, obtaining ≥2 samples from a specimen will more accurately establish an individual's baseline. Pooled-sample means were similar to individual-sample means; however, pooled samples masked the individual variation in each group. Overall, these data lay the foundation for future work exploring individual mussels' temporal responses to various stressors on a cellular level.

  • impact of heating rate on cardiac thermal tolerance in the california mussel Mytilus californianus
    The Journal of Experimental Biology, 2019
    Co-Authors: Nicole E Moyen, George N Somero, Mark W Denny
    Abstract:

    ABSTRACT Intertidal communities of wave-swept rocky shores have served as a powerful model system for experiments in ecology, and mussels (the dominant competitor for space in the mid-intertidal zone) play a central role in determining community structure in this physically stressful habitat. Consequently, the ability to account for mussels9 physiological responses to thermal stress affects ecologists’ capacity to predict the impacts of a warming climate on this ecosystem. Here, we examined the effect of heating rate on cardiac thermal tolerance in the ribbed mussel, Mytilus californianus, comparing populations from high and low sites in the intertidal zone where emersion duration leads to different mean daily heating rates. Two temperature-related cardiac variables were examined: (1) the critical temperature (Tcrit) at which heart rate (HR) precipitously declines, and (2) flatline temperature (FLT) where HR reaches zero. Mussels were heated in air at slow, moderate and fast rates, and HR was measured via an infrared sensor affixed to the shell. Faster heating rates significantly increased Tcrit in high- but not low-zone mussels, and Tcrit was higher in high- versus low-zone mussels, especially at the fastest heating rate. By contrast, FLT did not differ between zones, and was minimally affected by heating rate. As heating rate significantly impacted high- but not low-zone mussels9 cardiac thermal tolerance, realistic zone-specific heating rates must be used in laboratory tests if those tests are to provide accurate information for ecological models attempting to predict the effects of increasing temperature on intertidal communities.

  • thermal history and gape of individual Mytilus californianus correlate with oxidative damage and thermoprotective osmolytes
    The Journal of Experimental Biology, 2017
    Co-Authors: Lani U Gleason, George N Somero, Luke P Miller, Jacob R Winnikoff, Paul H Yancey, Dylan Bratz, Wesley W Dowd
    Abstract:

    The ability of animals to cope with environmental stress depends - in part - on past experience, yet knowledge of the factors influencing an individual's physiology in nature remains underdeveloped. We used an individual monitoring system to record body temperature and valve gaping behavior of rocky intertidal zone mussels (Mytilus californianus). Thirty individuals were selected from two mussel beds (wave-exposed and wave-protected) that differ in thermal regime. Instrumented mussels were deployed at two intertidal heights (near the lower and upper edges of the mussel zone) and in a continuously submerged tidepool. Following a 23-day monitoring period, measures of oxidative damage to DNA and lipids, antioxidant capacities (catalase activity and peroxyl radical scavenging) and tissue contents of organic osmolytes were obtained from gill tissue of each individual. Univariate and multivariate analyses indicated that inter-individual variation in cumulative thermal stress is a predominant driver of physiological variation. Thermal history over the outplant period was positively correlated with oxidative DNA damage. Thermal history was also positively correlated with tissue contents of taurine, a thermoprotectant osmolyte, and with activity of the antioxidant enzyme catalase. Origin site differences, possibly indicative of developmental plasticity, were only significant for catalase activity. Gaping behavior was positively correlated with tissue contents of two osmolytes. Overall, these results are some of the first to clearly demonstrate relationships between inter-individual variation in recent experience in the field and inter-individual physiological variation, in this case within mussel beds. Such micro-scale, environmentally mediated physiological differences should be considered in attempts to forecast biological responses to a changing environment.

  • thermal stress and cellular signaling processes in hemocytes of native Mytilus californianus and invasive m galloprovincialis mussels cell cycle regulation and dna repair
    Comparative Biochemistry and Physiology A-molecular & Integrative Physiology, 2013
    Co-Authors: Cuiluan Yao, George N Somero
    Abstract:

    Abstract In a previous study using hemocytes from native and invasive congeners of Mytilus ( Mytilus californianus and Mytilus galloprovincialis , respectively) we showed that DNA damage and cell signaling transduction processes related to the cellular stress response and apoptosis were induced by acute temperature stress. The present study extends this work by examining effects of acute heat- and cold stress on total hemocyte counts (THCs) and expression of key regulatory molecules involved in responding to stress: tumor suppressor factor (p53), cell cycle arrest activator (p21), and a DNA base excision repair enzyme (apurinic/apyrimidinic endonuclease (APE)). Hyperthermia (28 °C, 32 °C) led to significant decreases of THCs in both species. The extent of decrease in THC was temperature-, time-, and species-dependent; lower THC values were found in M. californianus , the more cold-adapted species. Western blot analyses of hemocyte extracts with antibodies specific for p53 protein, several site-specific phosphorylation states of p53, p21 protein, and APE indicated that heat- and cold (2 °C) stress induced a time-dependent activation of stress-related proteins in response to DNA damage; these stress-induced changes could govern cell cycle arrest or DNA damage repair. Our results show that the downstream regulatory response to temperature-induced cell damage may play an important role in deciding cellular fate following heat- and cold stress. Compared to M. californianus , the more warm-adapted M. galloprovincialis appears to have a higher temperature tolerance due to a lesser reduction in THC, faster signaling activation and transduction, and stronger DNA repair ability following heat stress.

Herbert J Waite - One of the best experts on this subject based on the ideXlab platform.

  • the microscopic network structure of mussel Mytilus adhesive plaques
    Journal of the Royal Society Interface, 2015
    Co-Authors: Emmanouela Filippidi, Daniel G Demartini, Paula Malo De Molina, Eric Danner, Juntae Kim, Matthew E Helgeson, Herbert J Waite, Megan T Valentine
    Abstract:

    Marine mussels of the genus Mytilus live in the hostile intertidal zone, attached to rocks, bio-fouled surfaces and each other via collagen-rich threads ending in adhesive pads, the plaques. Plaques adhere in salty, alkaline seawater, withstanding waves and tidal currents. Each plaque requires a force of several newtons to detach. Although the molecular composition of the plaques has been well studied, a complete understanding of supra-molecular plaque architecture and its role in maintaining adhesive strength remains elusive. Here, electron microscopy and neutron scattering studies of plaques harvested from Mytilus californianus and Mytilus galloprovincialis reveal a complex network structure reminiscent of structural foams. Two characteristic length scales are observed characterizing a dense meshwork (approx. 100 nm) with large interpenetrating pores (approx. 1 µm). The network withstands chemical denaturation, indicating significant cross-linking. Plaques formed at lower temperatures have finer network struts, from which we hypothesize a kinetically controlled formation mechanism. When mussels are induced to create plaques, the resulting structure lacks a well-defined network architecture, showcasing the importance of processing over self-assembly. Together, these new data provide essential insight into plaque structure and formation and set the foundation to understand the role of plaque structure in stress distribution and toughening in natural and biomimetic materials.

  • interfacial ph during mussel adhesive plaque formation
    Biofouling, 2015
    Co-Authors: Nadine Martinez R Rodriguez, Saurabh Das, Yair Kaufman, Jacob N Israelachvili, Herbert J Waite
    Abstract:

    Mussel (Mytilus californianus) adhesion to marine surfaces involves an intricate and adaptive synergy of molecules and spatio-temporal processes. Although the molecules, such as mussel foot proteins (mfps), are well characterized, deposition details remain vague and speculative. Developing methods for the precise surveillance of conditions that apply during mfp deposition would aid both in understanding mussel adhesion and translating this adhesion into useful technologies. To probe the interfacial pH at which mussels buffer the local environment during mfp deposition, a lipid bilayer with tethered pH-sensitive fluorochromes was assembled on mica. The interfacial pH during foot contact with modified mica ranged from 2.2 to 3.3, which is well below the seawater pH of ~ 8. The acidic pH serves multiple functions: it limits mfp-Dopa oxidation, thereby enabling the catecholic functionalities to adsorb to surface oxides by H-bonding and metal ion coordination, and provides a solubility switch for mfps, most of which aggregate at pH ≥ 7-8.

  • stiff coatings on compliant biofibers the cuticle of Mytilus californianus byssal threads
    Biochemistry, 2009
    Co-Authors: Niels Holtenandersen, Hua Zhao, Herbert J Waite
    Abstract:

    For lasting holdfast attachment, the mussel Mytilus californianus coats its byssal threads with a protective cuticle 2-5 microm thick that is 4-6 times stiffer than the underlying collagen fibers. Although cuticle hardness (0.1 GPa) and stiffness (2 GPa) resemble those observed in related mussels, a more effective dispersion of microdamage enables M. californianus byssal threads to sustain strains to almost 120% before cuticle rupture occurs. Underlying factors for the superior damage tolerance of the byssal cuticle were explored in its microarchitecture and in the cuticular protein, mcfp-1. Cuticle microstructure was distinctly granular, with granule diameters (approximately 200 nm) only a quarter of those in M. galloprovincialis cuticle, for example. Compared with homologous proteins in related mussel species, mcfp-1 from M. californianus had a similar mass (approximately 92 kDa) and number of tandemly repeated decapeptides, and contained the same post-translational modifications, namely, trans-4-hydroxyproline, trans-2,3-cis-3,4-dihydroxyproline, and 3,4-dihydroxyphenylalanine (Dopa). The prominence of isoleucine in mcfp-1, however, distinguished it from homologues in other species. The complete protein sequence deduced from cDNAs for two related variants revealed a highly conserved consensus decapeptide PKISYPPTYK that is repeated 64 times and differs slightly from the consensus peptide (AKPSYPPTYK) of both M. galloprovincialis and M. edulis proteins.

  • holdfast heroics comparing the molecular and mechanical properties of Mytilus californianus byssal threads
    The Journal of Experimental Biology, 2007
    Co-Authors: Matthew J Harrington, Herbert J Waite
    Abstract:

    SUMMARY The marine mussel Mytilus californianus Conrad inhabits the most wave-exposed regions of the rocky intertidal by dint of its extraordinary tenacity. Tenacity is mediated in large part by the byssus, a fibrous holdfast structure. M. californianus byssal threads, which are mechanically superior to the byssal threads of other mytilids, are composed almost entirely of a consortium of three modular proteins known as the preCols. In this study, the complete primary sequence of preCols from M. californianus was deduced and compared to that of two related species with mechanically inferior byssal threads, M. edulis Linnaeus and M. galloprovincialis Lamarck in order to explore structure–function relationships. The preCols from M. californianus are more divergent from the other two species than they are from one another. However, the degree of divergence is not uniform among the various domains of the preCols, allowing us to speculate on their mechanical role. For instance, the extra spider silk-like runs of alanine-rich sequence in the flanking domains of M. californianus may increase crystalline order, enhancing strength and stiffness. Histidine-rich domains at the termini, in contrast, are highly conserved between species, suggesting a mechanical role common to all three. Mechanical testing of pH-treated and chemically derivatized distal threads strongly suggests that histidine side chains are ligands in reversible, metal-mediated cross-links in situ. By combining the mechanical and sequence data, yield and self-healing in the distal region of threads have been modeled to emphasize the intricate interplay of enthalpic and entropic effects during tensile load and recovery.

  • proteins in load bearing junctions the histidine rich metal binding protein of mussel byssus
    Biochemistry, 2006
    Co-Authors: Hua Zhao, Herbert J Waite
    Abstract:

    Building complex load-bearing scaffolds depends on effective ways of joining functionally different biomacromolecules. The junction between collagen fibers and foamlike adhesive plaques in mussel byssus is robust despite the strikingly dissimilar connected structures. mcfp-4, the matrix protein from this junction, and its presecreted form from the foot tissue of Mytilus californianus were isolated and characterized. mcfp-4 has a mass of ∼93 kDa as determined by MALDI-TOF mass spectrometry. Its composition is dominated by histidine (22 mol %), but levels of lysine, arginine, and aspartate are also significant. A small amount of 3,4-dihydroxyphenyl-l-alanine (2 mol %) can be detected by amino acid analysis and redox cycling assays. The cDNA-deduced sequence of mcfp-4 reveals multiple variants with highly repetitive internal structures, including ∼36 tandemly repeated His-rich decapeptides (e.g., HVHTHRVLHK) in the N-terminal half and 16 somewhat more degenerate aspartate-rich undecapeptides (e.g., DDHVNDIAQ...

Mark W Denny - One of the best experts on this subject based on the ideXlab platform.

  • a single heat stress bout induces rapid and prolonged heat acclimation in the california mussel Mytilus californianus
    Proceedings of The Royal Society B: Biological Sciences, 2020
    Co-Authors: Nicole E Moyen, George N Somero, Rachel L Crane, Mark W Denny
    Abstract:

    Climate change is not only causing steady increases in average global temperatures but also increasing the frequency with which extreme heating events occur. These extreme events may be pivotal in determining the ability of organisms to persist in their current habitats. Thus, it is important to understand how quickly an organism's heat tolerance can be gained and lost relative to the frequency with which extreme heating events occur in the field. We show that the California mussel, Mytilus californianus-a sessile intertidal species that experiences extreme temperature fluctuations and cannot behaviourally thermoregulate-can quickly (in 24-48 h) acquire improved heat tolerance after exposure to a single sublethal heat-stress bout (2 h at 30 or 35°C) and then maintain this improved tolerance for up to three weeks without further exposure to elevated temperatures. This adaptive response improved survival rates by approximately 75% under extreme heat-stress bouts (2 h at 40°C). To interpret these laboratory findings in an ecological context, we evaluated 4 years of mussel body temperatures recorded in the field. The majority (approx. 64%) of consecutive heat-stress bouts were separated by 24-48 h, but several consecutive heat bouts were separated by as much as 22 days. Thus, the ability of M. californianus to maintain improved heat tolerance for up to three weeks after a single sublethal heat-stress bout significantly improves their probability of survival, as approximately 33% of consecutive heat events are separated by 3-22 days. As a sessile animal, mussels likely evolved the capability to rapidly gain and slowly lose heat tolerance to survive the intermittent, and often unpredictable, heat events in the intertidal zone. This adaptive strategy will likely prove beneficial under the extreme heat events predicted with climate change.

  • establishing typical values for hemocyte mortality in individual california mussels Mytilus californianus
    Fish & Shellfish Immunology, 2020
    Co-Authors: Nicole E Moyen, George N Somero, Paul A Bump, Mark W Denny
    Abstract:

    Abstract Hemocytes are immune cells in the hemolymph of invertebrates that play multiple roles in response to stressors; hemocyte mortality can thus serve as an indicator of overall animal health. However, previous research has often analyzed hemolymph samples pooled from several individuals, which precludes tracking individual responses to stressors over time. The ability to track individuals is important, however, because large inter-individual variation in response to stressors can confound the interpretation of pooled samples. Here, we describe protocols for analysis of inter- and intra-individual variability in hemocyte mortality across repeated hemolymph samples of California mussels, Mytilus californianus, free from typical abiotic stressors. To assess individual variability in hemocyte mortality with serial sampling, we created four groups of 15 mussels each that were repeatedly sampled four times: at baseline (time zero) and three subsequent times separated by either 24, 48, 72, or 168 h. Hemocyte mortality was assessed by fluorescence-activated cell sorting (FACS) of cells stained with propidium iodide. Our study demonstrates that hemolymph can be repeatedly sampled from individual mussels without mortality; however, there is substantial inter- and intra-individual variability in hemocyte mortality through time that is partially dependent on the sampling interval. Across repeated samples, individual mussels' hemocyte mortality had, on average, a range of ∼6% and a standard deviation of ∼3%, which was minimized with sampling periods ≥72 h apart. Due to this intra-individual variability, obtaining ≥2 samples from a specimen will more accurately establish an individual's baseline. Pooled-sample means were similar to individual-sample means; however, pooled samples masked the individual variation in each group. Overall, these data lay the foundation for future work exploring individual mussels' temporal responses to various stressors on a cellular level.

  • impact of heating rate on cardiac thermal tolerance in the california mussel Mytilus californianus
    The Journal of Experimental Biology, 2019
    Co-Authors: Nicole E Moyen, George N Somero, Mark W Denny
    Abstract:

    ABSTRACT Intertidal communities of wave-swept rocky shores have served as a powerful model system for experiments in ecology, and mussels (the dominant competitor for space in the mid-intertidal zone) play a central role in determining community structure in this physically stressful habitat. Consequently, the ability to account for mussels9 physiological responses to thermal stress affects ecologists’ capacity to predict the impacts of a warming climate on this ecosystem. Here, we examined the effect of heating rate on cardiac thermal tolerance in the ribbed mussel, Mytilus californianus, comparing populations from high and low sites in the intertidal zone where emersion duration leads to different mean daily heating rates. Two temperature-related cardiac variables were examined: (1) the critical temperature (Tcrit) at which heart rate (HR) precipitously declines, and (2) flatline temperature (FLT) where HR reaches zero. Mussels were heated in air at slow, moderate and fast rates, and HR was measured via an infrared sensor affixed to the shell. Faster heating rates significantly increased Tcrit in high- but not low-zone mussels, and Tcrit was higher in high- versus low-zone mussels, especially at the fastest heating rate. By contrast, FLT did not differ between zones, and was minimally affected by heating rate. As heating rate significantly impacted high- but not low-zone mussels9 cardiac thermal tolerance, realistic zone-specific heating rates must be used in laboratory tests if those tests are to provide accurate information for ecological models attempting to predict the effects of increasing temperature on intertidal communities.

Nicole E Moyen - One of the best experts on this subject based on the ideXlab platform.

  • a single heat stress bout induces rapid and prolonged heat acclimation in the california mussel Mytilus californianus
    Proceedings of The Royal Society B: Biological Sciences, 2020
    Co-Authors: Nicole E Moyen, George N Somero, Rachel L Crane, Mark W Denny
    Abstract:

    Climate change is not only causing steady increases in average global temperatures but also increasing the frequency with which extreme heating events occur. These extreme events may be pivotal in determining the ability of organisms to persist in their current habitats. Thus, it is important to understand how quickly an organism's heat tolerance can be gained and lost relative to the frequency with which extreme heating events occur in the field. We show that the California mussel, Mytilus californianus-a sessile intertidal species that experiences extreme temperature fluctuations and cannot behaviourally thermoregulate-can quickly (in 24-48 h) acquire improved heat tolerance after exposure to a single sublethal heat-stress bout (2 h at 30 or 35°C) and then maintain this improved tolerance for up to three weeks without further exposure to elevated temperatures. This adaptive response improved survival rates by approximately 75% under extreme heat-stress bouts (2 h at 40°C). To interpret these laboratory findings in an ecological context, we evaluated 4 years of mussel body temperatures recorded in the field. The majority (approx. 64%) of consecutive heat-stress bouts were separated by 24-48 h, but several consecutive heat bouts were separated by as much as 22 days. Thus, the ability of M. californianus to maintain improved heat tolerance for up to three weeks after a single sublethal heat-stress bout significantly improves their probability of survival, as approximately 33% of consecutive heat events are separated by 3-22 days. As a sessile animal, mussels likely evolved the capability to rapidly gain and slowly lose heat tolerance to survive the intermittent, and often unpredictable, heat events in the intertidal zone. This adaptive strategy will likely prove beneficial under the extreme heat events predicted with climate change.

  • establishing typical values for hemocyte mortality in individual california mussels Mytilus californianus
    Fish & Shellfish Immunology, 2020
    Co-Authors: Nicole E Moyen, George N Somero, Paul A Bump, Mark W Denny
    Abstract:

    Abstract Hemocytes are immune cells in the hemolymph of invertebrates that play multiple roles in response to stressors; hemocyte mortality can thus serve as an indicator of overall animal health. However, previous research has often analyzed hemolymph samples pooled from several individuals, which precludes tracking individual responses to stressors over time. The ability to track individuals is important, however, because large inter-individual variation in response to stressors can confound the interpretation of pooled samples. Here, we describe protocols for analysis of inter- and intra-individual variability in hemocyte mortality across repeated hemolymph samples of California mussels, Mytilus californianus, free from typical abiotic stressors. To assess individual variability in hemocyte mortality with serial sampling, we created four groups of 15 mussels each that were repeatedly sampled four times: at baseline (time zero) and three subsequent times separated by either 24, 48, 72, or 168 h. Hemocyte mortality was assessed by fluorescence-activated cell sorting (FACS) of cells stained with propidium iodide. Our study demonstrates that hemolymph can be repeatedly sampled from individual mussels without mortality; however, there is substantial inter- and intra-individual variability in hemocyte mortality through time that is partially dependent on the sampling interval. Across repeated samples, individual mussels' hemocyte mortality had, on average, a range of ∼6% and a standard deviation of ∼3%, which was minimized with sampling periods ≥72 h apart. Due to this intra-individual variability, obtaining ≥2 samples from a specimen will more accurately establish an individual's baseline. Pooled-sample means were similar to individual-sample means; however, pooled samples masked the individual variation in each group. Overall, these data lay the foundation for future work exploring individual mussels' temporal responses to various stressors on a cellular level.

  • impact of heating rate on cardiac thermal tolerance in the california mussel Mytilus californianus
    The Journal of Experimental Biology, 2019
    Co-Authors: Nicole E Moyen, George N Somero, Mark W Denny
    Abstract:

    ABSTRACT Intertidal communities of wave-swept rocky shores have served as a powerful model system for experiments in ecology, and mussels (the dominant competitor for space in the mid-intertidal zone) play a central role in determining community structure in this physically stressful habitat. Consequently, the ability to account for mussels9 physiological responses to thermal stress affects ecologists’ capacity to predict the impacts of a warming climate on this ecosystem. Here, we examined the effect of heating rate on cardiac thermal tolerance in the ribbed mussel, Mytilus californianus, comparing populations from high and low sites in the intertidal zone where emersion duration leads to different mean daily heating rates. Two temperature-related cardiac variables were examined: (1) the critical temperature (Tcrit) at which heart rate (HR) precipitously declines, and (2) flatline temperature (FLT) where HR reaches zero. Mussels were heated in air at slow, moderate and fast rates, and HR was measured via an infrared sensor affixed to the shell. Faster heating rates significantly increased Tcrit in high- but not low-zone mussels, and Tcrit was higher in high- versus low-zone mussels, especially at the fastest heating rate. By contrast, FLT did not differ between zones, and was minimally affected by heating rate. As heating rate significantly impacted high- but not low-zone mussels9 cardiac thermal tolerance, realistic zone-specific heating rates must be used in laboratory tests if those tests are to provide accurate information for ecological models attempting to predict the effects of increasing temperature on intertidal communities.

Hua Zhao - One of the best experts on this subject based on the ideXlab platform.

  • stiff coatings on compliant biofibers the cuticle of Mytilus californianus byssal threads
    Biochemistry, 2009
    Co-Authors: Niels Holtenandersen, Hua Zhao, Herbert J Waite
    Abstract:

    For lasting holdfast attachment, the mussel Mytilus californianus coats its byssal threads with a protective cuticle 2-5 microm thick that is 4-6 times stiffer than the underlying collagen fibers. Although cuticle hardness (0.1 GPa) and stiffness (2 GPa) resemble those observed in related mussels, a more effective dispersion of microdamage enables M. californianus byssal threads to sustain strains to almost 120% before cuticle rupture occurs. Underlying factors for the superior damage tolerance of the byssal cuticle were explored in its microarchitecture and in the cuticular protein, mcfp-1. Cuticle microstructure was distinctly granular, with granule diameters (approximately 200 nm) only a quarter of those in M. galloprovincialis cuticle, for example. Compared with homologous proteins in related mussel species, mcfp-1 from M. californianus had a similar mass (approximately 92 kDa) and number of tandemly repeated decapeptides, and contained the same post-translational modifications, namely, trans-4-hydroxyproline, trans-2,3-cis-3,4-dihydroxyproline, and 3,4-dihydroxyphenylalanine (Dopa). The prominence of isoleucine in mcfp-1, however, distinguished it from homologues in other species. The complete protein sequence deduced from cDNAs for two related variants revealed a highly conserved consensus decapeptide PKISYPPTYK that is repeated 64 times and differs slightly from the consensus peptide (AKPSYPPTYK) of both M. galloprovincialis and M. edulis proteins.

  • proteins in load bearing junctions the histidine rich metal binding protein of mussel byssus
    Biochemistry, 2006
    Co-Authors: Hua Zhao, Herbert J Waite
    Abstract:

    Building complex load-bearing scaffolds depends on effective ways of joining functionally different biomacromolecules. The junction between collagen fibers and foamlike adhesive plaques in mussel byssus is robust despite the strikingly dissimilar connected structures. mcfp-4, the matrix protein from this junction, and its presecreted form from the foot tissue of Mytilus californianus were isolated and characterized. mcfp-4 has a mass of ∼93 kDa as determined by MALDI-TOF mass spectrometry. Its composition is dominated by histidine (22 mol %), but levels of lysine, arginine, and aspartate are also significant. A small amount of 3,4-dihydroxyphenyl-l-alanine (2 mol %) can be detected by amino acid analysis and redox cycling assays. The cDNA-deduced sequence of mcfp-4 reveals multiple variants with highly repetitive internal structures, including ∼36 tandemly repeated His-rich decapeptides (e.g., HVHTHRVLHK) in the N-terminal half and 16 somewhat more degenerate aspartate-rich undecapeptides (e.g., DDHVNDIAQ...

  • linking adhesive and structural proteins in the attachment plaque of Mytilus californianus
    Journal of Biological Chemistry, 2006
    Co-Authors: Hua Zhao, Herbert J Waite
    Abstract:

    The byssal attachment of California mussels Mytilus californianus provides secure adhesion in the presence of moisture, a feat that still eludes most synthetic polymers. Matrix-assisted laser desorption ionization mass spectrometry was used to probe the footprints of byssal attachment plaques on glass cover slips for adhesive proteins. Besides the abundant mcfp-3 protein family (Zhao, H., Robertson, N. B., Jewhurst, S. A., and Waite, J. H. (2006) J. Biol. Chem. 281, 11090-11096), two new proteins, mcfp-5 and mcfp-6, with masses of 8.9 kDa and 11.6 kDa, respectively, were identified in footprints, partially characterized and completely sequenced from a cDNA library. mcfp-5 resembles mcfp-3 in its basic pI and abundant 3,4-dihydroxyphenyl-L-alanine (Dopa; 30 mol %), but is distinct in two respects: it is more homogeneous in primary sequence and is polyphosphorylated. mcfp-6 is basic and contains a small amount of Dopa (<5 mol %). In contrast to mcfp-3 and -5, tyrosine prevails at 20 mol %, and cysteine is present at 11 mol %, one-third of which remains thiolate. Given the oxidative instability of Dopa and cysteine at pH 8.2 (seawater), we tested the hypothesis that thiols serve to scavenge dopaquinones by adduct formation. Plaque footprints were hydrolyzed and screened for cysteine dopaquinone adducts using phenylboronate affinity chromatography. 5-S-Cysteinyldopa was detected at nearly 1 mol %. The results suggest that mcfp-6 may provide a cohesive link between the surface-coupling Dopa-rich proteins and the bulk of the plaque proteins.

  • probing the adhesive footprints of Mytilus californianus byssus
    Journal of Biological Chemistry, 2006
    Co-Authors: Hua Zhao, Nicholas B Robertson, Scott A Jewhurst, Herbert J Waite
    Abstract:

    California mussels Mytilus californianus owe their tenacity to a holdfast known as the byssus, a fibrous extracellular structure that ends distally in flattened adhesive plaques. The "footprints" of freshly secreted plaques deposited onto glass coverslips were shown by matrix-assisted laser desorption ionization time of flight mass spectrometry to consist chiefly of proteins ranging in mass from 5200 to 6700 Da. These proteins, variants of a family known as mcfp3 (M. californianus foot protein 3), were purified from acetic acid/urea extracts of plaques and foot tissue. Mcfp3 appears to sort into fast and slow electrophoretic variants. Both are rich in Gly and Asn and exhibit post-translational hydroxylation of Tyr and Arg to Dopa and 4-hydroxyarginine, respectively, with the fast variant containing more than twice as much Lys + Arg. Both the slow and fast variants were partially sequenced from the N terminus, and the complete sequences of 12 variants were deduced from cDNA using degenerate oligonucleotides, PCR, and rapid amplification of cDNA ends. Mcfp3s are highly polar molecules and contain up to 28 mol % Dopa, which remains intact and may be crucial for adhesion to metal and mineral surfaces.