Avian Coronavirus

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 360 Experts worldwide ranked by ideXlab platform

Mark W Jackwood - One of the best experts on this subject based on the ideXlab platform.

  • identification of Avian Coronavirus in wild aquatic birds of the central and eastern usa
    Journal of Wildlife Diseases, 2015
    Co-Authors: Brian J Jordan, Deborah A Hilt, Rebecca L Poulson, David E Stallknecht, Mark W Jackwood
    Abstract:

    Abstract Coronaviruses (CoVs) are worldwide in distribution, highly infectious, and difficult to control because of their extensive genetic diversity, short generation time, and high mutation rates. Genetically diverse CoVs have been reported from wild aquatic birds that may represent a potential reservoir for Avian CoVs as well as hosts for mutations and recombination events leading to new serotypes or genera. We tested 133 pooled samples representing 700 first-passage (in eggs) and 303 direct cloacal swab transport media samples from wild aquatic birds in the US that were Avian influenza-negative. We isolated RNA from frozen samples and performed reverse transcriptase-PCR using a published universal CoV primer set. Of the samples tested, one from a Ruddy Turnstone (Arenaria interpres) was positive for CoV, showing nucleotide sequence similarity to a duck Coronavirus (DK/CH/HN/ZZ2004). These data indicate a possible low prevalence of CoVs circulating in wild aquatic birds in the eastern half of the US.

  • simultaneous detection of five major serotypes of Avian Coronavirus by a multiplex microsphere based assay
    Journal of Veterinary Diagnostic Investigation, 2013
    Co-Authors: Hajung Roh, Deborah A Hilt, Mark W Jackwood
    Abstract:

    Avian Coronavirus (commonly known as Infectious bronchitis virus (IBV)) is of major economic importance to commercial chicken producers worldwide. Due to the existence of multiple serotypes and variants of the virus that do not cross- protect, it is important to diagnose circulating serotypes and choose the right vaccine type for successful protection. In an effort to improve conventional diagnostic tests, a microsphere-based assay was developed and evaluated for simultaneous detection of the most common IBV vaccine serotypes in the United States: Arkansas (Ark), Connecticut (Conn), Massachusetts (Mass), Delaware (DE072), and Georgia 98 (GA98). The analytical specificity and sensitivity, and diagnostic specificity and sensitivity, were evaluated. The microsphere-based assay was highly specific to designated serotypes and generated reproducible data. Comparing the microsphere-based assay to nucleotide sequencing, the 2 methods agreed more than 93% (kappa value > .77). In addition, the microsphere-based assay could detect coinfections in clinical samples. The results demonstrate the utility of the microsphere-based assay as a rapid and accurate diagnostic tool with the potential for high throughput diagnosis.

  • association of the chicken mhc b haplotypes with resistance to Avian Coronavirus
    Developmental and Comparative Immunology, 2013
    Co-Authors: Ghida R Banat, Mark W Jackwood, Suzana Tkalcic, Jennifer Dzielawa, Miguel D Saggese, L M Yates, Renee Kopulos, W E Briles, Ellen W Collisson
    Abstract:

    Clinical respiratory illness was compared in five homozygous chicken lines, originating from homozygous B2, B8, B12 and B19, and heterozygous B2/B12 birds after infection with either of two strains of the infectious bronchitis virus (IBV). All chickens used in these studies originated from White Leghorn and Ancona linages. IBV Gray strain infection of MHC homozygous B12 and B19 haplotype chicks resulted in severe respiratory disease compared to chicks with B2/B2 and B5/B5 haplotypes. Demonstrating a dominant B2 phenotype, B2/B12 birds were also more resistant to IBV. Respiratory clinical illness in B8/B8 chicks was severe early after infection, while illness resolved similar to the B5 and B2 homozygous birds. Following M41 strain infection, birds with B2/B2 and B8/B8 haplotypes were again more resistant to clinical illness than B19/B19 birds. Real time RT-PCR indicated that infection was cleared more efficiently in trachea, lungs and kidneys of B2/B2 and B8/B8 birds compared with B19/B19 birds. Furthermore, M41 infected B2/B2 and B8/B8 chicks performed better in terms of body weight gain than B19/B19 chicks. These studies suggest that genetics of B defined haplotypes might be exploited to produce chicks resistant to respiratory pathogens or with more effective immune responses.

  • Changes in nonstructural protein 3 are associated with attenuation in Avian Coronavirus infectious bronchitis virus
    Virus Genes, 2012
    Co-Authors: J.e. Phillips, E. T. Mckinley, N. D. Acevedol, A. H. Paterson, S M Williams, Sharmi W Thor, Deborah A Hilt, Jessica C Kissinger, Mark W Jackwood, J S Robertson
    Abstract:

    Full-length genome sequencing of pathogenic and attenuated (for chickens) Avian Coronavirus infectious bronchitis virus (IBV) strains of the same serotype was conducted to identify genetic differences between the pathotypes. Analysis of the consensus full-length genome for three different IBV serotypes (Ark, GA98, and Mass41) showed that passage in embryonated eggs, to attenuate the viruses for chickens, resulted in 34.75–43.66% of all the amino acid changes occurring in nsp 3 within a virus type, whereas changes in the spike glycoprotein, thought to be the most variable protein in IBV, ranged from 5.8 to 13.4% of all changes. The attenuated viruses did not cause any clinical signs of disease and had lower replication rates than the pathogenic viruses of the same serotype in chickens. However, both attenuated and pathogenic viruses of the same serotype replicated similarly in embryonated eggs, suggesting that mutations in nsp 3, which is involved in replication of the virus, might play an important role in the reduced replication observed in chickens leading to the attenuated phenotype.

  • attenuated live vaccine usage affects accurate measures of virus diversity and mutation rates in Avian Coronavirus infectious bronchitis virus
    Virus Research, 2011
    Co-Authors: Enid T Mckinley, Deborah A Hilt, Jessica C Kissinger, Mark W Jackwood, Jon S Robertson, Cornelia Lemke, Andrew H Paterson
    Abstract:

    Abstract The full-length genomes of 11 infectious bronchitis virus (IBV) field isolates from three different types of the virus; Massachusetts (Mass), Connecticut (Conn) and California (CAL) isolated over a 41, 25 and 8 year period respectively, were sequenced and analyzed to determine the mutation rates and level of polymorphisms across the genome. Positive selection was not detected and mutation rates ranged from 10 −4 to 10 −6  substitutions/site/year for Mass and Conn IBV types where attenuated live vaccines are routinely used to control the disease. In contrast, for CAL type viruses, for which no vaccine exists, positive selection was detected and mutation rates were 10 fold higher ranging from 10 −2 to 10 −3  substitutions/site/year. Lower levels of genetic diversity among the Mass and Conn viruses as well as sequence similarities with vaccine virus genomes suggest that the origin of the Mass and all but one of the Conn viruses was likely vaccine virus that had been circulating in the field for an unknown but apparently short period of time. The genetic data also identified a recombinant IBV isolate with 7 breakpoints distributed across the entire genome suggesting that viruses within the same serotype can have a high degree of genetic variability outside of the spike gene. These data are important because inaccurate measures of genetic diversity and mutation rates could lead to underestimates of the ability of IBV to change and potentially emerge to cause disease.

Monique H Verheije - One of the best experts on this subject based on the ideXlab platform.

  • three amino acid changes in Avian Coronavirus spike protein allow binding to kidney tissue
    Journal of Virology, 2020
    Co-Authors: Kim M Bouwman, Alinda J Berends, John F. Cipollo, Lisa M Parsons, Robert P De Vries, Monique H Verheije
    Abstract:

    Infectious bronchitis virus (IBV) infects ciliated epithelial cells in the chicken respiratory tract. While some IBV strains replicate locally, others can disseminate to various organs, including the kidney. Here, we elucidate the determinants for kidney tropism by studying interactions between the receptor-binding domain (RBD) of the viral attachment protein spike from two IBV strains with different tropisms. Recombinantly produced RBDs from the nephropathogenic IBV strain QX and from the nonnephropathogenic strain M41 bound to the epithelial cells of the trachea. In contrast, only QX-RBD binds more extensively to cells of the digestive tract, urogenital tract, and kidneys. While removal of sialic acids from tissues prevented binding of all proteins to all tissues, binding of QX-RBD to trachea and kidney could not be blocked by preincubation with synthetic alpha-2,3-linked sialic acids. The lack of binding of QX-RBD to a previously identified IBV-M41 receptor was confirmed by enzyme-linked immunosorbent assay (ELISA), demonstrating that tissue binding of QX-RBD is dependent on a different sialylated glycan receptor. Using chimeric RBD proteins, we discovered that the region encompassing amino acids 99 to 159 of QX-RBD was required to establish kidney binding. In particular, QX-RBD amino acids 110 to 112 (KIP) were sufficient to render IBV-M41 with the ability to bind to kidney, while the reciprocal mutations in IBV-QX abolished kidney binding completely. Structural analysis of both RBDs suggests that the receptor-binding site for QX is located at a different location on the spike than that of M41.IMPORTANCE Infectious bronchitis virus is the causative agent of infectious bronchitis in chickens. Upon infection of chicken flocks, the poultry industry faces substantial economic losses by diminished egg quality and increased morbidity and mortality of infected animals. While all IBV strains infect the chicken respiratory tract via the ciliated epithelial layer of the trachea, some strains can also replicate in the kidneys, dividing IBV into the following two pathotypes: nonnephropathogenic (example, IBV-M41) and nephropathogenic viruses (including IBV-QX). Here, we set out to identify the determinants for the extended nephropathogenic tropism of IBV-QX. Our data reveal that each pathotype makes use of a different sialylated glycan ligand, with binding sites on opposite sides of the attachment protein. This knowledge should facilitate the design of antivirals to prevent Coronavirus infections in the field.

  • glycosylation of the viral attachment protein of Avian Coronavirus is essential for host cell and receptor binding
    Journal of Biological Chemistry, 2019
    Co-Authors: Lisa M Parsons, John F. Cipollo, Kim M Bouwman, Hugo F Azurmendi, Robert P De Vries, Monique H Verheije
    Abstract:

    Avian Coronaviruses, including infectious bronchitis virus (IBV), are important respiratory pathogens of poultry. The heavily glycosylated IBV spike protein is responsible for binding to host tissues. Glycosylation sites in the spike protein are highly conserved across viral genotypes, suggesting an important role for this modification in the virus life cycle. Here, we analyzed the N-glycosylation of the receptor-binding domain (RBD) of IBV strain M41 spike protein and assessed the role of this modification in host receptor binding. Ten single Asn-to-Ala substitutions at the predicted N-glycosylation sites of the M41-RBD were evaluated along with two control Val-to-Ala substitutions. CD analysis revealed that the secondary structure of all variants was retained compared with the unmodified M41-RBD construct. Six of the ten glycosylation variants lost binding to chicken trachea tissue and an ELISA-presented α2,3-linked sialic acid oligosaccharide ligand. LC/MSE glycomics analysis revealed that glycosylation sites have specific proportions of N-glycan subtypes. Overall glycosylation patterns of most variant RBDs were highly similar to those of the unmodified M41-RBD construct. In silico docking experiments with the recently published cryo-EM structure of the M41 IBV spike protein and our glycosylation results revealed a potential ligand receptor site that is ringed by four glycosylation sites that dramatically impact ligand binding. Combined with the results of previous array studies, the glycosylation and mutational analyses presented here suggest a unique glycosylation-dependent binding modality for the M41 spike protein.

  • The Avian Coronavirus spike protein
    Virus Research, 2014
    Co-Authors: I. N. Ambepitiya Wickramasinghe, Steven J Van Beurden, Erik A. W. S. Weerts, Monique H Verheije
    Abstract:

    Abstract Avian Coronaviruses of the genus GammaCoronavirus are represented by infectious bronchitis virus (IBV), the Coronavirus of chicken. IBV causes a highly contagious disease affecting the respiratory tract and, depending on the strain, other tissues including the reproductive and urogenital tract. The control of IBV in the field is hampered by the many different strains circulating worldwide and the limited protection across strains due to serotype diversity. This diversity is believed to be due to the amino acid variation in the S1 domain of the major viral attachment protein spike. In the last years, much effort has been undertaken to address the role of the Avian Coronavirus spike protein in the various steps of the virus’ live cycle. Various models have successfully been developed to elucidate the contribution of the spike in binding of the virus to cells, entry of cell culture cells and organ explants, and the in vivo tropism and pathogenesis. This review will give an overview of the literature on Avian Coronavirus spike proteins with particular focus on our recent studies on binding of recombinant soluble spike protein to chicken tissues. With this, we aim to summarize the current understanding on the Avian Coronavirus spike's contribution to host and tissue predilections, pathogenesis, as well as its role in therapeutic and protective interventions.

  • mapping of the receptor binding domain and amino acids critical for attachment in the spike protein of Avian Coronavirus infectious bronchitis virus
    Virology, 2014
    Co-Authors: N Promkuntod, R E W Van Eijndhoven, G De Vrieze, Andrea Grone, Monique H Verheije
    Abstract:

    The infection of the Avian Coronavirus infectious bronchitis virus (IBV) is initiated by the binding of the spike glycoprotein S to sialic acids on the chicken host cell. In this study we identified the receptor-binding domain (RBD) of the spike of the prototype IBV strain M41. By analyzing the ability of recombinantly expressed chimeric and truncated spike proteins to bind to chicken tissues, we demonstrate that the N-terminal 253 amino acids of the spike are both required and sufficient for binding to chicken respiratory tract in an α-2,3-sialic acid-dependent manner. Critical amino acids for attachment of M41 spike are present within the N-terminal residues 19-69, which overlap with a hypervariable region in the S1 gene. Our results may help to understand the differences between IBV S1 genotypes and the ultimate pathogenesis of IBV in chickens.

  • binding of Avian Coronavirus spike proteins to host factors reflects virus tropism and pathogenicity
    Journal of Virology, 2011
    Co-Authors: I Ambepitiya N Wickramasinghe, Andrea Grone, R P De Vries, C A M De Haan, Monique H Verheije
    Abstract:

    The binding of viruses to host cells is the first step in determining tropism and pathogenicity. While Avian infectious bronchitis Coronavirus (IBV) infection and Avian influenza A virus (IAV) infection both depend on α2,3-linked sialic acids, the host tropism of IBV is restricted compared to that of IAV. Here we investigated whether the interaction between the viral attachment proteins and the host could explain these differences by using recombinant spike domains (S1) of IBV strains with different pathogenicities, as well as the hemagglutinin (HA) protein of IAV H5N1. Protein histochemistry showed that S1 of IBV strain M41 and HA of IAV subtype H5N1 displayed sialic acid-dependent binding to chicken respiratory tract tissue. However, while HA bound with high avidity to a broad range of α2,3-linked sialylated glycans, M41 S1 recognized only one particular α2,3-linked disialoside in a glycan array. When comparing the binding of recombinant IBV S1 proteins derived from IBV strains with known differences in tissue tropism and pathogenicity, we observed that while M41 S1 displayed binding to cilia and goblet cells of the chicken respiratory tract, S1 derived from the vaccine strain H120 or the nonvirulent Beaudette strain had reduced or no binding to chicken tissues, respectively, in agreement with the reduced abilities of these viruses to replicate in vivo. While the S1 protein derived from the nephropathogenic IBV strain B1648 also hardly displayed binding to respiratory tract cells, distinct binding to kidney cells was observed, but only after the removal of sialic acid from S1. In conclusion, our data demonstrate that the attachment patterns of the IBV S proteins correlate with the tropisms and pathogenicities of the corresponding viruses.

Paul Britton - One of the best experts on this subject based on the ideXlab platform.

  • analysis of the Avian Coronavirus spike protein reveals heterogeneity in the glycans present
    Journal of General Virology, 2021
    Co-Authors: Phoebe Stevensonleggett, Paul Britton, Sarah Keep, Stuart D Armstrong, Erica Bickerton
    Abstract:

    Infectious bronchitis virus (IBV) is an economically important Coronavirus, causing damaging losses to the poultry industry worldwide as the causative agent of infectious bronchitis. The Coronavirus spike (S) glycoprotein is a large type I membrane protein protruding from the surface of the virion, which facilitates attachment and entry into host cells. The IBV S protein is cleaved into two subunits, S1 and S2, the latter of which has been identified as a determinant of cellular tropism. Recent studies expressing Coronavirus S proteins in mammalian and insect cells have identified a high level of glycosylation on the protein's surface. Here we used IBV propagated in embryonated hens' eggs to explore the glycan profile of viruses derived from infection in cells of the natural host, chickens. We identified multiple glycan types on the surface of the protein and found a strain-specific dependence on complex glycans for recognition of the S2 subunit by a monoclonal antibody in vitro, with no effect on viral replication following the chemical inhibition of complex glycosylation. Virus neutralization by monoclonal or polyclonal antibodies was not affected. Following analysis of predicted glycosylation sites for the S protein of four IBV strains, we confirmed glycosylation at 18 sites by mass spectrometry for the pathogenic laboratory strain M41-CK. Further characterization revealed heterogeneity among the glycans present at six of these sites, indicating a difference in the glycan profile of individual S proteins on the IBV virion. These results demonstrate a non-specific role for complex glycans in IBV replication, with an indication of an involvement in antibody recognition but not neutralisation.

  • Reverse Genetics System for the Avian Coronavirus Infectious Bronchitis Virus.
    Methods of Molecular Biology, 2017
    Co-Authors: Erica Bickerton, Sarah Keep, Paul Britton
    Abstract:

    We have developed a reverse genetics system for the Avian Coronavirus infectious bronchitis virus (IBV) in which a full-length cDNA corresponding to the IBV genome is inserted into the vaccinia virus genome under the control of a T7 promoter sequence. Vaccinia virus as a vector for the full-length IBV cDNA has the advantage that modifications can be introduced into the IBV cDNA using homologous recombination, a method frequently used to insert and delete sequences from the vaccinia virus genome. Here, we describe the use of transient dominant selection as a method for introducing modifications into the IBV cDNA that has been successfully used for the substitution of specific nucleotides, deletion of genomic regions, and exchange of complete genes. Infectious recombinant IBVs are generated in situ following the transfection of vaccinia virus DNA, containing the modified IBV cDNA, into cells infected with a recombinant fowlpox virus expressing T7 DNA-dependant RNA polymerase.

  • detection of Avian Coronavirus infectious bronchitis virus type qx infection in switzerland
    Journal of Veterinary Diagnostic Investigation, 2012
    Co-Authors: Brigitte Sigrist, Paul Britton, Kurt Tobler, Martina Schybli, Leonie Konrad, Rene Stockli, Giovanni Cattoli, Dorte Luschow, Hafez M Hafez, Richard K Hoop
    Abstract:

    Infectious bronchitis, a disease of chickens caused by Avian Coronavirus infectious bronchitis virus (IBV), leads to severe economic losses for the poultry industry worldwide. Various attempts to control the virus based on vaccination strategies are performed. However, due to the emergence of novel genotypes, an effective control of the virus is hindered. In 1996, a novel viral genotype named IBV-QX was reported for the first time in Qingdao, Shandong province, China. The first appearance of an IBV-QX isolate in Europe was reported between 2003 and 2004 in The Netherlands. Subsequently, infections with this genotype were found in several other European countries such as France, Italy, Germany, United Kingdom, Slovenia, and Sweden. The present report describes the use of a new set of degenerate primers that amplify a 636-bp fragment within the S1 gene by reverse transcription polymerase chain reaction to detect the occurrence of IBV-QX infection in Switzerland.

  • modification of the Avian Coronavirus infectious bronchitis virus for vaccine development
    Bioengineered bugs, 2012
    Co-Authors: Paul Britton, David Cavanagh, Maria Armesto, Sarah Keep
    Abstract:

    Infectious bronchitis virus (IBV) causes an infectious respiratory disease of domestic fowl that affects poultry of all ages causing economic problems for the poultry industry worldwide. Although IBV is controlled using live attenuated and inactivated vaccines it continues to be a major problem due to the existence of many serotypes, determined by the surface spike protein resulting in poor cross-protection, and loss of immunogenicity associated with vaccine production. Live attenuated IBV vaccines are produced by the repeated passage in embryonated eggs resulting in spontaneous mutations. As a consequence attenuated viruses have only a few mutations responsible for the loss of virulence, which will differ between vaccines affecting virulence and/or immunogenicity and can revert to virulence. A new generation of vaccines is called for and one means of controlling IBV involves the development of new and safer vaccines by precisely modifying the IBV genome using reverse genetics for the production of rationally attenuated IBVs in order to obtain an optimum balance between loss of virulence and capacity to induce immunity.

  • the replicase gene of Avian Coronavirus infectious bronchitis virus is a determinant of pathogenicity
    PLOS ONE, 2009
    Co-Authors: Maria Armesto, D Cavanagh, Paul Britton
    Abstract:

    We have previously demonstrated that the replacement of the S gene from an avirulent strain (Beaudette) of infectious bronchitis virus (IBV) with an S gene from a virulent strain (M41) resulted in a recombinant virus (BeauR-M41(S)) with the in vitro cell tropism of the virulent virus but that was still avirulent. In order to investigate whether any of the other structural or accessory genes played a role in pathogenicity we have now replaced these from the Beaudette strain with those from M41. The recombinant IBV was in effect a chimaeric virus with the replicase gene derived from Beaudette and the rest of the genome from M41. This demonstrated that it is possible to exchange a large region of the IBV genome, approximately 8.4 kb, using our transient dominant selection method. Recovery of a viable recombinant IBV also demonstrated that it is possible to interchange a complete replicase gene as we had in effect replaced the M41 replicase gene with the Beaudette derived gene. Analysis of the chimaeric virus showed that it was avirulent indicating that none of the structural or accessory genes derived from a virulent isolate of IBV were able to restore virulence and that therefore, the loss of virulence associated with the Beaudette strain resides in the replicase gene.

Steven J Van Beurden - One of the best experts on this subject based on the ideXlab platform.

  • deletion of accessory genes 3a 3b 5a or 5b from Avian Coronavirus infectious bronchitis virus induces an attenuated phenotype both in vitro and in vivo
    Journal of General Virology, 2018
    Co-Authors: Andrea Laconi, Steven J Van Beurden, Alinda J Berends, Annika Kramerkuhl, Dieuwertje Spekreijse, Gilles Chenard, Hanschristian Philipp, Christine A Jansen, Egbert Mundt
    Abstract:

    Avian Coronavirus infectious bronchitis virus (IBV) infects domestic fowl, resulting in respiratory disease and causing serious losses in unprotected birds. Its control is mainly achieved by using live attenuated vaccines. Here we explored the possibilities for rationally attenuating IBV to improve our knowledge regarding the function of IBV accessory proteins and for the development of next-generation vaccines with the recently established reverse genetic system for IBV H52 based on targeted RNA recombination and selection of recombinant viruses in embryonated eggs. To this aim, we selectively removed accessory genes 3a, 3b, 5a and 5b individually, and rescued the resulting recombinant (r) rIBV-Δ3a, rIBV-Δ3b, rIBV-Δ5a and rIBV-Δ5b. In vitro inoculation of chicken embryo kidney cells with recombinant and wild-type viruses demonstrated that the accessory protein 5b is involved in the delayed activation of the interferon response of the host after IBV infection. Embryo mortality after the inoculation of 8-day-old embryonated chicken eggs with recombinant and wild-type viruses showed that rIBV-Δ3b, rIBV-Δ5a and rIBV-Δ5b had an attenuated phenotype in ovo, with reduced titres at 6 h p.i. and 12 h p.i. for all viruses, while growing to the same titre as wild-type rIBV at 48 h p.i. When administered to 1-day-old chickens, rIBV-Δ3a, rIBV-Δ3b, rIBV-Δ5a and rIBV-Δ5b showed reduced ciliostasis in comparison to the wild-type viruses. In conclusion, individual deletion of accessory genes in IBV H52 resulted in mutant viruses with an attenuated phenotype.

  • recombinant live attenuated Avian Coronavirus vaccines with deletions in the accessory genes 3ab and or 5ab protect against infectious bronchitis in chickens
    Vaccine, 2018
    Co-Authors: Steven J Van Beurden, Alinda J Berends, Annika Kramerkuhl, Dieuwertje Spekreijse, Gilles Chenard, Hanschristian Philipp, Peter J M Rottier, Egbert Mundt, Helene M Verheije
    Abstract:

    Avian Coronavirus infectious bronchitis virus (IBV) is a respiratory pathogen of chickens, causing severe economic losses in poultry industry worldwide. Live attenuated viruses are widely used in both the broiler and layer industry because of their efficacy and ability to be mass applied. Recently, we established a novel reverse genetics system based on targeted RNA recombination to manipulate the genome of IBV strain H52. Here we explore the possibilities to attenuate IBV in a rational way in order to generate safe and effective vaccines against virulent IBV (van Beurden et al., 2017). To this end, we deleted the nonessential group-specific accessory genes 3 and/or 5 in the IBV genome by targeted RNA recombination and selected the recombinant viruses in embryonated eggs. The resulting recombinant (r) rIBV-Δ3ab, rIBV-Δ5ab, and rIBV-Δ3ab5ab could be rescued and grew to the same virus titer as recombinant and wild type IBV strain H52. Thus, genes 3ab and 5ab are not essential for replication in ovo. When administered to one-day-old chickens, rIBV-Δ3ab, rIBV-Δ5ab, and rIBV-Δ3ab5ab showed reduced ciliostasis as compared to rIBV H52 and wild type H52, indicating that the accessory genes contribute to the pathogenicity of IBV. After homologous challenge with the virulent IBV strain M41, all vaccinated chickens were protected against disease based on reduced loss of ciliary movement in the trachea compared to the non-vaccinated but challenged controls. Taken together, deletion of accessory genes 3ab and/or 5ab in IBV resulted in mutant viruses with an attenuated phenotype and the ability to induce protection in chickens. Hence, targeted RNA recombination based on virulent IBV provides opportunities for the development of a next generation of rationally designed live attenuated IBV vaccines.

  • a reverse genetics system for Avian Coronavirus infectious bronchitis virus based on targeted rna recombination
    Virology Journal, 2017
    Co-Authors: Steven J Van Beurden, Alinda J Berends, Annika Kramerkuhl, Dieuwertje Spekreijse, Gilles Chenard, Hanschristian Philipp, Peter J M Rottier, Egbert Mundt, Helene M Verheije
    Abstract:

    Avian Coronavirus infectious bronchitis virus (IBV) is a respiratory pathogen of chickens that causes severe economic losses in the poultry industry worldwide. Major advances in the study of the molecular biology of IBV have resulted from the development of reverse genetics systems for the highly attenuated, cell culture-adapted, IBV strain Beaudette. However, most IBV strains, amongst them virulent field isolates, can only be propagated in embryonated chicken eggs, and not in continuous cell lines. We established a reverse genetics system for the IBV strain H52, based on targeted RNA recombination in a two-step process. First, a genomic and a chimeric synthetic, modified IBV RNA were co-transfected into non-susceptible cells to generate a recombinant chimeric murinized (m) IBV intermediate (mIBV). Herein, the genomic part coding for the spike glycoprotein ectodomain was replaced by that of the Coronavirus mouse hepatitis virus (MHV), allowing for the selection and propagation of recombinant mIBV in murine cells. In the second step, mIBV was used as the recipient. To this end a recombination with synthetic RNA comprising the 3′-end of the IBV genome was performed by introducing the complete IBV spike gene, allowing for the rescue and selection of candidate recombinants in embryonated chicken eggs. Targeted RNA recombination allowed for the modification of the 3′-end of the IBV genome, encoding all structural and accessory genes. A wild-type recombinant IBV was constructed, containing several synonymous marker mutations. The in ovo growth kinetics and in vivo characteristics of the recombinant virus were similar to those of the parental IBV strain H52. Targeted RNA recombination allows for the generation of recombinant IBV strains that are not able to infect and propagate in continuous cell lines. The ability to introduce specific mutations holds promise for the development of rationally designed live-attenuated IBV vaccines and for studies into the biology of IBV in general.

  • Additional file 2: Figure S1. of A reverse genetics system for Avian Coronavirus infectious bronchitis virus based on targeted RNA recombination
    2017
    Co-Authors: Steven J Van Beurden, Dieuwertje Spekreijse, Gilles Chenard, Hanschristian Philipp, Egbert Mundt, Alinda Berends, Annika Krämer-kühl, Peter Rottier, Helene M Verheije
    Abstract:

    Alignment of 3′ 9 kb of mIBV and rIBV-wt with IBV H52 BI. Alignment of the 3′ 9 kb of mIBV 1B3IIA P6 (excluding the MHV derived spike ectodomain sequence) and recombinant (r)IBV wild-type (wt) P4 with IBV H52 BI. Numbers refer to nucleotide positions in the IBV H52 BI genome. Restriction enzyme sites are highlighted in yellow, with the corresponding enzyme indicated above the sequences. An additional thymidine residue to keep the MHV spike gene ectodomain sequence in frame with the IBV spike gene signal sequence at position 20,385 is highlighted in green and marked with a # above the sequence. A spontaneous T to C silent substitution in the spike of rIBV-wt at position 22,644 is highlighted in red. (DOCX 41 kb

  • The Avian Coronavirus spike protein
    Virus Research, 2014
    Co-Authors: I. N. Ambepitiya Wickramasinghe, Steven J Van Beurden, Erik A. W. S. Weerts, Monique H Verheije
    Abstract:

    Abstract Avian Coronaviruses of the genus GammaCoronavirus are represented by infectious bronchitis virus (IBV), the Coronavirus of chicken. IBV causes a highly contagious disease affecting the respiratory tract and, depending on the strain, other tissues including the reproductive and urogenital tract. The control of IBV in the field is hampered by the many different strains circulating worldwide and the limited protection across strains due to serotype diversity. This diversity is believed to be due to the amino acid variation in the S1 domain of the major viral attachment protein spike. In the last years, much effort has been undertaken to address the role of the Avian Coronavirus spike protein in the various steps of the virus’ live cycle. Various models have successfully been developed to elucidate the contribution of the spike in binding of the virus to cells, entry of cell culture cells and organ explants, and the in vivo tropism and pathogenesis. This review will give an overview of the literature on Avian Coronavirus spike proteins with particular focus on our recent studies on binding of recombinant soluble spike protein to chicken tissues. With this, we aim to summarize the current understanding on the Avian Coronavirus spike's contribution to host and tissue predilections, pathogenesis, as well as its role in therapeutic and protective interventions.

Wensheng Fan - One of the best experts on this subject based on the ideXlab platform.

  • identification of a novel Avian Coronavirus infectious bronchitis virus variant with three nucleotide deletion in nucleocapsid gene in china
    Journal of Veterinary Medical Science, 2021
    Co-Authors: Zhihua Dong, Tianchao Wei, Wensheng Fan, Ning Tang, Lu Wang, Lanping Wei, Jinwen Tang, Liting Lin, Teng Huang, Ping Wei
    Abstract:

    A novel Avian infectious bronchitis virus (IBV) variant, designated as GX-NN160421, was isolated from vaccinated chicken in Guangxi, China, in 2016. Based on analysis of the S1 gene sequence, GX-NN160421 belonged to the New-type 1 (GVI-1) strain. More importantly, three consecutive nucleotides (AAC) deletions were found in the highly conserved structure gene N. The serotype of GX-NN160421 was different from those of the commonly used vaccine strains. The mortality of the GX-NN160421 strain was 3.33%, which contrasted with 50% mortality in the clinical case, but high levels of virus shedding lasted at least 21 days. In conclusion, the first novel genotype IBV variant with three-nucleotide-deletion in the N gene was identified, and this unique variant is low virulent but with a long time of virus shedding, indicating the continuing evolution of IBV and emphasizing the importance of limiting exposure to novel IBV strains as well as extensive monitoring of new IBVs.

  • construction and immunogenicity comparison of three virus like particles carrying different combinations of structural proteins of Avian Coronavirus infectious bronchitis virus
    Vaccine, 2021
    Co-Authors: Yu Zhang, Wensheng Fan, Lu Wang, Lanping Wei, Yuan Yuan, Lihua Zhang, Dan Zhu, Changrun Zhao, Jianqi Liao, Lu Yong
    Abstract:

    Infectious bronchitis virus (IBV) poses massive economic losses in the global poultry industry. Here, we firstly report the construction and immunogenicity comparison of virus-like particles (VLPs) carrying the S, M and E proteins (SME-VLPs); VLPs carrying the S and M proteins (SM-VLPs); and VLPs carrying the M and E proteins (ME-VLPs) from the dominant serotype representative strain GX-YL5 in China. The neutralizing antibody response induced by the SME-VLPs was similar to that induced by the inactivated oil vaccine (OEV) of GX-YL5, and higher than those induced by the SM-VLPs, ME-VLPs and commercial live vaccine H120. More importantly, the SME-VLPs elicited higher percentages of CD4+ and CD8+ T lymphocytes than the SM-VLPs, ME-VLPs and OEV of GX-YL5. Compared with the OEV of GX-YL5, higher levels of IL-4 and IFN-γ were also induced by the SME-VLPs. Moreover, the mucosal immune response (sIgA) induced by the SME-VLPs in the tear and oral swabs was comparable to that induced by the H120 vaccine and higher than that induced by the OEV of GX-YL5. In the challenge experiment, the SME-VLPs resulted in significantly lower viral RNA levels in the trachea and higher protection scores than the OEV of GX-YL5 and H120 vaccines, and induced comparable viral RNA levels in the kidneys, and tear and oral swabs to the OEV of GX-YL5. In summary, among the three VLPs, the SME-VLPs carrying the S, M and E proteins of IBV could stimulate the strongest humoral, cellular and mucosal immune responses and provide effective protection, indicating that it would be an attractive vaccine candidate for IB.

  • molecular characterization of major structural protein genes of Avian Coronavirus infectious bronchitis virus isolates in southern china
    Viruses, 2013
    Co-Authors: Baicheng Huang, Ping Wei, Tianchao Wei, Wensheng Fan, Qiu Ying Cheng, Zheng Ji Wei, Ya Hui Lang
    Abstract:

    To gain comprehensive genetic information of circulating Avian Coronavirus infectious bronchitis virus (IBV) isolates in China, analysis of the phylogenetic tree, entropy of the amino acid sequences, and the positive selection as well as computational recombinations of S1, M and N genes of 23 IBV isolates was conducted in the present study. The phylogenetic trees based on the S1, M and N genes exhibited considerably different topology and the CK/CH/LSC/99I-type isolates were the predominant IBVs based on the phylogenetic analysis of S1 gene. Results of entropy of amino acid sequences revealed that the S1 gene had the largest variation; the M gene had less variation than the N gene. Positive selections were detected in not only S1 but also M and N gene proteins. In addition, five S1 gene recombinants between vaccine strain 4/91 and CK/CH/LSC/99I-type field isolate were confirmed. In conclusion, multiple IBV genotypes co-circulated; genetic diversity and positive selections existed in S1, M and N genes; 4/91 vaccine recombinants emerged in China. Our results show that field IBVs in China are continuing to evolve and vaccine strains may have an important role in the appearance of new IBV strains via recombination. In addition, the present study indicates that IBV evolution is driven by both generations of genetic diversity and selection.

  • complete genome sequences of two chinese virulent Avian Coronavirus infectious bronchitis virus variants
    Journal of Virology, 2012
    Co-Authors: Baicheng Huang, Ping Wei, Tianchao Wei, Xiuying Wang, Qiuying Chen, Wensheng Fan
    Abstract:

    Avian Coronavirus infectious bronchitis virus (IBV) is variable, which causes many serotypes. Here we reported the complete genome sequences of two virulent IBV variants from China, GX-YL5 and GX-YL9, belonging to different serotypes. Differences between GX-YL5 and GX-YL9 were found mainly in stem-loop structure I in the predicted RNA secondary structure of open reading frame (ORF) 1b and the S protein gene fusion region, which will help us understand the molecular evolutionary mechanism of IBV and the disconcordance between the genotypes and serotypes of Coronavirus.